
Damping and fluctuations in coupled quantum oscillator systems 
R. Glauber 

Harvard University, Cambridge, Massachusetts 

V. I. Man'ko 

P. N. Lebedev Physical Institute, Academy of Sciences USSR 
(Submitted 18 May 1984) 
Zh. Eksp. Teor. Fiz. 87,790-804 (September 1984) 

The damping and equilibrium state due to random fluctuations of the external forces are ex- 
pressed in terms of the quantum quasiprobability (the P-distribution). A system of N coupled 
oscillators in a heat bath comprising a system of various heat baths with different temperatures, 
each of which interacts with its own oscillator, is considered. The correlation-function matrix is 
calculated exactly for the coupled oscillators. 

INTRODUCTION 

The origin of irreversibility in the behavior of a quan- 
tum oscillator interacting with a heat bath modeled by a set 
of an infinite number of oscillators was considered previous- 
ly.' The relaxation time of an oscillator located in such a 
bath was calculated in terms of the parameters of the Hamil- 
tonian of the oscillator. It was shown that the equilibrium 
state which the oscillator achieves is a thermal equilibrium 
state set by the temperature of the heat bath. The use of the 
Weisskopf-Wigner approximation in the solution of the Hei- 
senberg equations of motion for the creation and annihila- 
tion operators of the oscillators was an essential element of 
the analysis in Ref. 1. In this analysis account was taken of 
the properties of the coherent states of the oscillators, using 
the function or quantum quasi-probability (the P-distribu- 
tion) introduced in Ref. 3. We note that different approaches 
to the consideration of damping of a quantum one-dimen- 
sional oscillator have also been developed in Refs. 4-6. 

The purpose of the present work is the establishment of 
the properties of the equilibrium state reached by a set of N 
coupled oscillators interacting with a heat bath. In this case, 
the heat bath is modeled by an infinite set of oscillators pos- 
sessing the feature that each of the systems of N coupled 
oscillators interacts with its own bath characterized by its 
own temperature. Thus, the prupose of the present research 
is to generalize the results, obtained in Ref. 1 for a single 
quantum oscillator, to the case of a set of N coupled oscilla- 
tors. We also calculate the correlation functions for the N 
coupled oscillators. The physical problems (in addition to 
the consideration of the irreversibility of the behavior of a 
system of coupled oscillators, which is of general theoretical 
interest) in which the details of the behavior of a set of oscil- 
lators with damping is important, are in particular the prob- 
lems of the construction of various gravitational detectors, 
analyzed, for example, in Refs. 7-9. 

the electromagnetic field, for example, the modes in a reso- 
nator with reflecting walls. It is known that the amplitudes 
of these modes can be regarded as the coordinates of har- 
monic oscillators. If the walls of the resonator are complete- 
ly reflecting, these oscillators are not coupled with any other 
dynamical system. Once begun, these oscillators last infi- 
nitely long. In actuality, however, the walls of the resonator 
are never completely reflecting. Usually, a rapid decrease in 
the amplitude of the field of the considered modes (or damp- 
ing) takes place, and at the same time, the walls of the resona- 
tor heat up slightly, if, on the other hand, the modes of the 
field are not excited at all, as would be the case if they corre- 
sponded to the temperature of absolute zero, while the walls 
were heated to a finite temperature, they would "heat up" 
the field also. These are examples of processes that are irre- 
versible in the thermodynamic sense. The appearance of ir- 
reversibility can be traced in a mathematically explicit form. 
We shall trace it through the example of a set of oscillators 
interacting with the heat bath, while the bath itself is mo- 
deled by an infinite set of oscillators. 

Thus, we consider the A oscillator in a heat bath. The 
heat bath is chosen in the form of a set of N independent heat 
baths, each of which interacts with its own oscillator of the 
set of Ncoupled oscillators. Physically, this means that each 
oscillator has the temperature of its own bath at the initial 
time, and that we neglect indirect interaction of the oscilla- 
tors through the heat bath, which is of course much smaller 
than the direct interaction of the oscillators. We write out 
the Hamiltonian of the set of oscillators subjected to the ac- 
tion of driving forces: 

SET OF QUANTUM OSCILLATORS COUPLED WITH A FORCE 

Following Ref. 1, we consider an N-dimensional quan- 
+ i h k  (Fa  ( t )  la+-Fam ( t )  6.) . 

