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Planar equilibria of low-pressure plasmas in longitudinal magnetic fields are considered. It is 
shown that effects associated with finite Larmor radius (which in hydrodynamic language corre- 
sponds to the inclusion of the so-called collisionless viscosity of ions and their inertia) are small 
but, nevertheless, produce a definite restriction on the class of equilibrium configurations allowed 
by the equations of ideal magnetohydrodynamics. The physical mechanism responsible for the 
effect is interpreted in terms of the drift theory of motion of charged particles. The implications of 
this effect for magnetic traps are briefly discussed. 

1. INTRODUCTION 

Studies of equilibrium plasma configurations are usual- 
ly performed for single-fluid ideal magnetohydrodynamics 
(MHD), and are based on the solution of the equation' 

1 
V p = - [ r o t B  X B J ,  

4n (1) 
wherep is the plasma pressure and B is the magnetic induc- 
tion. Since Shafranov's early this approach has been 
widely used to calculate stationary states in tokamaks and 
stellarators (see, for example, the review given by Freid- 
berg4). The corresponding generalization to the case of noni- 
sotropic pressures serves as a starting point for the study of 
equilibria in open traps.' 

The validity of the MHD approximation (1) can be ri- 
gorously demonstrated by performing a kinetic analysis of 
the p r ~ b l e m . ~  At the same time, kinetic theory enables us to 
calculate corrections to (1) and to establish its range of valid- 
ity. Thus, in the case of high-temperature plasmas for which 
Coulomb collisions can be neglected, and which are of parti- 
cular interest from the standpoint of controlled thermonu- 
clear fusion, kinetic theory predicts the appearance of aniso- 
tropic components in the stress tensor due to the finite 
Larmor radius (FLR) of the particles. The resulting addi- 
tional terms in (1) are of the order ofpp&/a3, wherep, is the 
ion Larmor radius and a is a characteristic scale over which 
the plasma parameters undergo an appreciable variation. 
Under typical conditions, these corrections are small in 
comparison with gas-dynamic pressure if the parameter 
@,/a)' is small.' 

Nevertheless, the inclusion of formally small FLR 
terms may, in some cases, turn out to be fundamental, and 
may affect in an essential way the results based on solutions 
of (1). This was noted in a recent papers in relation to the 
equilibrium of plasmas in long open traps, although analo- 
gous effects may, in principle, obtain in other plasma-con- 
finement systems. It therefore seems expedient to investigate 
(without reference to any specific trap geometry) the basic 
FLR effects in the simplest configuration, i.e., planar equi- 
librium in a magnetic field with straight lines of force. This 
problem is examined in the present paper. Our results can be 
used to investigate more complex equilibria for which the 
planar model is the zero-order approximation. 

Let us now formulate our problem. We shall suppose 
that the magnetic field is parallel to the z axis 

B=e,B (x, y) , (2) 

and the pressurep is independent ofz, i.e.,p = p(x, y). It then 
follows from (1) that the well-known relation 

p+B2/8n=const, (3) 

must be satisfied, which means that, for any functionp(x, y), 
there exists an equilibrium configuration with B (x, y) given 
by (3). In this sense, the planar problem is highly degenerate 
within the framework of (1). We shall see below that inclu- 
sion of the FLR effect removes this degeneracy to some ex- 
tent (see Section 4 for further details) and that the main prob- 
lem is to derive additional restrictions that must be obeyed 
by FLR equilibria. 

One of the possible ways of solving the above problem is 
to use the equations of two-fluid magneto hydrodynamic^,^ 
which take into account the so-called collisionless viscosity 
of ions and their inertia. However, we shall use the kinetic 
approach which is simpler in some respects and whose main 
feature is that it enables us to exhibit and readily interpret 
physically the mechanism responsible for the FLR effect. It 
will be seen from the ensuing account that the latter is due to 
drifts of a higher (third) order inp,/a. These drifts are cal- 
culated in Section 2. Section 3 formulates the kinetic equa- 
tion for the particle guiding centers, and Section 4 solves the 
equilibrium problem. The main results of our work are dis- 
cussed in Section 5. 

