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Modulation instability is observed in waves heretofore considered to be stable. The excitation 
growth rates for coupled high- and low-frequency oscillations are found for various polarizations 
of the secondary waves. When (ecE/w, ) < T, longitudinal waves perpendicular to the pump are 
excited because of the relativistic dependence of the electron momentum on the velocity. At 
temperatures T-mc2 and higher, the electron-ion modulation instability enters as a correction. 

1. INTRODUCTION 

Modulation instability has been well investigated in the 
nonrelativistic kinetic theory (see e.g., Refs. 1-3). Modula- 
tion instability in a collisionless plasma can be accompanied 
by excitation of quasistatic magnetic fields. Observation of 
this fact495 prompted a more thorough study of modulation 
instability. Its study was also stimulated by experiments in 
which strong magnetic fields were excited in a plasma by 
intense electromagnetic radiati~n.~.' 

The cited theoretical studies started out with nonrelati- 
vistic kinetic equations for the collisionless plasma. These 
equations do not combine with the Lorentz-invariant field 
equations to form a self-consistent system. Even at nonrela- 
tivistic plasma temperatures, certain physical processes can 
be investigated only on the basis of a self-consistent Lorentz- 
invariant Qualitative changes in the effects pre- 
dicted by nonrelativistic theory, as well as new quantitative 
results, can also be expected from a study of modulation 
instability, since the electromagnetic-field growth rates cal- 
culated in Refs. 4,5, and 10 contain the speed of light in the 
denominator. 

A nonresonant aperiodic growth of low-frequency mag- 
netic fields was obtained via a relativistic approach in Refs. 
11-13. No account was taken in these references, however, 
of the connection between the excited low-frequency and 
high-frequency fields, so that the validity of the main results 
is limited. 

Modulation instability due to the relativistic depen- 
dence of the electron velocity on its momentum was ob- 
served14 in a cold electron plasma. A consistent kinetic the- 
ory of this phenomenon was developed in Ref. 15. At 
relativistic temperatures, the relativistic mechanism is pre- 
dominant. At nonrelativistic temperatures this effect leads 
only to small growth-rate corrections to allow for the elec- 
tron-ion mechanisms. If it is recognized, however, that the 
range of the wave-vectors k, for which the electron-ion 
mechanism comes into play is quite narrow, k :& < ug/v2, 
(v, zeE,Jmwo) (Ref.2), it becomes of interest to study the 
influence of the relativistic instability mechanism outside 
the indicated range of wave vectors at nonrelativistic and 
relativistic temperatures. We solve therefore in the present 
paper the kinetic equations of a collisionless plasma in the 
form of a nonlinear stationary longitudinal wave at arbitrary 
relativistic temperatures and show that periodic modulation 

instability of such waves takes place at k :& > vg/v2,. 
The resonant high-frequency and stimulated low-fre- 

quency transverse and longitudinal waves were investigated 
in a uniform self-consistent pump field. The new result here 
was that when longitudinal secondary waves were excited in 
a direction perpendicular to the pump field E, the contribu- 
tion to the increment on account of the relativistic depen- 
dence of the electron momentum on its velocity at v, < T /  
mc turned out to be predominant. The nonlinear connection 
between the high-frequency waves and the low-frequency 
pulsations of the magnetic field becomes weaker in this case. 

We shall show below that coupled high- and low-fre- 
quency secondary waves are excited in the pump-field dire- 
cion (k IIEo). At sufficiently small k (k-op v,vT/c3) the 
growth rate y of such waves is of the order of w, uivT/c3 and 
is C/V, times larger than the growth rate of the low-frequen- 
cy transverse field, if no account is taken of the growth rate 
of the connection of this field with the high-frequency trans- 
verse field. 

Generation of secondary transverse high-frequency 
fields makes also possible transverse modulation of the pri- 
mary-wave field. 

When the temperature is raised to T-mc2 and higher, 
the modulation-instability growth rate is of the order of 
op vga5/2/~2 (a = mc '/T) regardless of the secondary-wave 
polarization. The electron-ion mechanism is a correction in 
this case, and the quasistatic magnetic fields excited during 
the development of the modulation instability have no effect 
on the nonlinear dispersion relations. 