a=l 
tum  oscillator^ designated in what follows as the A oscilla- 
tor, interacting in linear fashion with the infinite set of oscil- The Greek subscripts label oscillators of the set of N 
lators of the heat bath, which are denoted below as the B coupled oscillators and run from 1 to N. The Latin subscripts 
oscillators. The A oscillator can model individual modes of vary from 1 to w and they label oscillators in the a t h  heat 
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bath corresponding to the a th  oscillator of the set of N inter- 
acting oscillators. The operators 6 ,f, are the Hermitian ad- 
joints of the operators i,, , and the numbers A z are the com- 
plex conjugates of the numbers A,. Naturally, it is assumed 
that the interaction of each oscillator 2 ,  with the heat bath is 
symmetric and that the parameters w, and A, are one and 
the same for each a th  oscillator. The term in (1) with the 
complex external force Fa (t ) describes an effect on the oscil- 
lator proportional both to its coordinate and to its momen- 
tum. This term can correspond, within the framework of the 
single-mode model of a gravitation array, to the effect of a 
gravitational wave on the array. The fact that the A oscilla- 
tor is coupled only with oscillators may seem to be an unreal- 
istic element of the model. However, large systems, made up 
not only of oscillators, frequently possess modes of collective 
excitations whose amplitudes behave dynamically like the 
amplitudes of harmonic oscillators. The Hamiltonian (1) can 
describe a broad class of damping mechanisms with partici- 
pation of collective excitations. The operators r i a ,  2&, b,, 
A 

b ,f, in (1) (a = 1,2,. . ., N )  are boson creation and annihila- 
tion operators for the A and B oscillators, respectively. 
There are no terms in the Hamiltonian of the form 2,  b,, 
and 2 2  6 A. The dynamical effect of such antiresonance 
terms is usually small in connection with their very rapid 
oscillations, and they can be neglected. This corresponds to 
the so-called rotating-wave approximation. We shall assume 
that the subscript k can be continuous and shall understand 
in this case, throughout the rest of the paper, that the sum- 
mation over the subscript is actually integration over a con- 
tinuous exponent k. 

We know that there exists a set of normal vibrations for 
the coupled harmonic oscillators, for which we assume that 
the corresponding quadratic form is positive definite. Thus, 
it is known that there exists a ~nitary~matrix U and there 
exist operators of the normal modes A, (a =>,2,. . ., N) ,  
such that there is a coupling of the operators A, with the 
operators 2,  of the following form: 

The asterisk denotes the complex conjugate. The $a- 
miltonian (I), expressed in terms of the new coordinates A, 
of the normal modes (without account of the heat bath) 
would be diagonal. 

It should be emphasiz%d that we can introduce new co- 
ordinates of the heat bath B,, for w&h the interaction of 
the normal modes (the coordinates A, )  with these coordi- 
nates would appear to be the same as the interaction of the 
initial coordinates of the o~cillators 2 ,  with the initial co- 
ordinates of the heat bath b,, without the interaction term 
A,2,2B+. Let us introduce such coordinates: 

using the same matrix U as in the transformation (2). We 
obtain the following expression for thcHamilionian (1) of 
the initial system in the new variables A,  and B,, : 

In the Hamiltonian (4) we have introduced the transformed 
external force 

We now rewrite the formulas (2), (3) and (5), introducing 
vector notation, namely, we let the operator Ei denote the 
vector (cplumn) with components c i a ,  a = 1,2,. . ., N; the op- 
erators b ,  denote the vectors (columns), with components 
i,, ; we write the N-dimensional vector A and the N-dimen- 
sional vectors B,, f(t ) and F(t ) in corresponding fashion. 
Then the relations (2), (3) and (5) have the following form 

,. A -  A 

a= UA, bh=UBk, F ( t )  =Uf ( t )  . (6) 

We shall now assume that after reduction to normal form, all 
the frequencies 0, of the normal oscillations of the A oscil- 
lator are different (no degeneracy). Thus, after a canonical 
transformation of (2), (3) and (5), and after reducing of the 
Hamiltonian (1) to the form (4), we ar r iy  at the problem of 
the behavior of a system of independent A,  oscillatps inter- 
acting with their own independent heat baths (the B,, oscil- 
lators). This allows us to use the method of Ref. 1 with ac- 
count only of small complications connected with the 
presence of the driving force. Our aim is to calculate the 
correlation functions for the initial A oscillator. In order to 
do this, we first find the Heisenberg creation and annihila- 
tion operators 8(t ) and 6, (t ). We shall always write out the 
Heisenberg opernators, noting their time dependencies, with 
8(0)=8, b ,  (0)-b, . The Heisenberg equations of motion for 
the operators a(t ) and b ,  (t ) have the form 

d 
- ia ( t )  =-ima2a ( t )  - i x  lhAh(t) +Fa(t)r 
dt 

h 

d - (7) 
- bak ( t )  =-iUkj.bah(t) -ihk*ha ( t )  
at 

For the solution of these equations, we make the change of 
variables (2), (3) and (5), and then gbtain thezquation of mo- 
tion for the Heisenberg operators A,  (t  )and B,, (t ), which we 
write directly in matrix form: 

ii 

-- - - i ~ i ( t )  -ix hkGh(t) +f ( t ) ,  
d t  

'Bk(t) A A - =-io&(t)  -ihhaA ( t )  . 
at  

Here the N-dimensional matrices 0, A, and w k  are diagonal 
matrices, while the matrices A, and wk are simply unit ma- 
trices multiplied by a number, while the diagonal elements of 
the matrix are the frequencies of the normal vibrations of the 
A oscillators O,, a,,. . .,a,. 