We note in conclusion of this section that although, so 
far, we have confined our attention to isotropic plasma pres- 
sures, there is no difficulty in abandoning this restriction. 
Equation (3) and the entire formulation of the problem re- 
main unaltered when this is done, and the only difference is 
thatp must be understood to represent the pressure compo- 
nent perpendicular to the magnetic field. The results given 
below are, in fact, valid in this more general case of aniso- 
tropic plasmas. 

2. THIRD-ORDER DRIFT THEORY 

Suppose that the electric field in plasma can be derived 
from a potential q, = p(x, y). This field does not appear in (1) 
and there is an infinite set of possibie distributions of poten- 
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tial for given equilibrium distributions ofp and B when FLR 
is ignored in the theory. It will be seen below that the only 
requirement is that the equipotentials p = const must coin- 
cide with lines of constantp (and B ). Our problem now is to 
obtain the drift equations of motion for a charged particle in 
the magnetic field (2) and potential p(x, y) to within terms 
proportional to the cube of the ratio of the Larmor radiuspH 
to the characteristic scale a. 

We shall suppose that the change in the potential p over 
the scale length a is of the order of the mean kinetic energy of 
the particles, i.e., ep-mu2. This means that 

cEIvB-p,/a, (4) 

i.e., the ratio of the electrical drift velocity 

VE=C [ E  X B ]  IB2 ( 5 )  

to the characteristic velocity u of the particle is small if the 
parameter pH /a is small. 

As for the magnetic field, the assumption that it 
changes by a factor of two over the scale length a leads to 
very unwieldy expressions for the drift. We shall therefore 
confine our analysis to the situation where the plasma pa- 
rameter p @ = 8.rrp/B 2 ,  does not exceed the small quantity 
pH /a, i.e., 

BI I V B I -a (alp,) .  ( 6 )  
The above assumptions about the orders of magnitude 

of the various quantities can be formalized by introducing a 
dimensionless small parameter E -pH/a. The condition (4) 
that the electric field must be small in comparison with the 
magnetic field, and the condition (6) that B must vary slowly 
in space, will be noted by assigning the parameter E to the 
coordinatesx, y in the function B (x, y) and then multiplying 
B by E-l: 

B (x, y )  +e-'B (ex ,  e y )  . (7) 
This device enables us to monitor the order of magnitude of 
the various terms in the above equations in the course of 
computation; in the final equations, we must put E = 1. 

Projecting the equations of motion of the charged parti- 
cle onto the (x, y) plane, and introducing the complex coordi- 
nate w = x - iy, we obtain 

852-'w-iw=e&, (8) 
where 

e and m are the charge and mass of the particle, c is the 
velocity of light, and differentiation with respect to time is 
represented by a dot. 

In accordance with the general theory of drift motion 
(see, for example, Ref. lo), the solution of (8) will be sought in 
the form of the asymptotic series 

w = w ~ + ~ w ~ ~ ' ~ + E ~ w ~ ~ ~ ~ * + ~ ~ w ~ , ~ - ~ * + .  . . , (10) 

in which W, (k = 0, + 1, + 2, . . . ) are continuous functions 
of time, and rapid oscillations with Larmor frequency are 
described by the phase factors exp (ikq). The rate of change 
ofthe phase $is determined by the magnitude of the frequen- 
cy D at the point occupied by the guiding center of the parti- 
cle: 

and the coordinates x,, yo are determined by the zero-order 
term in expansion (10): 

The amplitudes w, with k > 1 and k < 0 [whose order of 
smallness in (10) refers to the particular prablem that we are 
considering and must be verified in the course of subsequent 
computations] are also asymptotic series in nonnegative 
powers of E and can be expressed in terms of w,, w,, and the 
derivatives of the fields at the point occupied by the guiding 
center. On the other hand, the evolution of w, and w, in time 
is described by the following series: 

where the terms on the right-hand sides are functions of x,, 
yo, Re w,, and Im.w,. Our problem is to determine these 
terms and find the amplitudes w-, and w, in (10). 

