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It is shown that the dynamic stochastization of rays in regularly inhomogeneous waveguide 
media produces a speckle structure over distances of the order of the correlation uncoupling 
length for ray oscillation phases in the plane perpendicular to the axis of the waveguide channel. 
The statistical properties of the speckle structure, the characteristic dimensions of spots, the 
uncoupling length for ray oscillation phases, and the ray diffusion length are determined in the 
shortwave approximation. The characteristic values of these parameters are reported for the case 
of the acoustic waveguide channel with a periodically inhomogeneous surface. 

1. INTRODUCTION which spatial coherence is lost. Stochastic instability then 

Studies of the propagation of waves to great distances in 
inhomogeneous media (for example, in the ionosphere1 or 
the ocean2) show the problem to have definite peculiarities. 
The fact that the waves propagate to great distances means 
that small inhomogeneities in the medium become signifi- 
cant because their effect is cumulative. Even in the geomet- 
ric-optics approximation, such cumulative effects may turn 
out to be important and may appear well before this approxi- 
mation ceases to be valid. The effect of small inhomogene- 
ities on wave propagation can be estimated by applying non- 
linear Hamiltonian dynamics to rays. This approach reveals 
new physical properties of rays such as "nonlinear reson- 
ances" between a ray and a periodic inhomogeneity, stochas- 
tic instability and diffusive drift of a ray out of the waveguide 
channel, and so on.3p4 

The stochastic instability of rays arises in media with 
regular (nonrandom) inhomogeneities and is not only the 
strongest instability but also a relatively typical situation, for 
example, in waveguide channels with two-dimensional cross 
section of arbitrary form (Ref. 4)." One of the important 
manifestations of stochastic instability of rays is the consid- 
erable wavefront distortion at sufficiently long distances 
from the point of entry of the radiation. This wavefront dis- 
tortion is the subject of the present paper. 

It is well known that, when a rough surface on which 
the dimensions of inhomogeneities exceed the radiation 
wavelength is illuminated bv coherent laser radiation. a de- " 
terioration is observed in the image of the surface at long 
enough distances. The image becomes spotty (a speckle 
structure appears), and this is due to interference eflects 
(see, for example, Ref. 5). When the source of radiation is 
completely coherent, the speckle structure can be "deci- 
phered" despite its complicated nature by using adaptive 
systems to produce wavefront reversal. The reconstruction 
of the original image is, however, incomplete because of the 
onset of wave-surface cata~tro~hes.~. '  

When the radiation entering the waveguide channel is 
initially noncoherent, the speckle structure is smeared out 
and the wavefront cannot be reversed. The loss of reversibi- 
lity occurs over distances of the same order as the length over 

plays an exclusive role since ray instability develops with 
exponential 

It is thus clear that stochastic instability of rays that 
results from even slight inhomogeneity in the waveguide 
channel leads to a twofold effect, namely: (1) the speckle 
distribution becomes a random and (2) any slight broadening 
of the signal at entry leads to an irreversible smearing of the 
image. 

These two effects are investigated below. 
In addition, it will be useful to consider the analogy 

with similar problems in quantum mechanics. The possibil- 
ity of quasirandom wave-function profiles in quantum-me- 
chanical K-systems, i.e., systems with stochasticity in the 
classical limit, was discussed in Refs. 9 and 10. A picture of 
nodal lines of wave functions in quantum-mechanical K-sys- 
tems that was close to the random speckle structure was 
obtained as a result of a numerical analysis in Refs. 11 and 
12. 

2. QUALITATIVE CONSIDERATIONS 

Consider a waveguide medium whose axis lies along the 
coordinate z axis. The vector r = (x, y) lies in the plane per- 
pendicular to this axis. The refractive index n = n(r, z) of this 
medium depends both on the transverse coordinates x, y and 
the longitudinal coordinate z. The propagation of a mono- 
chromatic wave u(r, z) of frequency v is described by the 
Helmholtz wave equation 

[A+ko2nZ]u(r, Z) =0, (2.1) 

where k, = v/c is the wave number and c is the velocity of 
the wave in a homogeneous medium. 