451 Sov. Phys. JETP 60 (3), September 1984 R. Glauber and V. I. Man'ko 451 



The crucial factor is that the system of unlinked equa- 
tions (8) (without the term with the driving force) can be 
solved in the Weisskopf-Wigner approximation, as was done 
for the one-dimensional A oscillator in Ref. 1. We first write 
down the solution of this system in the general case in the 
following form, by virture of its linearity (we first assume no 
force, i.e., F(t ) = 0): 

h A h h 

Here A = A(t = 0), Bk = Bk (t = O), and four N-dimen- 
sional diagonal matrices are introduced: u(t ), vk (t ), xk ,, (t ) 
and y, (t ); on the main diagonals ofthe matrices u(t )and vk (t ) 
we have the numbers u, (t ) and (a = 1,2,. . ., N )  while the 
forms of the matrices yk (t ) and xk.,(t ) are not of interest to 
us, since they do not enter into the final result. The initial 
values for these matrices are the following: 

u ( 0 )  =E, vk ( 0 )  =O, y k  (0) =O, x A ' ~  ( 0 )  = 6 A v k  (10) 

(E  is a unit matrix). 
Correspondingly, the solution of the equation of motion 

(7) for the operator I(t  ) in th case F(t ) = 0 can be rewritten in 
the form 

k 

Here we have introduced the matrices S (t ) and u, (t ), which 
are connected with the matrices u(t ) and vk (t ) of (9) by the 
unitary transformation matrix [see (2)]: 

We have the following solution for the quantity Gk (t ) 

where the N-dimensional matrices x, ., (t ) and Yk (t ) are con- 
nected with x, ., (t ) and y, (t ) by formulas analogous to (2): 

X k ' k i t )  = U x k r k ( t )  U'; Y k ( l )  = U y k ( t )  Ut. (I4) 

The simplicity of the Hamiltonian (1) becomes especially evi- 
dent when we express the state of the system in terms of 
coherent states. This Hamiltonian belongs to the class of 
Hamiltonians to which corresponds an evolution operator 
that leaves the coherent states coherent." Thus, if we begin 
the motion from the state of the system in which the A oscil- 
lator and the B oscillator are in coherent states, these oscilla- 
tors will remain in coherent states for all time. We shall as- 
sume that the state of the system in the Heisenberg 
representation is given as a product of coherent states: 

Here the conditions 

l a ,  { P k ) ) = a l a ,  { P k ) ) ,  % A ( O )  l a ,  {Pk))=Pklal { P A ) )  

(16) 
are satisfied. It follows from the relations (1 1) and (13)~hat  
this state is an eigenstate also for the operators I( t  ) and bk (f ) 
over all time t. We define the time-dependent functions a ( t  ), 
Pk (t 1: 

which obey the equations 

which are completely analogous to the corresponding opera- 
tor equations. Then the Heisenberg state of the system satis- 
fies the equations for the eigenvalues 

a ( t )  la, { p k )  )=a ( t )  la, { P k ) ) ,  

g h ( t )  la, { P k )  ) = P k ( t )  la, { P k ) )  

for all times t. 
We note that for a transition to the Schrodinger repre- 

~ n t a t i o n  it is necessary to use the unitary evolution operator 
R (t ), which connects the opeaor I( t  ) with its initial values 

We then have relations equivalent to (21) and (22): 

; ( o )  R ( t )  lu, { p k )  )=a(t) R ( t )  la, { f i k ) ) ,  (24) 

b ( 0 )  fi ( t )  l a ,  { P k )  ) = P A  ( t )  R ( t )  la, ( 9 , ) ) .  (25) 

The state R  ̂ (t )la, ( P, J ) is simply a time-dependent state of 
the system in the Schrodinger representation, a2d we :ee 
that if it is coherent at the initial instant of time (R (0) = I ), 
then it remains coherent throughout all subsequent times." 
A number of conclusions on the properties of this state can 
be drawn without solving the Schrodinger equation expli- 
city. The motion of the system is such that it is as close as 
possible to classical. The system is described in this case by a 
wave packet for which the product of the indeterminacies of 
the coordinate and momentum is as small as possible, while 
the mean values of the coordinate and momentum move in 
the phase space of the system along a classical trajectory 
given by the relations (16) and (17); no spreading of the pack- 
et occurs. Since the Schrodinger state of the system is a co- 
herent state, we can specify it by means of a time-dependent 
eigenvalue, writing 

It is clear from the relations (lo), (17) and (18) that a(0)  = a ,  
P k  (0) = Pk . 