Our procedure from now on will be to substitute the 
series (10) directly in (8) and to equate terms of the same 
order in E. The coordinate functions D and Z? must then be 
expanded in Taylor series in the difference w - w, up to 
terms of the second order in E, inclusive. We shall not repro- 
duce the straightforward but laborious derivations," and 
simply present the final result: 

The functions Z? and D in these formulas and their deriva- 
tives are evaluated at the point occupied by the guiding cen- 
ter and, to simplify the notation, dD /ax and 80 /ay repre- 
sents the derivatives of D with respect to the "slow" 
variables EX and ~ y ,  which are of the zero order of smallness 
(we shall employ this notation throughout). 

We must now rewrite the above result in vector form. 
Let r represent the two-dimensional position vector (x, y) of 
the particle and R the position vector of the guiding center 
(x,, yo). Let us also introduce the real variables u and y de- 
fined by 

wi=ueiT. (15) 

Equation (10) then determines the position of the particle in 
terms of the "drift variables" R,u,y and, when (15) is taken 
into account, it can be written in the following form: 

u eu 
r=R+e -(ex cos 0-e, sin 0 )  - e3 - 

52 4mQ3 
aEx 

dEu ) (ex cos 0-e, sin 0) x[(,-a, 
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aEx + (2 -I- -) (-e ,  sin e t e ,  cos 0 )  ] 
a y  

uZ dQ 
-I- 8 .  - [ - ( e x  cos 20-e. sin 20) 

4~~ ax 

aQ + -(-e, sin20-e, cos 20) + 0 ( E ' )  , 
d Y  I (16) 

where 6 = $ + y and ex and e, are the unit vectors in the 
direction of the x and y axes. The time variation of R and u 
and of the variable 6 introduced above is determined by (1 I), 
(13), and (14). In vector form, this variation is described by 

u2 eu2 
fi=evE+e2-[e, x V Q ] +  e3 -[AE X e , ]  

2Q2 4mQ3 

1 e 
0 = - Q-E - div E+O ( e 3 ) ,  

E 2mQ 

where u, is the electrical drift velocity (5). Finally, we shall 
need the following expression for the particle velocity u,, 
obtained by differentiating (16) with respect to time: 

VL=R-U (e,  sin 0+e, cos 8 )  
eu + c2 - div E (e,  sin 0 4 e ,  cos 0 )  

2mQ2 

+ (% + z) (-ex cos 0-e, sin 0 )  
8 Y I 

(-e, sin 20-e, cos 20) 

d Q 
I- - (-e ,  cos 20+ e ,  sin 20) + 0 (e3). (20) 

d Y  I 
It is clear from (20) that u has the significance of the 
smoothed transverse velocity of the particle (it differs from 
u, by an amount of the order of E). 

A well-known result" is obtained by discarding terms 
of the order of E~ in (16)-(20). The drift velocity (17) then 
consists of the sum of the electric and magnetic gradient 
drifts (the latter is small in comparison with the former be- 
cause of our assumption that p( l ) ,  and the rate of change of 
u given by (18) corresponds to the conservation of the mag- 
netic moment of the particle, i.e., 

d u2 --- - 0. 
dt Q 
The new terms in (17), which are of the order of E ~ ,  

describe drifts beyond the limits of ordinary drift theory. 
They can be interpreted as follows. The first term, which is 
linear in the electric field, appears when, in more accurate 
calculations of the electric drift, the field E in (5) is replaced 
with the electric field (E) averaged of the Larmor circle of 
the particle and not the field E(R) at the guiding center [this 
interpretation of FLR effects was previously noted in Ref. 12 

(p. 173) in relation to plasma oscillations]. Elementary calcu- 
lation then shows that 

71.' 
<E> - E (R) = c2 -  AE, 

4 0 2  
which means that this difference gives the third term in (17). 
The second term, on the other hand, which is proportional to 
z3 [the last term in (17) that is quadratic in E ]  can be seen to 
have the significance of drift under the influence of the force 
of inertia due to the variation in the velocity u,. 