Suppose that the waveguide channel is excited in the 
z = 0 plane by a spatially coherent wave beam whose lateral 
distribution is described by the function u,(r). In the geomet- 
ric-optics approximation, the wave field u(r, z) in a z> 0 
plane in the waveguide channel with the above boundary 
condition is given by (see, for example, Ref. 13) 

N 
in PI 

u ( r  z )  = l )  exp ikJl (r, z )  + -1. (2.2) 
1=1 

r, 2) I l i a  2 

where the integral 
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S,( r ,z )=  jn ( r , z )ds  
rl 

is evaluated along the arc TI of the trajectory of the 1 th ray 
arriving at the point of observation (r, z), r,, is the initial 
coordinate of the I th arc in the z = 0 plane, and p, is the 
Morse index for the I th ray. The generalized divergence of 
the ray on the trajectory of the I th ray is given by 

n(r, z) da 
TI (r, z) = - - 7 

n(rol, 0) duo 
where da, and da are the transverse cross sections of the ray 
tube in the z = 0 and z planes, respectively. The sum in (2.2) 
is evaluated ove all ray trajectories arriving at the point of 
observation (r, z). 

Consider the case where the inhomogeneities in the 
wave channel are such that, in certain regions of the ray 
phase space, the ray trajectories are stochastic. It has already 
been n ~ t e d ~ . ~  that ray stochastization arises both for periodic 
disturbances along the direction of propagation of the wave 
and for disturbances of the lateral cross section of the wave- 
guide channel. The ray stochastization region in the wave- 
guide is determined by the specific refractive index profile of 
the medium and the inhomogeneity of the latter. 

When the waveguide channel is excited by an arbitrary 
wave beam u,(r), all modes of the waveguide will, in general, 
be excited. The wave field (2.2) will therefore consist of two 
parts, one of which corresponds to regular rays, i.e., those 
that do not enter the stochastic region, and the other corre- 
sponds to those that do enter this region. We shall confine 
our attention to the latter rays. Their trajectories are sto- 
chastically unstable, i.e., two ray trajectories with similar 
initial coordinates in phase space will diverge exponentially 
as they propagate in the waveguide channel. We then have 
7, -ehz where h = z,-'lnK is the instability growth rate 
(Kolmogorov entropy), z, is a characteristic period of the 
ray, and K is a parameter such that ray trajectories become 
stochastic for K 2 1(K- 1 is the stochastic limit). 

The number N of rays arriving at the point of observa- 
tion is also found to increase exponentially, i.e., N-ehz .  
Since the ray trajectories are stochastic, the optical paths 
S, (r, z) traversed by different rays will be random and ran- 
domly distributed. It may be expected that the phases k$, (r, 
z) /2~(modl)  are uniformly or almost uniformly distributed 
in the interval (0, 1). 

The wave field (2.2) is thus the sum of a large number of 
quasiplane waves with phases that are uniformly distributed 
in the interval (0,2n). Since the waveguide channel is excited 
by a coherent field, all the quasiplane waves arriving at the 
point of observation will be mutually coherent. They will 
therefore interfere. However, the wave phases are random so 
that the interference pattern will be irregular, and the field 
amplitude maxima and minima will have a random distribu- 
tion in space. The picture we have just described corre- 
sponds to what is commonly called the speckle 

Let us now estimate the characteristic size dl, of 
speckle-structure spots in the plane perpendicular to the z 
axis. We shall do this by representing the wave field by the 
sum of normal modes of the undisturbed waveguide. For 
short-wave normal modes, the characteristic separation 

between successive maxima of the wave function corre- 
sponding to a particular mode with longitudinal wave num- 
ber k = k& is of the order of A lz? . r / k~ ( r ) ,  where 
k,,p(r) = k,[n2(r) - E 2]''2 is the local transverse wave num- 
ber of this mode. The quantity E is called the mode delay. 
The characteristic size of the speckle structure spot is deter- 
mined by the mode with the smallest separation d l ,  i.e., the 
highest mode entering the stochastic region. When the longi- 
tudinal wave number of this mode is kF = k S F ,  the mini- 
mum size of the speckle-structure spot is of the order of 

The quantity EF is determined by the particular form of the 
problem. 

The distortion of the wave front in the course of propa- 
gation along the channel can be described in greater detail as 
follows. The exponential development of stochastic instabil- 
ity ensures that the phases of ray oscillations in thex, y plane 
will mix over the shortest scale along the z axis. This gives 
rise to a loss of information about the detailed structure of 
the wavefront of the original field. The slow diffusion of rays 
leading to the random distribution of intensity in the x ,  y 
plane at right angles to the channel axis occurs over much 
longer distances along this axis. However, a uniform intensi- 
ty distribution is not established on an arbitrary z = const 
plane. This is prevented by the non-zero field correlation 
radius r, -dls, determined by (2.3) (The relationship 
between r, and dls will be examined in greater detail in Sec- 
tion 4.) 