We now take into account the effect of the external 
force F(t ). We shall temporarily denote th: solutions of Eqs. 
(7) in the absence of a force by Io(t ) and bok (t ). In order to 
solve the equation of motion in the presence of the force, we 
use the solution ofthe equation a,,(t )and bko (t ) in the absence 
of the force, which coincide with the a(t ) and bk (t ) given by 
Eqs. (1 1) and (13). 

We shall solve Eqs. (7) in such a way as to allow us to 
make actual use of the solutions (1 1) and (13) for the case 
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without the force. To this end we consider first a very parti- 
cular case, namely, we let 

F ( t )  =FOG ( t - t ' )  . (27) 

We shall actually construct a Green's function for the 
linear system of equations (7). Such a character of the force 
means that up to the instant of time t ', the force does not act 
on the A oscillator; therefore, for earlier times t < t ', the so- 
lution of the set (7) is simply identical with the solution of the 
set of equations (1 1) and (13) without the force. 

We thus have 

Since a force determined by a delta function acts at the in- 
stant t ' on the A oscillator, it follows, in connection with the 
fact that the first derivative with respect to the time dB/dt is 
proportional to a delta function, the operator B(t ) at the time 
t ' undergoes a jump, such that 

After this, the time evolution of the solution of Eqs. (7) pro- 
ceeds again in the same fashion as the evolution of the solu- 
tions of the equations without the force, (1 1) and (13), but 
with initial conditions that are changed because of the jump 
(30). We thus have 

t t  ; ( t ) = s ( t - t 1 ) ; ( t f + o )  + v h ( t - t f ) & ( t f ) ,  (31) 
k 

6 0 )  = ~ x k , . ( t - t ~ ) 6 ~  ( t r )  + ~ , ( t - t ~ ) . ( t ~ + o ) .  (32) 
k' 

The evolution of the operators P(t ) and 6(t ) from the time 
t ' + 0 takes place as a function of these same functions S (t ), 
Vk (t )xk .k (t ), Yk (t ), but with an argument shifted by a quanti- 
ty since the equations of motion for the oscillator without the 
force possess symmetry relative to time shifts. Thus, substi- 
tuting the value of the jump (30) in (3 1) and (32), we have 

  he operators 6, (t ) at the time t ', naturally, do not undergo a 
jump, as is obvious from (34), since Yk (t - t ') 1,  = , , = 0. The 
terms on the right sides of Eqs. (33) and (34), which do not 
contain the quantity Fo, are simply rewritten with account 
taken of the shift of the time origin by t ' in the solution of the 
Heisenberg equation for the oscillator without the force. If, 
however, the force is a smeared out function of time, F (t ), 
then it is necessary, as usual, to take the superposition of the 
effects on the solution of each instant of time t ', writing the 
solution in the following form: 

6 ( t )  =ao ( t )  + JS ( t- t ')  F (t ')  dt', 
0 

t 

4 ( t )  =l ( t )  + J Y, ( t - t ' )F  ( t ' )  dt'. (36) 
0 

Thus, the presence of the external driving force F(t ) shifts the 
annihilation operators $(t ) and ik0 (t )-the solutions of the 
Heisenberg equations of motion for the A oscillator without 
the force-by c-number vectors. We write down the final 
solution b(t ) of the initial equations of motion for the A oscil- 
lator with the force, expressing them in terms of the matrices 
S (t ) and Vk (t ). We have 

t 

i ( t ) = s ( t ) a ; + E  v k ( t ) b  + J s ( t - t f ) ~ ( t r ) d t ' .  (37) 
h 0 

We take into account the presence of the force by the addi- 
tional term in (17), introducing the complex vector 

a ( t )  = S ( t ) a  + v h ( t ) p k  + j s ( t - t r ) F ( t f ) d t f .  (38) 
k 0 

THE DENSITY MATRIX OF A SET OF OSCILLATORS 

We now consider the initial state of the A oscillator and 
the oscillators of the heat bath. We assume that the initial 
state la) of the A oscillator is coherent while the oscillators 
of the heat bath are in completely random states. This means 
that the initial density matrix of the entire system b(0) has 
the factorized form 

@ 

Here a = (a,,a,,. . .,a,) is a complex vector, the density ma- 
trix CPk describes the random state of the k th oscillator in 
the a th  heat bath. The product in (39) is over all the indices of 
the heat baths from 1 to N, and over all possible indices of the 
oscillators k in the specified p th  heat bath. In accord with 
Ref. 1, the matrix b,, in the P-representation3 is described 
by the formula 

Here (n,, ) is the mean number of quanta and is described, 
at the temperature of the pth bath T, , by the Planck distri- 
bution 

Then, as can be proved, the solution for the quantum me- 
chanical Liouville equation for the density operator p(t ) 

is the following operator: 