3. KINETIC DRIFT EQUATION 

To formulate the equilibrium problem, we shall use the 
kinetic drift equation for the guiding-center distribution 
function f, which, in general, depends on the variables 
R,u,6 and time t: 

f c=fc (R ,  u, 6 ,  t ) .  

This function is defined so that the number dN of guiding 
centers on an elementary area d 'R with coordinates u,6 
within the intervals du,d6 is 

dN=f , (R ,  u, 0, t)d2Rd0udu. (21) 

This function is, of course, different from the true particle 
distribution function f, (r,v,,t ), but the important point is 
that f, together with (16) and (20) contain all the informa- 
tion on the particle distribution. In fact, to find f, (r,v, ,t ), we 
must invert (16) and (20) and use them to express R,u,6 (in 
the form of asymptotic series) in terms of r and v, , and then 
substitute these expressions in f , . At the same time, we must 
transform the elementary phase-space element d 'Rdud6 to 
the variables r,v, . We note that, in principle, this procedure 
can be implemented in any order of the drift theory. 

The calculations become much simpler if we recall that 
what we require is not the particle distribution function, but 
merely two of its moments, namely, the particle density n 
and the current density j,. It is readily seen that the latter 
can be found directly by integrating f, : 

n ( r r )  = J B R  u dn d0 f.6(rr--r (R, u, 0 )  ) , (22) 

jl (r') = J ~ Z R  u du dB f.v, (R, u, 0 )  6 (rt-r (R, u, 8) ) , (23) 

where the &-function represents the difference between the 
positions in space of the particle and its guiding center. Sub- 
stituting the series (16) and (20) for r and v, in (22) and (23), 
and using the 6-function expansion 

S (r+a) =6 (r) + (aV) 6 (r) + '/,iaV)'6(r) +. . . , 
we can evaluate the above integrals and obtain the result 
again in the form of series in powers of E. The result of this 
integration will be given at the end of this section. For the 
moment, let us consider the kinetic equation of which f, is a 
solution. 

In general, this equation takes the form of the contin- 
uity equation in four-dimensional space whose points are 
defined by the vector R and the parameters u and 6:  

where R,u and 4 are given by (17)-(19). The important ad- 
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vantage of (24), which distinguishes it from the kinetic equa- 
tion for the distribution function f,, is that its coefficients 
do not contain the phase 8. This means that, iff, was initial- 
ly a function of 8, complete mixing of phases will occur in a 
time -R -' after which we may consider (with exponential 
precision) that f , is a function of only the variables R,u, and 
t. The equation describing the evolution off, over times that 
are long in comparison with the cyclotron period is obtained 
by averaging (24) over 8. As a result, the last term in (24) 
vanishes, and the stationary distribution function in which 
we will be interested below is given by 

Let us now evaluate the integrals (22) and (23) for f ,  
that is independent of 8. The results are I 

1 
n ( r )  = n,+e2 - Ap,+O ( e l ) ,  

2mQ2 
(26) 

1 1 e - jl ( r )  = en,v,-s -[ V p ,  x e , ]  -I- e3 - rot (e,p,  div E )  
e mQ 2m2Q 

where n, , p, , and q, denote the moments of the guiding- 
center distribution functions 

(28) 

4. DETERMINATION OF EQUILIBRIUM CONFIGURATIONS 

Let us now turn to the equilibrium problem. The most 
direct way of constructing the equilibrium configuration is 
to find the solution of (25) for the electron and ion guiding- 
center distribution functions, to determine the particle den- 
sities n, and n, , and to demand that the quasineutrality con- 
dition n, = n, be satisfied (we assume, for simplicity, that 
the ions are singly charged). Unfortunately, this approach 
encounters considerable difficulties because, above all, the 
quantity ti in (25) is known only to within terms of the order 
of&' [see (18)], whereas the effects in which we are interested 
are described by terms of the order of E~ in the drift equa- 
tions. The determination of the particle density to the re- 
quired precision would therefore require laborious calcula- 
tions that would raise the order of precision of (18). 