We note that the appearance of the same correlation 
scale in quantum mechanics is determined by the uncertain- 
ty principle1' where dls  must be interpreted as the minimum 
de Broglie wavelength. 

3. STOCHASTIC PROPERTIES OF THE SPECKLE 
STRUCTURE 

We shall now describe the wave field in the plane per- 
pendicular to the z axis of the waveguide channel when the 
rays exhibit stochastic instability. We shall consider that an 
individual speckle structure constitutes one of the realiza- 
tions of the wave field in the z = const plane. Owing to sto- 
chastic instability of the rays, the wave-field distribution is 
random in space. The properties of the speckle structure can 
be determined by studying the statistical properties of the 
field distribution U (r, z). 

For simplicity, we shall examine the case where the 
wave propagates at small angles to the z axis. If we then 
substitute 
u (r, Z )  ='I2 {U (r, Z )  exp (ikonoz) +u* (r, z) exp (-ikonoz) }, 

no=max n (r, z) (3.1) 

the Helmholtz equation (2.1) can be replaced by the approxi- 
mate parabolic equation (see, for example, Ref. 15) 

It will be convenient to write the refractive index n(r, z) of the 
medium in the form 
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nZ (r,  Z )  =n2 ( r )  + ~ f  (r ,  Z )  , (3.3) 

where n(r) is the refractive index of the wave channel that is 
homogeneous (undisturbed) along the z axis, ~f (r, z) is the 
perturbation that is due either to the in homogeneity of the 
medium in the z direction, or the inhomogeneity of the la- 
teral cross section, and E is a small dimensionless parameter. 

Suppose that the orthonormal functions p, (r) are the 
normal modes of the undisturbed waveguide, i.e., 

where k ,  = k&, are the longitudinal wave numbers of the 
modes. The wave field v(r, z) in the disturbed waveguide can 
be written in the form of the expansion 

m 

The expansion coefficients a, (z) satisfy the coupled-wave 
equation (see, for example, Ref. 16): 

We' can now use (3.3) to write H in the form 

H=Ho ( x ,  p) + & V ( X ,  p, z )  , 
Ho (x, p) =pZ/2no- [ nZ ( x )  -noz] /2no, (3.10) 

V ( x ,  p; z)  =-f ( x ,  z)/2no. 

The coefficients a, (z) are conveniently determined in terms 
of the action and angle variables18 (I,$ ). These variables are 
introduced for the undisturbed ray trajectories determined 
by the Hamiltonian H,(x, p): 

1 
I= - - $ p d ~ .  2~ e= w, ar s ( x ,  I )  =i P ~ X ;  

p= [n2  (2) --no2-2naE(0)]%, E(O)==-Ho ( x ,  p) =-Ho ( I ) ,  
(3.11) 

where E 'O' is the ray integral. 
In terms of the action and angle variables, the normal 

modes have the form 

rpm (6)  = ( 2 ~ ) - ' "  exp ( im6)  , f qm (6)  (6) 7 i-- d a m ( z )  - ~ ~ a ~  ( z )  +x Vmm. (2) am, ( z ) ,  
dz 13.61 (3.12) 

rn ' 

vmm, ( z )  =- - d2rf (r, z )  (pm'(r) ( r ) .  J 2n0 
Let us investigate the solution of (3.6) subject to the 

boundary condition a, (z) = a, (0) for z = 0. Suppose that 
G (r, z; r', 0) is the Green function for the parabolic equation 
(3.2). Using the orthogonality of the functions p, (r) and ex- 
pressing the solution v(r, z) in terms of the Green function, 
we obtain 

Gmm, (z, 0 )  = dr2 dro2Tm (r) G (r ,  2 ;  ro, 0 )  Tmr (ro). J I 
To simplify our calculations, we shall confine our atten- 

tion to the case of a plane-layered waveguide channel. The 
refractive index is then independent of one of the transverse 
coordinates, say, y. Moreover, we shall suppose, as in Ref. 3, 
that the perturbation ~f (x,  z)  is periodic along z. 