Here the numerical vector a ( t  ) is given by Eq. (38), the vector 
p, (t ) by the equation 
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and the product over the indices of the components of the 
complex vector Bk = (0 PZk ,..., PNk ) and over all possi- 
ble values of the index k. Our purposes is the calculation of 
the abbreviated density matrix PA (t ) for the A oscillator, 
obtained by averaging over all the coordinates of the B oscil- 
lators of the heat bath: 

P A  ( t )  =TrB p ( t )  . (45) 

We shall seek here the density operator b(t ) in the P-repre- 
sentation: 

The integration in (45) is carried out over the N-dimensional 
complex density, and the quantity P ( a ,  Oly, t ) ,  called the 
quasi-probability, can be found from the following consider- 
ations. If we know that the function Pis  Gaussian, then it is 
determined by the following set of parameters: the mean val- 
ues (B(t )) and the matrix of second moments a ,  i.e., 

p=- ' e~~{-(y-<~(t)))+o-~(7-(~(t)))}. 
nN det o 

Therefore, in order to calculate the function P, if we are sure 
that it is Gaussian, it suffices to calculate the averages and 
the variances, and it is not necessary to carry out the integra- 
tion over the coordinates of the B oscillators explicitly, using 
formulas (38) and (44). We calculate the matrix of second 
moments oby using its connection with the correlation func- 
tions, computing first the correlation functions themselves. 

The solutions of the HzisenJberg equations of motion for 
the operators B(t ), 6, (t ) or A(t ), B, (t ) have so far been regard- 
ed as exact, expressed in terms of the matrices S (t ), V, (t ) or 
u(t ), v, (t ). Ifwenow substiute the linear form of the solutions 
of Eq. (8) (f = 0) in these equations, then a set of equations is 
obtained for the quantities u(t ) and v, (t ). As noted in Ref. 1, 
the obtained set is formally identical with the set of equa- 
tions solved by Wigner and WeisskopP for another physical 
problem. In the theory of radiation of atoms, in Ref. 2, these 
same equations were considered as approximate equations, 
describing the radiation damping and coupling the ampli- 
tude of the atom, which it has in the excited state, with the 
amplitudes of the atom in the ground state in the presence of 
a radiation field of photons in various mode states. Using 
this analogy, we can show that A(t ) plays in Eqs. (8) with 
f = 0 and in Eq. (5) the role of the amplitude of the excited 
atom, B, (t ) plays there the role of the amplitudes of the sin- 
gle-photon states, and the A, play the role of matrix ele- 
ments of the transition. If the assumption that the spectrum 
of frequencies ok of the oscillators of the heat bath is contin- 
uous near the frequencies O, , then the mathematical prob- 
lem of solving Eqs. (8) is identical with that solved by Weiss- 
kopf and Wigner in Ref. 2 by the radiation-damping theory. 
Using the Weisskopf-Wigner approximation, we can write 
down the solutions for the function u, (t ) and oak (t ) in the 
form 

u, ( t )  =exp{- [x,+i (Qa+6Qa) It} ,  (48) 
-iAk 

vaa ( t )  = 
xa+i (Qa+6Qa-oh) 

X{exp (-io$) -exp [- (xa+i (Qa+6Qa) ) t ] ) ,  (49) 

where the constants xu and uO, are determined by the rela- 
tion 

It is clear from (48) and (49) that the x, play the role of 
damping constants and SO, are the frequency shifts. The 
Weisskopf-Wigner approximation is valid if these constants 
are small in comparison with the frequencies O,, and in 
comparison with the frequency intervals over which the cou- 
pling parametersit, and the parameters describing the state 
of the heat bath change significantly. The irreversible char- 
acter of the behavior of the A oscillator appears in our equa- 
tions in terms of the Weisskopf-Wigner approximation. In 
fact, however, it is inferred in one of the assumptions on 
which this approximation is based, namely, the continuity of 
the frequency spectrum of the oscillators is assumed impli- 
citly, which means that there is an infinite number of them. 
In any real example, of course, there exists only a finite num- 
ber of oscillators of the heat bath, and their spectrum is not 
continuous but discrete, although very dense. Thus, the 
Weisskopf-Wigner approximation deals with the asymptoti- 
cally limiting behavior of a system in which the number of 
oscillators of the heat bath becomes infinite. In this and only 
in this limit is an irreversible behavior of the system actually 
expected. The irreversible solutions (48) and (49) are ideali- 
zations, but they model solutions for systems with very large 
but finite numbers of degrees of freedom with great accuracy 
over large intermediate times. We shall assume that we can 
represent the frequency spectrum (w, J of the oscillators of 
the heat bath by means of the functions g(w, )-the spectral 
density. We then get from (50) 

whereA,= is the value of the coupling constant at w, = 0, .  
The functions v,, (t ) describe the contribution to the excita- 
tion of the A oscillator by the individual B oscillators. It is 
seen from (49) that the functions I v,, (t ) l 2  are proportional to 
the expression [(O, + SO, - a,), + x i  ] -I. Thus, they 
have a sharp peak at w, = O, + SO, and fall off rapidly to 
small values outside a frequency band of width Aw - 2xa 
away from this peak. The correlation function of first order, 
the N-dimensional matrix 8 "'(t,, t,), is determined in the fol- 
lowing fashion: 

t ,  t )  = + ( t ) ( t Z )  - + ( 4 )  i t 2  (52) 
The average in (52) is understood as averaging with the 
whole initial density matrix of the system @(0) [(39)]. At 
t, = t, = t we obtain the matrix of second moments, which 
enters into the quasiprobability function (46): 