There is, however, a different approach which we shall 
use below to obtain the required equilibrium conditions. It 
involves the solution of the kinetic equation in the zero-order 
approximation alone. 

Let us retain only the leading term in the equation for R 
in (17). This enables us to write (25) in the form 

The general solution of this is 

where F i s  an arbitrary function of its arguments. Substitut- 
ing (30) in (28), we obtain the moments n, andp, : 

n c = N ( q )  + O ( E ) ,  p , = P ( q ) + O ( e ) ,  (31) 

where 

All the expressions given above apply equally to ions 
and electrons. However, since the electron Larmor radius is 
much smaller than the ion radius (at comparable tempera- 
tures), we shall neglect FLR effects for electrons and will not 
distinguish between the guiding center and the electron it- 
self, identifying n,, andp,, with n, andp, , respectively (here 
and below, variables referring to electrons and ions are indi- 
cated by the additional subscripts e and i, and E will hence- 
forth represent pHi/a. In particular, we may rewrite (27) in 
the form 

In this expression the electron charge is explicitly - e. 
We note further that p,, and n,, are respectively equal 

to the particle pressuresp, andp, apart from corrections of 
the order of the parameter E. The relationship given by (3 1) 
thus proves the proposition formulated at the beginning of 
Section 2, namely, that the q, = const lines coincide with 
lines of constant p (and also pi ,  p, , and n). Of course, this is 
true to within the adopted precision in the parameter E. 

We must now find the resultant current J of electrons 
and ions that flows in the plasma. We shall do this by adding 
j,, to the ion current (17), using the quasineutrality condi- 
tion which, in view of (26), can be written in the form 

The result is 
e 

J=e -[e, xV (p,i+p,) 1 f  e3Jl'+0 ( e l )  , 
miQ1 

(34) 

where E ~ J ~  represents all the terms in j, that are cubic in E. 

The magnetic field distribution in this equilibrium state is 
described by 

so that 

We must now use the above relationships to determine 
the divergence of the resultant current (34) and equate it to 
zero. Formula (36) will help us to establish that the diver- 
gence of the first term on the right of (34) is zero to within 
terms - 0 (c4), SO that we must have 

div Ji'=O. (37) 

We now isolate the current JI in (27) [the contribution 
to it of the first term on the right of (27), which arises from 
the difference between the guiding-center density nci and the 
particle density n, , must be taken into account in accordance 
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with (26)] and evaluate its divergence. We can then readily 
show that 

where A represents the sum 

A (.cp) =eN+ dP/@ 

(we recall that Nand P have the significance of the density 
and pressure of ions in the zero-order approximation in E) .  In 
the special case of Maxwellian ion and electron distribution 
functions and p = 0 (the latter corresponds to VB = 0, the 
expression given by (38) can readily be obtained from for- 
mula (7.44) in Ref. 12. 

Turning now to the analysis of (38), we note first of all 
that, for given distributions N and P on the (x, y) plane [by 
virtue of (31), we can always assume that N = N(P)],  this 
equation can be formally satisfied by taking A identically 
equal to zero. This will occur when the potential distribution 
is defined by 

in which case the initial degeneracy of the planar problem 
discussed in the Introduction will remain. However, in real 
magnetic traps, to which the above problem is the zero-order 
approximation, the distribution of the potential p is usually 
determined by other physical factors (for example, by the 
requirement of ambipolar diffusion), so that (39) can be satis- 
fied only in exceptional cases. The most interesting solutions 
of (38) are therefore those for which the function A does not 
vanish identically. 

Thus, we shall suppose that A and dA /dp are not zero, 
and will begin by considering the special case of axially sym- 
metric equilibria p = p(r). It is readily seen that the two vec- 
tor products on the left of (38) will then vanish, so that (38) 
will be automatically satisfied for arbitrary A (p). The reverse 
can also be demonstrated: the fact that the two vector pro- 
ducts in (38) vanish identically means that the equipotential 
lines form a set of concentric circles or parallel straight lines 
(see the Appendix). 