To determine the coefficients a, (z) in accordance with 
(3.7), we shall use the short-wave approximation1' for the 
Green function of the parabolic equation (3.2): 

N 
kono dZSl ( x ,  Z ;  xO, 0 )  Ib 

G ( x l  z; xo, O ) =  x&\ axaxo 
l = l  

I 
~ e x p  {ikonoSl ( x ,  z; X O ,  0 )  f i zp1 /2 ) ,  (3 .8)  

where S, (x,  z; x,, 0)  is the optical path along the I th ray 
joining the points (x, z) and (x,, 0). The ray trajectories x(z) 
are the solutions of the Hamilton equation 

i=dx/dz, p=dp/dz, p=n (x ,  z )  2, (3.9) 

H=p2/2no- [nZ ( x ,  z)  -noZ]/2no. 

The Hamiltonian H corresponds to the parabolic approxi- 
mation (3.2). The sum over I in (3.8) is evaluated over all rays 
joining the point (x, z) and (x,, 0). 

H-r, (1) rpm(6) =E'O' (1,) rp, (6 ) .  

We note that E "'(I, ) is related to the mode delay Em = k ,  / 
k, by Em = - E "'(I, ) + no. 

For an inhomogeneous wave channel, the ray trajector- 
ies are described by the functions I (z),  9 (z) which, in turn, are 
determined by Hamilton dynamics with H = H (I,$ z) in ac- 
cordance with (3.10). 

Transforming to the variables (I ,  9 ) in (3.7) and (3.8), we 
obtain the following expression after some simple algebra19: 

am ( z )  = amr ( 0 )  D,'''~' exp {-im6+imf60~+ikono~:,.), 
1 m' 

(3.13) 

whereS = S !,,,. (9, z; 9 A, 0) is the optical path along the 
I th ray with initial coordinates (I,. = ml/k$,, 8;)  in the 
z = 0 plane and final coordinates ( I ,  = m/k,n,, 9 )  in the 
z=const plane. We note that 8 = 8 ( 9 6 , z ) ,  9I,=, =9;  
for the I th ray. The sum over I in (3.13) is evaluated over all 
rays with final coordinates (I,, 9- ). The exact expression for 
the pre-exponential factor D ,""' will be unimportant in our 
subsequent analysis. 

The main statistical characteristics of the speckle struc- 
ture of the field are the spatial correlation functions. They 
are defined as the average product of the valuds of the field 
u(r, z) taken at different points of space. We shall examine the 
correlation functions on one of the z planes. The spatial cor- 
relation function of order M is defined by 

where the angle brackets represent averaging over the en- 
semble of realizations of the speckle structure in the 
z = const plane. Substituting the expansion (3.5) in (3.14), we 
obtain 
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k-1 

The average will be evaluated by taking the expansion 
coefficients in the form (3.13) where the sum over I can be 
replaced by integration with respect to the initial angle varia- 
bles 9 in the interval (0, 2 4 .  

Le us begin by examining the first-order correlation 
function T"'(x,, x,; z). If we use (3.13), we obtain the follow- 
ing expression for the expansion coefficients Pmlm2 (z): 

where the integral in this expression was examined in Ref. 
19. Using the expression obtained in Ref. 19, we find that 

where 
13= 

%! ( q ,  z  1 s, 0 )  = - d 6 ,  exp ( - iq@Sis6 , )  
2n 0 

is the correlator for the angle variables 9 = 9 (a,, z) and 9,. 
The asymptotic form for moderate correlator times of 

dynamic systems with stochastic instability is relatively well 
known:*.19 

9 ( q ,  z Is, 0) -exp ( - Z / Z R )  ( qZO,  s#O), (3.19) 

where z, = l/h is the uncoupling length for correlations 
between ray oscillation phases along the x axis and h is the 
Kolmogorov entropy. 

Thus, for distances z > z, , the off-diagonal expansion 
coefficients Pmlm2 (z) (m, #m,) that characterize intermode 
correlation are seen to decrease exponentially and can be 
neglected in the correlation function T"'(x,, x,; z). We then 
have 

r(l) ( x , ,  X Z ;  I) = prnn (z) qm* ( x i )  q, ( 4 .  (3.20) 
0 

It can also be shown19 that the diagonal expansion coeffi- 
cients Pmm (z) describing the average power in the individual 
modes satisfy the transport equation 

Urn,. (z) =Vmm, exp {-i(Em-Em-) z). 
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This equation is the analog of the quantum-mechanical Pauli 
transport equation. 