2. NONLINEAR STATIONARY WAVE IN A RELATIVISTIC 
PLASMA 

A solution in the form of nonlinear stationary waves 
was obtained for the equations of a cold relativistic plasma in 
Ref. 16, and for arbitrary temperatures in Ref. 17. However, 
the nonlinear terms omitted in Ref. 17 from the expansion in 
the wave field are of the same order as the included first 
nonlinear correction. Both the dispersion equation and the 
nonlinear frequency shift must therefore be revised. 

To obtain the solution of the relativistic collisionless 
kinetic equation and of Maxwell's equations in the form of a 
longitudinal stationary wave, the distribution function must 
be expressed in terms of an integral of motion in the field 

467 Sov. Phys. JETP 60 (3), September 1984 0038-5646/84/090467-06$04.00 @ 1985 American Institute of Physics 467 



E = {O, 0, E,(t - k+/o,)j and substituted in Maxwell's 
equations. The resultant ordinary differential equation can 
be easily solved up to terms cubic in the amplitude E,, by 
using, e.g., the Krylov-Bogolyubov method. Assuming that 
the electron distribution function coincides in the limit as 
E 0 4  with the relativistic Maxwellian distribution, we get 

M 
Eo ( z )  = Eo sin (oo~+(po) + - EoZ sin 2 (oo.t.+cpo) 

30s 
3 

E,S sin 3 (oOz+(pO), ( 1 )  

where 

o, is the frequency of the Langmuir oscillations, and 
T = t - k$/o,. We have introduced also the notation 
p: = p2 + m2c2, 

p& = P :  - p f ,  and f, is the relativistic Maxwellian distri- 
bution. 

At nonrelativistic temperatures (a,  1 )  the nonlinear fre- 
quency shift is determined by the relativistic dependence of 
the electron pulse on the velocity and by "Cwave interac- 
tion" (Ref. 18) in accordance with the equation 

For an ultrarelativistic plasma this result takes the form 

and the frequency shift is proportional to a2. 

3. MODULATION INSTABILITY OF LONGITUDINAL 
OSCILLATIONS WITH FINITE WAVELENGTH: 
(kOrDlz > 6 m Z / @ ~ > 2  

In an isotropic nonmagnetized plasma, and in the ap- 
proximation quadratic in E, used here, modulation instabil- 
ity of a Langmuir wave is due to decay of the second harmon- 
ic of the field E,(T) into two normal modes: 

200=w ( k , )  +o (k , )  ; 2ko=k,+kz. (6)  

For finite k, modulation instability is possible only with re- 
spect to excitation of longitudinal modes. In this case 
Ik, - k, , ,  I/l kol turn out to be of the order of the nonlinear- 
ity parameter m 2 v ~ / ( p ~  ). 

In the investigation of the modulation instability we 
take the initial wave field to be E,(T) [Eq. ( I ) ] ,  and assume 

that the wave vectors k ,  and k2 are parallel to the wave vec- 
tor k ,  of this wave. Representing the secondary waves of the 
perturbations in the form 

where k,, ,  = k, + k and lo 1 coo, we linearize the equations 
for the distribution function and for the field with respect to 
the perturbations E and seek solutions accurate to - E  : for 
the equations obtained in this manner. According to condi- 
tions (6),  the harmonics n = + 1 are resonant while the re- 
maining harmonics are due to interaction of the fields E,(T) 
and E ( + 1 )  and are induced. We arrive thus at a linear ho- 
mogeneous system of equations in the resonant harmonics: 

The coefficients of this system are defined as 

where we have introduced for brevity the notation 

The condition that the system (8)  be self-consistent leads to 
the nonlinear dispersion equation 

At nonrelativistic temperatures, the coefficients (9) have the 
same structure and the same physical meaning as the ob- 
tained frequency shift (4): 

P ( & I )  =3/1 ( u E ~ / c ~ -  14 ( ~ O V E / O P )  ( ~ O U T I O P )  ' ) ,  

(ef) --3/8 ( U E ~ / C ~ - ~ ( ~ O V E ~ O ~ )  2 ( k ~ ~ ~ / a ~ )  '). 
( 1  1 )  

The nonlinear dispersion equation leads therefore to 

where 
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The ion contribution, which is essential as k 0 4 ,  was left out 
of Eqs. ( 1  1 )  - (13). For finite k, (k,u,/w,)u,/c) this ap- 
proximation is legitimate in the region 

For instability to set in, y,,, must be positive, hence 

Both inequalities (14) and ( 1 5 )  are satisfied at not too low 
electron temperatures 

For helium and neon plasmas these temperatures are 
Bmc2/300  and Dmc2/900 ,  respectively. 