Turning now to the general case and substituting 
x = x (p), which ensures that the equipotential lines remain 
unaltered, we can readily verify that, if we take 

* 
X(T)=  j IA($) l*hdTt (40) 

equation (38) will assume the form 

which can be satisfied by any function x (x, y) that is a solu- 
tion of the equation 

Ax=G (X I  , (41) 

where G (,y) is an arbitrary function ofx. We thus arrive at the 
conclusion that admissible distributions of the potential 
p(x, y) can be deduced from a given (nonzero) function A (p) 
and any chosen function G (,y) by solving (41) (subject to the 
required boundary conditions) and inverting (40). Although 
this procedure yields a wide class of axially nonsymmetric 

solutions, it removes the initial arbitrariness in the equilibri- 
um theory without FLR, i.e., an equilibrium configuration 
can no longer be constructed for an arbitrary distribution of 
potential p(x, y). 

5. CONCLUSION 

We have used the example of planar equilibrium in a 
magnetic field with straight lines of force to show that the 
inclusion of effects due to the finite Larmor radii of ions 
results in a considerable reduction in the size of the class of 
equilibrium configurations admitted by ideal MHD theor- 
ies. The microscopic mechanism underlying the effect is the 
drift of ions that appears in third-order drift theory, the ve- 
locity v,,, of which is of the order of v, @,, /a)3, where v,, 
is the thermal velocity of ions. We have considered the prob- 
lem corresponding to small values ofp, but the main results 
remain valid even whenp- 1 although quantitative analysis 
is then much more complicated. 

Interpretation of the FLR effect in the language of drift 
theory enables us to understand qualitatively what happens 
when a magnetic field with curved line of force is introduced. 
In the latter case, we must take into account the so-called 
centrifugal drift v,, which is of the order of v, @,,/9), 
where 9 is the radius of curvature of the line of force. We 
know that inclusion of this curvature removes the degener- 
acy of the planar problem (it ensures that thep = const sur- 
faces are determined by the constancy of the integral $dl / B  ) 
and, in this sense, competes with FLR effects. The latter wilI 
play the dominant role when v,,, R v,, i.e., 

(p,,la) Z2a/4E. (42) 
FLR can be neglected when the reverse inequality is valid. 

The inequality given by (42) is satisfied in many modern 
experiments with open traps. The corresponding equilibria 
will be examined in a future paper. 

In conclusion, I am grateful to D. D. Ryutov for stimu- 
lating discussions in the course of this research, and to B. N. 
Breizman and G. E. Vekshtein for useful suggestions. 

APPENDIX 

Suppose that the following equations are satisfied si- 
multaneously: 

[ C q  YVAq] =O, (-41) 

r V r ~ x V ( v c p ) ~ 1 = 0 .  (A21 
It is readily seen that (Al)  and (A2) imply that the level lines 
of the functions p,Ap and ( V P ) ~  are identical or, in other 
words, Ap and (Ap)' depend on the coordinatesx, y through 
the function p: 

Acp==G(cp), (A31 

( V ~ P ) ~ = H ( ( P ) .  (A41 

We shall now use the following expression for the radius of 
curvature of the 9-l ine defined by p(x, y) = const (see, for 
example, Ref. 13) 

~ - ' - I ~ ~ ~ I - ~ ( ~ I z v ~ v  ( v ~ ) ~ - ( v ~ ) ~ A ~ ) .  (AS) 
Together with (A3) and (A4), this means that 54' is also a 
function of p alone, i.e., it is a constant along an equipoten- 

465 Sov. Phys. JETP 60 (3), September 1984 G. V. Stupakov 465 



tial. The equipotential lines are therefore circles. Since 
IVpJ -' is proportional to the distance between neighboring 
equipotentials, and, by virtue of (A4), it is also constant along 
the q, = const line, we may conclude that the equipotentials 
form a family of concentric circles (which degenerates to a 
set of parallel lines in the limit as 9 + a). 

'The orders of magnitude of the different terms in (10) are checked in the 
course of this derivation. 
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