Consider the behavior of the coefficients Pm, , , ,m2M (z) in 
(3.15) for the correlation function of order M. Using (3.13), 
we obtain 

In the short-wave approximation, the fields are deter- 
mined by the two-point optical paths s,,. (9, $,), so that 
(3.22) can be split into factors of the form Pmnm2(z) [see 
(3.16)]. When ml#m2, they decrease exponentially for 
z > z, . Hence the expression for Pm, . . . ,zM (z) in (3.22) will 
differ appreciably from zero for z > z, only when the last M 
indices in Pm, , . , m 2 M ( ~ )  can be obtained by some permutation 
of the first M indices. For example, 

It follows from this property of the coefficients 
P,, , . . m2M(z) that the correlation function of order M in 
(3. lo), where M > 1, can be expressed in terms of the correla- 
tion functions of order 1. Hence, substituting (3.22) in (3.15), 
and using (3.20), we obtain 

where the sum over (P ) is evaluated over all the M! permuta- 
tions of the numbers 1,2, . . . , M. 

The above property of the correlation function (3.24) 
means that the field that has traversed a distance z > z, in 
the waveguide channel in which stochastic ray instability 
develops is described by near-Gaussian statistics. The quan- 
tity z, can also be referred to as the critical length for the 
formation of the speckle structure. 

4. SPATIAL CORRELATORS AND THE DIMENSIONS OF 
SPOTS IN THE SPECKLE STRUCTURE 

One of the important characteristics of the speckle 
structure is the spot size. This is determined by the width of 
the intensity autocorrelation function5 

looked upon as a function of the difference Ax = Ix, - x,  1. 
According to the definition given by (3.14), the function (4.1) 
is equal to the second-order correlation function T"'(x,, x,, 
x,, x,; z). According to (3.24), for z>z,, the second-order 
correlation function can be expressed in terms of the first- 
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order correlation functions, i.e., 

Thus, the spot dimensions can be estimated by evaluating 
only the first-order correlator r ' " ( x , ,  x,; z).  

It was shown in the last section that this correlator as- 
sumes the form (3.20) forz > zR and is determined exclusive- 
ly by the mode power Pmm (z)  satisfying the transport equa- 
tion (3.21). Once we know the solutions of this equation and 
use (3.12) for pm (x) ,  we can calculate ~ ' " ( x , ,  x,; z). 

Let us consider the case where the ray stochastization 
region in phase space lies in the interior of the region of all 
the waveguide rays. Rays in the stochastic region do not then 
enter the external medium. The total power 9 transported 
by a wave is therefore distributed among all the stochastic 
ray modes. Let the number of these modes be N. The equilib- 
rium solution of (3.21) is then 

P,, ( z )  =const=9/N. (4.3) 

This solution is reached for 

where Wis the characteristic value of the transition probabi- 
lities W,,, in (3.21), and z, is the characteristic length for 
field-energy diffusion among the modes. 

If we now substitute (4.3) in (3.20), we reduce the deter- 
mination of T"'(x , ,  x,; z )  to the evaluation of finite trigono- 
metric sums. Let the small parameter of the short-wave ap- 
proximation be denoted by 

where a is the width of the waveguide channel, p, ( x )  is given 
by (2.3), and k ~ ,  has the significance of the local transverse 
wave number of the highest mode. The longitudinal wave 
number of the same mode is k,  = k&F (see Section 2). For 
this case, the corresponding sums in (3.20), subject to (4.3), 
were estimated in Ref. 20. According to these estimates, the 
correlation radius x, for ~ " ' ( x , ,  x,; z)  in the z = cost)z, 
plane is 

xc=nlkopF ( X I  (4.6) 

and, in addition, we have for Ix, - x ,  1 >x, 

Thus, according to (4.2), (4.6), and (4.7), the characteristic 
spot dimension in the speckle structure is dl, = x, for rela- 
tive intensities of the order of 6, which is in agreement with 
(2.3). 

The order of magnitude of the number of spots in the 
speckle structure in the lateral cross section of the waveguide 
channel is given by N, -a/AI, - 1/6$1, i.e., it is proportion- 
al to the reciprocal of the quasiclassical parameter. 