G'" ( t ,  t )  =o ( t )  . (53) 
We define the correlation function of higher order by the 
formula 

~ i ! ~ ~ , . , , , i  Zrr(t17 tz,. . 7 tzn) 
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In (54), the average is understood as taking the trace with the 
initial density matrix of the entire system b(0) .  We shall 
show that the higher correlation functions @") (54) can be 
expressed in terms of the functions (52). For this purpose, we 
calculate the generating functional E' for the correlation 
functions Z"") . The generating function E ({ , t  ), q ( t  ') for the 
correlation functions 8(") can be found, as in the one-dimen- 
sional case," by direct calculation with averaging by means 
of the matrix b(0)  [Eq. (39)l: 

8 = ( e x p  [I c ( t )  (i+ ( t )  - (a^+ ( t )  )) dt ] 
exp [I q ( t ' )  ( ; ( t l ) -  ( z ( t f )  ))drt  . I )  

In (55), the integral is Gaussian and we have the result 

8 ( 6  ( t )  , q ( t ' )  ) = exp [J dt dt' 6 ( t )  G(" ( t ,  t') q  ( t ' )  ] . (56) 

Here the matrix Z""' has the form of the sum of products 
with seven matrices: 

Thus, all the higher correlation functions Z'(") are expressed 
only in terms of the matrix function Z'"!(t,, t ,).  The generat- 
ing functional for the functions 

,,= 1 

(58) 
is of the form 

and differs from the functional E by a factor, i.e., 

Z=8 exp [Is ( t )  tit ( t )  ) dt ] exp [I q  ( t r )  ( i ( t ' )  ) dt' ] . (601  

Thus, all the higher correlation functions G(") are expressed 
in terms of the average (a, ( t  )) and the functions G ti,,, ( t , ,  t ,).  
In order to find Z' ''I (57) explicitly, we calculate the following 
sums. The sum rule for the diagonal matrices u(t ) and v, ( t  ) 
with the diagonal elements (48) and (48) follows from the 
conservation of the commutation relations fo the creation 
and annihilation operators under a shift of the time origin. 
That is, 

With account of this sum rule, we calculate the matrix ele- 
ments ( uT 8 (''U * )pP,  which are expressed in terms of the ma- 
trix elements of the matrix 

K (n,) =UTNkU', n,= ( (n , , ) ,  (nzk>,  . . . , ( n N k ) ) .  (62) 

It is easy to see that (the summation here is not carried out 
over the indices p and p)  

We can calculate the sums over k in the matrix elements (63) 
either by substituting them in the integrals over the frequen- 
cies and estimating the integrals, or by using the unitarity 

condition of the evolution operator of the entire system [the 
sum rule (61)] and the slow change in the quantities n, [and, 
thus, in K (n,)]  near the frequencies that minimize the de- 
nominators of (49). Then the basic contribution to the sum is 
obtained from terms on the diagonal ofthe matrix lJTZ' ("u * 
in (63); the nondiagonal terms have the next order of small- 
ness. Recognizing that the diagonal matrix element of the 
matrix K (62) is written in the form 

where (n,, ) are given by Planck's formula (41), we obtain 
the following approximate equation for the matrix element 
of the matrix Z'!A(tl, t,) in (63): 

N 

~ ; i ) ( t , ,  t.) = C I Uwl'(en'hr'Tp - I)-' f.(tt, t2)  U.;UB.. (65) 

Here, with account of (61), 

where SOk is the frequency shift of the normal oscillation 
and is given by (50). Substituting the expression for up ( t  ) 
given by Eq. (48) in explicit form in (65) and (66), we obtain 
the following expression for the matrix element 
(uTZ'( l ) ( t l ,  t ,)U *),, in the case of long times t , ,  >x; ' :  

N 

, , e l  

x{exp[-x,I t i - t ,  I +iQVr ( t i - tZ)  I ) .  (68) 

Thus, the desired matrix Z' "'(t,,  t,) is obtained from a diag- 
onal matrix with the matrix elements of (68) by using the 
expression 

~ 2 ; )  ( t i ,  t 2 )  = {Um;UoF 1 Up,  1 2[e"nw'1Tp-i I-* 
P,P==l 

x exp[-x ,  I t i - tz  I +iQ,' ( t i - t z )  I) .  (69) 