The stability conditions (14)-(16) do not depoend on E,. 
Instability occurs therefore also at small ui/u$, such that 

i.e., in the region where it was assumed to be stable in accor- 
dance ith the nonrelativistic electron-ion mechanism. The 
lower limit of u,  is set by the condition that the threshold 
connected with the Landau damping must be exceeded. For 
superluminal waves w,,/k,c 2 1 ,  however, there is no such 
limitation. 

At relativistic temperatures we get for the coefficients 
(9) of the dispersion equation in the long-wave approxima- 
tion 

The ion contribution at relativistic temperatures can be ne- 
glected under the condition 

which is equivalent to the inequality w / k ~ u ,  and is mean- 
ingful at v, gc. 

Propagation of a Langmuir wave of finite amplitude 
and of frequency w, in a plasma is accompanied in all cases 
by excitation of two Langmuir waves at frequencies w, _+ o. 
In this case the primary wave increases exponentially during 
the modulation, both in space (with a characteristic scale 
2 r / k  ) and in time (with scale 2 r I o ) .  

4. MODULATION INSTABILITY IN A UNIFORM SELF- 
CONSISTENT PUMP FIELD 

In the limit as k 0 4  the nonlinear frequency shift (2) is 
purely relativistic. The field polarization E,(T) becomes in- 
determinate and both longitudinal and tranverse secondary 
natural plasma oscillations can be excited in the course of the 
modulation instability. 

In a coordinate system in which k = ( k, 0,O ) , E, = { Eo 
x cos $, E, sin $, 0 )  the equations (7)  for the resonant per- 
turbations E ( + 1 )  [Eq. (7)] break up into two independent 
sets: 

and in addition 

From the dispersion equation (10) we obtain in this case ( E I  ( + I )  \ 

h 

where where the matrix 17 is of the form 

All ( 1 )  + PII ( 1 )  Qn (1) P12 ( 1 )  Q12 ( 1 )  
41 ( - 1 )  + Pll( - l )  Qiz ( - 1 )  PIZ (-1) 

QZI  (1) Azz (1) +Pa ( 1 )  Q Z L  (1) 
PZI ( - 1 )  Qzz ( - 1 )  1\22  (-i) f P22 (;-I 

I 

and the matrix elements are designated as ( 3 )  ( 3 )  
X i j  (n ,  m, ~ ) = ~ . i j k l  ( o+noo ,  k ;  moo, 0; poo, O)Eo&'o,, 

i l i j ( n )  = ~ ~ ~ ( o + n o , ,  k )  - ( t i i j -kikj /k2)  k 2 c 2 / ( o +  no , ) ' ,  
( 3 )  ( 2 )  ( 2 )  

X i j  ( n ,  m )  = ~ i j k  (o+noo, k ;  moo,  0 )  Eo, 
P,(*1)=3/2xij  ( * I ,  1 ,  - 1 ) - X i k  (0,  * l ) X k j  ( * I ,  ~ l ) / l ~ k k ( O )  

represent the dependences of the coefficients of Eqs. (21) and 
-xa (*2, F I ) ~ ; )  ( * I ,  *1) /Aa(*2) ,  (22) on the tensor nonlinear susceptibilities 7cFL and xfi, 

(Ref. 18), in which allowance is made for the relativitic de- 
Q ~ ~ ( * I )  = 3 / l , ~ i j  ( T I ,  * I ;  * I )  (23) pendence of the electron momentum on its velocity. 