It is important to note that the speckle structure in the 
lateral cross section of the waveguide channel is statistically 
inhomogeneous, which contrasts with speckle structure ob- 
tained by reflection from a rough surface. The correlation 
radiusx, and the spot size Al, are then slowly-varying func- 

tions of the lateral coordinate x over scales of the order of the 
spot size. 

5. UNDERWATER ACOUSTIC CHANNEL WITH PERIODIC 
SURFACE INHOMOGENEITY 

To estimate the parameters of the speckle structure of 
the wave field and the critical length zR for its formation, 
introduced in the last section, let us investigate the special 
case of the underwater acoustic channel with a bottom that is 
homogeneous along the z direction, is perfectly reflecting, 
and has a periodic surface. For simplicity, we shall suppose 
that the velocity of sound is independent of the transverse 
coordinatex. The refractive index of the medium can then be 
described by the function 

no for O<x<a+ef ( z )  
n ( x ,  z)  = { 0 for x<O, x > u + ~ ( z )  (5.1) 

where a is the average width of the acoustic channel in the x 
direction and f (z)  = f (z + L ) is the periodic perturbation of 
the surface of period L. 

For the sake of generality, we shall obtain the ray trajec- 
tories without using the approximation corresponding to the 
;?arabolic equation. The ray trajectories x = x(z) are de- 
scribed by the Hamilton equations 

For small perturbations E I  f (z)  I ga and the Hamiltonian H 
can be written in the form 

II=H,(x, p ) + ~ V ( x ,  p ;  z ) ;  

H, ( x ,  P )  =- (n,2-p2)'", V ( x ,  p; z) =-f (z)@. 
(5.3) 

In the absence of the perturbation ( ~ f  (z)=O), the con- 
stant of motion E corresponding to the mode delay assumes 
values in the range 0 < E < no. In terms of the action and 
angle variables (1,8 ), the ray trajectories are described by 

;r -= 2a for 0< (6/2n}  <'Iz { 2 for '/.< (8 /2n)  < 1 
I / I o  for 0< (6 /2n)  <'/2 

= { - 1 1  for (6 /2n)  <l 

dH0 (1)  
6=0 ( I )  z+.B.,, w ( I )  = -- - 

I 

(10' 1 Ho (1) I ' 

Ho ( I )  =-[no" (I/I ,)  '1 Ih, I,=a/n; 
(5.4) 

E=-Ho(l),  O<~<n,l,, 

where curly brackets represent the fractional part of the ar- 
gument. The quantity w ( I )  has the significance of the spatial 
frequency of oscillation of the ray trajectory about the axis of 
the waveguide channel, and 2n-/w(I) is the spatial period of 
the ray trajectory. The tangent to the trajectory makes the 
angle 9 = arcsin ( I / nJo )  with the z axis. 

Suppose that the perturbation ~f (z)  is 

~f ( z )  = b cos (2nz/L) ,  (5.5) 
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where b is the maximum perturbation. Expanding p into a 
Fourier series in 8, we can write the perturbation E V (x ,  p; z) 
in the form 

eVq= (2n212b) / ( a 3 E ) .  

The perturbation has the strongest effect on the ray trajec- 
tories when the following nonlinear resonance condition is 
satisfied: 

Rays with parameters close to this resonance execute addi- 
tional phase oscillations about the undisturbed trajectory 
that is determined by the resonance value of the action I (q ) .  
The maximum widths of the nonlinear resonance in terms of 
action I and frequency w(I) are respectively given bys 

The separation between neighboring resonances in these two 
variables is respectively given by 

It is clear from (5. 8) and (5.9) that, for low values of I ,  
the separation Sw between the resonances decreases more 
rapidly than Am. It follows that the nonlinear resonances 
will overlap for I < I , ,  where I, is the critical action. The 
overlap condition is given by the inequality 

It is well knowns that the trajectories of a dynamic system 
are stochastic when the nonlinear resonances overlap. The 
quantity K is the parameter of the dynamic system that ap- 
pears in the formula for the Kolmogorov entropy h -1n K 
(see Sections 2 and 3). 