All the matrix elements of the matrix Z' !A(t,,t,) are linear 
combinations of expressions that are exponentially damped 
in the parameter It, - t,l with expressions that oscillating in 
this case. We consider two special cases: N = 1 and N = 2, 
i.e., one-dimensional and two-dimensional A oscillators. 
For N = 1 ,  we have the following expression for the correla- 
tion function: 

G'"( t1 ,  t , )= (8+( t l ) c i ( t , )  ) - (d+( t , )  >(r i ( t , )  ), (70) 

which, with account taken in (65) of the fact that there is only 
a single term from the sum and Ud = 1, gives the following 
for not too long times, 

G( i )  ( t i ,  t Z )  = [ e - h R ' / T - i ]  - i [e -x l t , - t l l -e -x ( t~+t~)  1 ezP'(tt-t2). (71) 

(We have omitted the indices, assuming that the tempera- 
tures of the baths are the same and equal to T, the frequen- 
cies of the normal vibrations are the same and equal to 0, the 
frequency shift SO and the relaxation time are equal to x -  I.) 
For long times t ,,, ,x- ' only the dependence on the time 
difference t ,  - t2 = T remains: 

455 Sov. Phys. JETP 60 (3), September 1984 R. Glauber and V. I. Man'ko 455 



With account taken of the action of the external force, we 
have the following expression for the correlation function of 
a one-dimensional A oscillator: 

G(" ( t l ,  tz) = G(')  ( t i ,  t2 )  

x e x p [ -  ( x+  iR') t , ]  

x exp[- (x+iQ1) (t'-t,) - (K- iQr )  (t"-t,) 1 .  
(73) 

The higher correlation functions for the one-dimensional A 
oscillator 8 (" )  are expressed in terms of the function 8"' in 
the following fashion: 

Qn) (ti . . . t.. t.+1 . . . t,,) = l-I 611) (t,,  tP(,, , ,)).  (74) 

Here the summation over P is  carried out over all n! permu- 
tations of the numbers j. For example, for the function of 
2nd order we have 

( t i ,  t?, t3, t l )  

( t i ,  t , )  G( ' )  ( t , ,  1, )  +G'" ( t , ,  t , )  G") ( t , ,  t , ) .  (75) 

For an N-dimensional A oscillator, the formula connecting 
8'"' with 8 "' is analogous. 

We now give as an example 8 "'(t,, t,) for the problem of 
a two-dimensinoial symmetric oscillator with the Hamilton- 
ian 

H = A  [o (ci,+ci,+li,+d,) +h (~l$++d,ci '+)  

+i  (ci,+F, ( t )  +ciz+F, ( t )  -iilFl* ( t )  -ci,F,* ( t )  ) 1 .  (76) 

In this case, the matrix elements of the matrix U are the 
following U,, = U,, = U,, = - U,, = 1 / d ;  0, = w + A ,  
0, = w -A, while the parameter R is sufficiently large, so 
that x,, 60, ,  x,, 60 ,  but also much smaller than 0 ,,, and 
0, - 0,. This assumption means that the mixing of the os- 
cillations, because of the interactions of the two oscillators, 
takes place rapidly in comparison with the relaxation pro- 
cesses connected with the interaction with the heat baths. In 
the other limiting case, in which the parameter A is very 
small in comparison with x,, x,, S0,,  and 60,, this means in 
practice that x ,  zx , ,  6 0 ,  ~ 6 0 ,  and u,(t ) = u,(t ). In the lan- 
guage of zeros in the denominators of the functions u,, (t ) and 
u,, (t ), this means equality of the zeros ofthe denominators of 
these functions and the equality of the functions themselves 
ulk (t ) z (t ). AS is seen from (37), the damping ofeach of the 
two oscillators in this case takes place independently, as was 
to have been expected. Since N = 2, we have the following 
for the diagonal elements of the matrix of correlation func- 
tions: 

c1YL(tl, t z )  = G;;' ( t i ,  tz) 

- 1  -- {[ [ e n ~ , ' / ~ , - l ] - l  + [ e n o , ' / ~ 2 -  
4 

11-'I 

and for the nondiagonal elements, 

~ , ' : ) ( t , ,  t , )  = e::) ( t l ,  t,) 

- [ [ ,n~ , . /~ , , , ] - l  + [ e n a ~ ' / T : - l ] - l ]  

xexp[-xz l  ~ l + i R , '  (tl-t2) I ) .  (78) 

The expressions for the mean (4 (t,)), (2: (t,)) are given by 
the formulas 

C 

+ 5 [ [F,  ( t ' )  + Fz ( t ' )  ] exp [ - x l  (t ,-t') + iQll (t ,-t') ] 
0 

+ [Fi ( t ' )  -FZ( t r )  l exp [ -x ,  (t,-t') + iQz' (t2-t') I I dt' 