-Xi,+ (0, * I )  x:' ( T I ,  * I ) / & k ( O ) .  
The interaction of the field E, with the fields E ( f 1 )  can 

excite also low-frequency oscillations of frequency w and 
The equations wave vector k: 
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If these oscillations are transverse, a quasistatic magnetic 
field B(0) = (c/wo)k x E(0) is also excited. This always occurs 
if k x [E( f 1 )  x E,] # 0. For a transverse high-frequency 
field polarized along the 3-axis, we have according to (21) the 
dispersion equation 

[.is, ( I )  -I- P3, ( I )  [ ~ 3 3 ( - 1 )  + ~ 3 3  (-1) I =Q33 ( 1 )  Q33 ( -1)  7 (25) 

from which it follows that instability does indeed take place 
and envelops with growth rates y 5 ymax,  where 

This is accompanied by excitation of transvers? high-fre- 
quency fields with wave vectors k such that k <  I k l 5 6 ,  
where 

- o ~ v E ~ u T ~ / c ~ ,  T<mc2 
0,0136pvE2a2/~3,  T>mcZ ' 

Since the values y - ymax are reached at k 5 6, the con- 
straint on k ,  is in this case actually the inequality 

The quasistatic magnetic field is excited with the same 
growth rate (26). The coupling coefficient d of the two fields 

I B (0)  ( = d cos$E3( + 1) is of the order of 

uHvT2/c4, T<mc2 
d- { u ~ ~ ~ ~ / c ~ ,  T>mc2. (28) 

The dependence of 6 and ymax on the temperature is ex- 
pressed in both cases in terms of modified Bessel functions of 

FIG. 1 .  Plots of y,,, (T,) at E( + l)IIE, (curve 1) and E( + 1)lE, (curve 2). 

FIG. 2. Plots of k ( T , )  in the following cases: 1-at E( + l)IIE,llk, 2-at 
E( + l)IIE,lk, 3-at E( + l)lEo, E( + 1)llk and 4--at E( + l ) lEo,  
E( + 1)lk. 

imaginary argument and is shown in Figs. 1 and 2. The ion 
motion plays a negligible role in the development of this in- 
stability. 

Thus, in all cases when secondary transverse high-fre- 
quency field are excited the growth rate of the low-frequency 
transverse pulsations is determined by Eqs. (26) and is c/v,  
times larger than the value obtained in Ref. 13 as a result of 
the action of an external field Eo on the dispersion properties 
of such pulsations. The influence of the high-frequency field 
can be neglected either if the high- and low-frequency fields 
become decoupled as, e.g., in an electron-positron plasma, or 
if the resonance conditions (6)  for the excitation of high-fre- 
quency fields are not satisfied, as is the case, for example, at 
(korD )2 > m2ui / (pg  ). 

Excitation of longitudinally-tranverse waves in the 
plane of the vectors E, and k is described by the set of equa- 
gons (22) and by the nonlinear dispersion equation det 
I7 = 0.  We consider first nonrelativistic temperatures. At 
$ = 0 the system (22) describes independently longitudinal 
E l (  + 1) and transverse E2( + 1 )  fields, and the system of 
equations for E2( + 1 )  does not differ from the system inves- 
tigated above for transverse fields E,( + 1). The longitudinal 
field E l (  + 1) field is excited if Ik I < m w ,  u,/v$. The de- 
pendence of the growth rate y = y(k ) for certain values of the 
parametersa, m / m i ,  and u,/v, is shown in Fig. 3. The same 
figure shows for comparison a plot of y(k  ) without allowance 
for the relativistic dependence of the electron momentum on 
velocity. From the equation for the maximum growth rate of 
the excitation of the longitudinal field along E,  we have 

and it is seen from Fig. 3 that the relativistic corrections are 
small. 

Longitudinally-transverse waves can be excited at an 
angle $(O < $ < r / 2 )  to E,. Th nonlinear dispersion relation 
for this case is 
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and has a growth rate y(k ) 5 y,,, , where 

FIG. 3. Plot of y (k )  for the parameter values: l-u;/u; = 0, 1 ,  T,/ 
m,c2 = 1/60, mi/m, = 10'; 2--c+co, but with the same mi, T,, and u,. 

where P = U ~ W , ~ / ( W :  - w')v$, and w, is the ion-sound fre- 
quency. 