The condition K = 1 yields the critical value I, : 

In terms of the variables E and I ,  the stochastic region of rays 
is defined by 

According to (2.3), the minimum spot size dl, in the speckle 
structure of the wave field in the plane perpendicular to thez 
axis is determined by the highest mode entering the stochas- 
tic region with minimum longitudinal wave number kF or 
minimum delay EF = kF/ko. It follows from (2.3) and (5.12) 
that 

For small values of the combination 8ab /L ' 4  1, consisting of 
the waveguide and perturbation parameters, the spot size 
dl, is much greater than the wavelength, i.e., dl, >A. This is 
connected with the result dl, =; l /kg, since, for 8ab /L ' 4  1, 
the stochastic region intercepts modes with transverse wave 
numbers kg,  (keno. For 8ab /L ' z  1, the stochastic region 
contains all the waveguide modes. Since, in this case, 
k g F  z keno, the spot size is of the order of wavelength, i.e., 
dl, -A .  This result also follows from (5.13). 

According to (5.4), (5.8), (5.9), and (5.10), the critical 
length for the formation of the speckle structure z, = zo/ 
1nK = 27~/w(I )lnK is given by 

zR=a2E{nI In [no  (8ab/LZ) ' " ( I o / I )  I)-', O I  (5.14) 

When 8ab /L '4 1, the minimum value of z, is z, za(8ab / 
L ')-'/'>a. 

When all the waveguide rays are in the stochastic re- 
gion, i.e., when 8ab /L '= 1, the speckle structure is formed 
for relatively small values ofz, of the order of the waveguide 
width a, i.e., z, -a. 

6. CONCLUSIONS 

The foregoing simple examples of wave propagation in 
regularly inhomogeneous waveguide channel show that dy- 
namic ray stochasticity over lengths corresponding to the 
uncoupling of correlations between the phases of ray oscilla- 
tions leads to the formation of a speckle structure of a specif- 
ic type. In particular, any weak partial incoherence of the 
initial wave in space or time must lead to an exponentially 
rapid smearing out of the speckle structure. This is in con- 
trast to the slow linear smearing out of the interference pat- 
tern in regular channels with waveguide dispersion (see, for 
example, Refs. 21 and 22). This, in turn, produces an irre- 
versible loss of information about the structure of the initial 
wave front in the direction of the z axis. The speckle struc- 
ture of the field becomes stationary in the z direction over 
distances exceeding the ray diffusion length. 

The exponentially rapid smearing out of the speckle 
structure of the field when the initial radiation is weakly 
noncoherent is important in systems in which data are trans- 
mitted along waveguide channels, including fiber-optics 
communication lines. One of the possible applications of sto- 
chastic instability is the suppression of noise due to the 
speckle structure of the field. On the other hand, dynamic 
stochasticity of rays together with regular dislocations of the 
wave front of the speckle structure6.' prevents the complete 
reversal of the wave front by adaptive systems. 

A more detailed analysis of the development of stochas- 
tic instability would include allowance for islands of regular 
motion of rays and nonexponential asymptotic forms of the 
correlators 9. This type of analysis would yield more accu- 
rate information about the speckle structure due to dynamic 
stochasticity of rays in waveguide channels. 

Finally, let us examine the difference between the 
speckle structure produced in the homogeneous wave chan- 
nel with the inhomogeneous case in which stochastic ray 
instability is known to arise. Consider a waveguide that is 
homogeneous in r and z and has a "good" profile (separable 
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variables). Suppose that a field u, is introduced into the 
waveguide and contains a sufficiently large number of modes 
u, with eigenvalues (delays) Em that are not equidistant. 
The latter condition means that the quantity 

dZHo (1,) d2Em 
of (1,) = =- 

dZma dmz 

is not zero. It is known23*24 that, here again, the speckle 
structure will appear. It is readily seen that the characteristic 
length along the z axis for the formation ot this structure is 

z,- (d2E,/dm2)-'=I/m'(I). 

Comparison of this with the length z, for the formation of 
the speckle structure in the case of stochastic instability [see 
(5.14) and the formula preceding it] shows that 

zR-~'z0/m In K. 
Since the stochastic parameter K satisfies the condition 
K ,  1, it follows that z, ( z ,  and, as noted at the end of Section 
5, the value z, -a can be reached, where a is the minimum 
transverse size of the waveguide. 

Thus, as expected, stochastic instability leads to much 
shorter lengths for the formation of the speckle structure. 

The other difference between the stochastic and regular 
cases is that, in the former, the speckle structure is irregular 
(random) whereas, in the latter, it is regular. As already not- 
ed, this difference is particularly appreciable when the inci- 
dent field has some initial noncoherence because an irrevers- 
ible loss of information about its structure then takes place. 
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