- [ F ,  ( t ' )  - F,( t l )  l exp[-x2  (t,-t') + iQ,' (t,-t') I ldt' 1' (80, 

At long times, much longer than the times of action of the 
forceF(t ), and such that t>x,', and not too large I (the 
initial amplitude of the vibrations is not too large and is al- 
ready undergoing damping), we have 

(a ,  ( t )  >=O, a=I ,  2 (82) 

and, consequently, 

If we take the value of 8Eh(t,,t2) at equal times t, = t, = t, 
the expression for 8 EA(t,t) is identical with the matrix of 
second moments o( t  ). All the higher correlation functions 
G'"' are expressed in terms of the correlation function G"' 
and the mean values (2; (t )) and (ii,,, (t )). Substituting 
t, = t, = t in  (65), we obtain the following expression for the 
diagonal matrices of the elements of the dispersion matrix: 

ol l  ( t )  =oz z ( t )  ='I, { [<no , .  ( T I )  )+(no,, (T2) ) I ( l -e-z"'t)  

+[<no, ,  ( T i ) ) + ( n o , . ( T 2 )  ) I  (l-e-""l)), (84) 

and for the nondiagonal elements, we have 
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o,,(t) =az, ( t )  ='/,{[(n,,. ( T , )  >-I- (n,,, ( T z )  > ]  (l-e-zxlf)  

- [ (nn l , (T i )  >+(nn,* (T,) > ]  (1-e-2x~t)) .  (85) 

Here (no; (T,)), Y = 1,2 are the Planck distributions at the 
temperature Tv for oscillators with frequencies L? ; . The de- 
terminant of the matrix o(t ), which determines the factor 
before the exponential in the expression for the quasi-prob- 
ability P in Eq. (47) for the case N = 2, has the form 

det a ( t )  ='/, [n,,, (T , )  >+(nn,, (T,)  >] 

The matrix elements of the reciprocal matrix a- ' that enters 
in the exponential in the expression for the quasi-probability 
P in  Eq. (4) are easily found from (84), (85) and (86): 
(awi) 11= (0-') 22=ali/det o, (a-') ,z= (o-'),,=-o,,ldet o. 

(87) 
Thus, we have calculated explicitly the quasi-probability 
function for a two-dimensional symmetric oscillator: the 
mean values (ii,(t )) and (ii,(t )) that enter in the exponential 
in Eq. (47) are given by Eqs. (79) and (80). The center of the 
Gaussian distribution (47) moves along the trajectories (79) 
and (go), while the amplitudes of the first and second oscilla- 
tor are damped out, the damping law being the superposition 
of the two descending exponentials with the respective relax- 
ation times x; ' and x; '. The width of the distribution does 
not depend on the effect of the external force and for times 
that are much greater than the relaxation time, we have the 
following for the matrix elements of the matrices of second 
moment: 

Similar to the case of a two-dimensional A oscillator from 
Eq. (69), we obtain a formula for the matrix elements of the 
dispersion matrix at long times for an N-dimensional A os- 
cillator: 

Thus, we arrive at the state of equilibrium of the N-dimen- 
sional A oscillator, and the obtained equilibrium state is a 
non-Gibbsian equilibrium distribution; we define it as an in- 
termediate equilibrium state, or temporal state of equilibri- 
um. This state of equilibrium is stable. If the system of N 
interacting oscillators is excited, it returns to the described 
equilibrium state. Thus, we have demonstrated that non- 
Gibbsian equilibrium states exist in a set of N oscillators; 
upon the introduction of damping (interaction with the heat 
bath), the system comes to the specificed intermediate equi- 
librium state. 

The quasi-probability equilibrium function P for the 
equilibrium state, to which the N-dimensional A oscillator 
comes after interaction of the external force over long times, 
is given by Eq. (47), where the mean values (6, (t )) are equal 
to zero, while the variance matrix is given by Eq. (90). 

In conclusion, we note that the basic result of this re- 
search is the clarification of the details of the approach to the 
equilibrium state of a system of coupled oscillators. In the 
case of a heat bath with several temperatures, the equilibri- 
um state of the system of coupled oscillators turns out to be 
non-Gibbsian (for a one-dimensional system it is Gibbsian). 
The process of damping of the amplitude of vibrations of the 
system of oscillators is determined by the superposition of 
the exponentials, which are decaying with time. The inter- 
mediate (non-Gibbsian) equilibrium state of the system of 
oscillators is stable. We were able to derive the explicit ex- 
pressions obtained in the work for the quasi-probability 
function [Eqs. (47), (79), (go), (88), (89)], and also for the cor- 
relation functions of a system of coupled oscillators [Eqs. 
(65), (69), (73)] by use of the Weisskopf-Wigner approxima- 
tion, which is one of the essential elements of the analysis. 
We hope that the analysis we have developed will be useful in 
different physical problems, modeled by a set of coupled os- 
cillators. 
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