It follows from (30) that in the vicinity of the wave vec- 
tors 

k2-op2vEI cos Q I (m/mi)  '"/vT3 

there is excited mainly a longitudinal field E,( + 1 )  
-E l (  - 1 )  with a growth rate 

The transverse component is in this case E 2 ( +  1 )  
-(v$/c2)E1( + 1). At 

k2-wp2vEl sin $1  (m/mi )  '"/c3, 

conversely, the field is mainly transverse: 
E 1 - E -  1 )  The longitudinal component is 
E,( + 1)-(v$/c2)E2( + 1 ) .  The excitation growth rate 

i a = y = m p  (muE2 sin2 $/mic2) '" (32) 
coincides with the result of Ref. 19. The possibility of excit- 
ing low-frequency magnetic pulsations with a growth rate 
(3 1 )  was demonstrated in Ref. 5. 

At $ = n-/2 the set of equations (22) again breaks up 
into two independent sets, one describing the transverse field 
E2( + 1 )  and the other the longitudinal field El(  + 1). The 
transverse field is excited in this direction in accordance with 
the dispersion relation (30) at $ = n-/2 and is not accompa- 
nied by generation of a quasistatic magnetic field. 

The nonrelativistic mechanism connected with the ion 
motion makes no contribution to the dispersion equation of 
the longitudinal field El(  + 1 ) .  A consistent allowance for 
the relativistic motion of the electron may therefore be im- 
portant even at nonrelativistic temperatures. In particular, 
the relativistic terms make the main contribution to the dis- 
persion relation in the region vE /c< T / m c 2 <  1 .  The contri- 
bution due to generation of a quasistatic magnetic field can 
be neglected. 

Instability develops at wave vector values 

k < ~ = ~ , u ~ / l ~ 6 c ~  (33) 

In this case B (0)  - (u , / c )~E, (  + 1). 
In the region T/mc2<vE/c ,  the contributions due to 

generation of the magnetic field and due to the relativistic 
velocity dependence of the electron momentum turn out to 
be of the same order." Instability sets in at 

and grows at a rate 

7 ( k )  < y m a = o p ~ E 2 / 1 6 ~ 2 .  (36) 

The latter instability was first considered in Ref. 10 using 
nonrelativistic particle dynamics. The values of and yma, 
obtained in these studies are fi and 2 times larger than (35) 
and (36). 

We have so far considered nonrelativistic plasma tem- 
peratures. At relativistic temperatures T 2  mc2 the excita- 
tions of El(  + 1 )  and E2( + 1 )  at $ = 0 and 2n- are also de- 
scribed independently by Eqs. (22). The growth rates and 
wave vectors at which a longitudinal field is excited in the 
$ = 0 direction are given by the inequalities (a(1) 

For a transverse field we have under the same conditions 

In the $ = n-/2 direction, on the contrary, the maximum 
growth rates for longitudinal and transverse fields are given 
respectively by (38) and (37). The temperature dependences 
of the growth rates and of the characteristic wave vectors are 
shown in Figs. 1 and 2.  

At relativistic temperatures, longitudinal and trans- 
verse perturbations are simultaneously excited in the direc- 
tions $ # O ,  r / 2 ,  with El(  + 1)-E2( + 2).  This can be easily 
deduced by recognizing that in this case the dependences of 
the longitudinal and transverse waves on the wave vector 
differ only by a coefficient of order unity. The maximum 
value of the growth rate is in this case yma, -2, a2v i / c2 ,  the 
modulation scale is 2n-/k - 2n-c2/acj, vE , and the quasistatic 
magnetic field is B (0)  5 E ( + 1 )  xa2u; /c2 .  

An important feature of relativistic plasma tempera- 
tures is that the contribution of the quasistatic magnetic field 
to the nonlinear dispersion relation is never decisive, and 
leads only to higher-order corrections in the expansion in 
power of E,. When terms due to ion motion are taken into 
account in this relation, the growth rate is increased by not 
more than 30% at E( + l)IIEo. The ion component plays no 
role at all in the excitation of the field ElE,. 

The decisive role in the development of modulation in- 
stability at relativistic temperatures is thus played by the 
relativistic electronic mechanism due to the nonlinear de- 
pendence of the electron momentum on its velocity. 
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