
Correlation rules for diabatic molecular orbitals in diatomic quasimolecules 
T. M. Kereselidze and B. I. Kikiani 

Tbilisi State University 
(Submitted 15 January 1984) 
Zh. Eksp. Teor. Fiz. 87,741-749 (September 1984) 

Rigorous correlation rules are obtained for molecular orbitals of diatomic multielectron quasimo- 
lecules. It is shown that the previously known Barat-Lichten and Eichler-Wille rules are adiabatic 
and diabatic molecular-orbital correlation rules for states corresponding to identical shells in the 
limit of separated atoms. 

1. Correlation diagrams in diatomic quasimolecules es- 
tablish a correspondence between the energy levels of the 
system in the limit of separated atoms and a united one. The 
use of correlation diagrams for analysis of various inelastic 
processes that occur when slow atomic molecules collide 
was initiated by Fano and others,ls2 who were the first to 
explain the mechanism whereby free electrons are produced 
in close atomic collision on account of the displacement of 
the molecular orbital (MO) and formation of vacancies in the 
inner shells of the colliding molecules. 

The variables of the Schrodinger equations for one elec- 
tron in the field of two immobile nuclei with charges Z, and 
Zb can be separated in a prolate spheroidal coordinate sys- 
tem. This makes it possible to obtain rigorous rules for the 
correspondence of the system orbitals in the limits of the 
separated atoms and the united ~ n e . ~ - ~  At Z, = Zb these 
relations are 

no=nl+2n2+ 1 m l+l, l,=2n2+ 1 ml ( la)  
for symmetric MO and 

no=nl+2n2+ I ml+2, Z0=2n,+ I ml +I ( lb)  
for antisymmetric MO. 

Here n, and n, are parabolic quantum numbers that 
describe the MO in the limit of separated atoms, and no, I,, 
and m are the spherical quantum numbers of the united 
atom. 

The correlation rules (1) are not valid for multielectron 
quasimolecules, for in this case the variables of the Schro- 
dinger equations do not separate in a prolate spheroidal co- 
ordinate frame.8 Barat and Lichten proposed for this case 
the following MO correlation rule: 

nyA = nfA, (2) 

where nyA and nfA are, respectively, the number of zeros of 
the radial wave function of the electron in a united atom and 
an isolated atom. It was shown, however, first in Ref. 10 and 
later in Ref. 11, that the use of the rule (2) leads to diagrams 
that do not contain many quasicrossings of the MO. Eichler, 
Wille, et al.12*13 proposed, on the basis of numerical calcula- 
tions of the energy terms of various quasimolecules, another 
MO correlation rule, substantially different from (2): 

tion of the electron in an isolated atom. 
Both the Barat-Lichten rule and the Eichler-Wille rule 

are empirical, and their use to construct MO correlation dia- 
grams calls for additional assumptions, since condition (2) or 
(3) is satisfied by an infinite set of orbitals. We obtain in this 
paper rigorous and unambiguous MO correlation rules for 
multielectron quasimolecules, and determine those assump- 
tions with which the foregoing rules are connected. 

2. 1n a multielectron quasimolecule each electron 
moves in an effective axisymmetric field produced by the 
nuclei together with all the remaining electrons. These fields 
are generally speaking different for different electrons of the 
quasimolecule and depend on the distance R between the 
quasimolecule nuclei. 

The molecular orbitals of a multielectron quasimole- 
cule can be made up of a generally speaking infinite number 
of two-center Coulomb orbitals whose correlation rules are 
known. If, however, the effective fields in the atoms of the 
quasimolecule do not differ greatly from the Coulomb fields, 
each orbital to which a definite principal number n corre- 
sponds can be represented in the form of a linear combina- 
tion of Coulomb MO with the same value of n. The contribu- 
tion of each of these Coulomb MO to the sought orbital is 
determined by solving a finite system of homogeneous linear 
equations.14 This approximation is valid for electrons that 
fill the inner shells of the atomic particles of the quasimole- 
~ u l e , ~  for a highly excited electron located mainly far from 
the quasimolecule nuclei, l4 as well as for all electrons of light 
quasimolecules. 

We determine below the MO of multielectron quasimo- 
lecules within the limits of the separated and united atoms. 
From these results we shall deduce the general MO correla- 
tion rules and obtain equations that connect the quantum 
numbers of the correlating atomic orbitals (AO). 

3. Consider a quasimolecule made up of two identical 
atoms. The molecular orbitals of such a quasimolecule break 
up into symmetric and anti~ymmetric.~ We designate the 
Coulomb MO by the parabolic quantum numbers n,, n,, and 
m, where mis the projection of the orbital momentum of the 
electron on the axis joining the quasimolecule nuclei. We can 
then write for symmetric (or antisymmetric) MO 

. - 
where niA is the number of zeros of the angular wave func- i=l, 2, 3 , .  . . , n-Iml. 
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Here q, ',:nlrn (r,R ) are two-center Coulomb wave functions, 
and the summation is over parabolic quantum numbers that 
meet the condition n,  + n, + Im 1 + 1 = n, where n is the 
principal quantum number of the determined orbital. 

It can be seen from the expansion (4) that if n = Im 1 + 1 
we have n,  = n, = 0 and the sought orbitals coincide with 
the Coulomb MO in the approximation used. Taking into 
account the explicit form of the Coulomb wave functions 
and the connection between the parabolic and spherical co- 
ordinates, these MO can be represented in the limit of the 
separated atoms as a linear combination of the following A 0  
(the quasimolecule axis is assumed to be directed from the 
nucleus a to the nucleus b ): 

(*) (*) 1 .  b 
(Dlvm (r, m) =(poem (r, a) = - ( ~ o o m * ~ o o m )  

Y 2 

where q, grn and q, 2; are the Coulomb wave functions of an 
electron located in an isolated atom a and b, in parabolic and 
spherical coordinates, respectively. 

The atomic orbitals into which the indicated MO go 
over are determined in the limit of the united atom from the 
correlation rules (1) for Coulomb orbitals: 

Here $nolo, are the wave functions, in spherical coordinates, 
of an electron in a united atom. 

Molecular orbitals with n = Iml + 2 are made up of 
two Coulomb MO: q, \*)= p i & )  lorn (r,R ) and 
q, i*) = q, b:; (r,R ). For the energy terms of the quasimole- 
cule and for the expansion coefficients in (4) we obtain in this 
case 

where HU(R ) are real matrix elements of the one-electron 
Hamiltonian of the system, taken over the wave functions 
q, ',* ) and q, \* ). These equations are valid for both symmet- 
ric and antisymmetric MO. 

Recognizing that H I ,  = H z ,  in the limit of separated 
atoms and determining the coefficients from (8), we can write 
for the sought MO as R - +  w : 

The notation used here is the same as in Eq. (5). 
In the limit of the united atom, each of the Coulomb 

MO, q, ',$A (r,R ) and q, b:,,! (r,R ), goes over into a definite AO. 
As follows from (I),  these A 0  are then different. The effec- 
tive fields have in the united atom spherical symmetry, so 
that in this limit the off-diagonal matrix element in (8) is zero 
(because of the orthogonality of the electron wave functions), 
H I ,  - Hz, < 0, and the sought MO go over into the following 
AO: 

Here $nolo, are the wave functions of the electron in the 
united atom and their spherical quantum numbers are deter- 
mined from the correlation rules (1). 

The molecular orbitals with n = Im 1 + 3 take the form 
of linear combinations of the Coulomb MO, viz., 

(r,R 1, q, i+ = q, bFA (r,R ) q, !* ) = q, (r,R 1. 
The secular equation leads in this case to a cubic equation 
whose discriminant for each value of the parameter R is larg- 
er than zero (irreducible case). The cubic equation has there- 
fore three real and different roots for each value of R.I5 This 
means that the energy terms of the sought orbitals do not 
cross, so that their relative placement does not change when 
the distance R between nuclei is changed. 

In the limit of separated atoms, the following relation 
holds between the one-electron Hamiltonian elements taken 
over the wave functionsq, ',* ), q, i* ) and q, \* 

The cubic equation breaks up therefore as R- cc into a lin- 
ear and a quadratic equation, whose solutions are 

By determining the expansion coefficients of (4) for each of 
these energy values, we find that in the limit of separated 
atoms the sought MO are linear combinations of the follow- 
ing AO: 
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(*) 1 * * 1 a 
(Dz,,,, (r, W )  = ~ ( ( p z o m  -(pozm ) = -($n.lml+l,m~$n,hi+l,m) t 

1'2 1'2 

Iml+l  (r, -1 = (- - 
2(21m1+3) 

In the limit of a united atom, owing to the spherical 
symmetry of the field and to the orthogonality of the angular 
wave functions of the electrons, the off-diagonal matrix ele- 
ments of the one-electron Hamiltonian are zero (in analogy 
with the preceding case with n = Im 1 + 2). The cubic equa- 
tion breaks up then into three linear equations with roots 
E\* ) = H (1: ), ~ i *  ) = H \$ and EL* ) = H !) I. Therefore each 
of the MO goes over as R-0 into a Coulomb orbital whose 
connection with the A 0  is determined by the correlation 
rules (1): 

The molecular orbitals with n = I m 1 + 4 are construct- 
ed of four Coulomb MO: q ~ ( , * ) = e , ( * ~  3om (r,R ), 

( * )  
03m (r,R 1, ( * )  P zlrn (rrR ) and 

e, 1' = e, (l$,,! (r,R ). The secular equation leads in this case to 
a fourth-degree equation with four real and different roots 
for each value of R.15 Using the symmetry of the Coulomb 
parabolic functions, we can show that in the limit of the 
separated atoms this equation breaks up into two quadratic 
equations with solutions 

After determining for each of these energy values the expan- 
sion coefficients in (4), we get for the sought MO as R--t w 

In the limit of the united atom, the off-diagonal matrix 
elements are zero, and the fourth-degree equation breaks up 
into linear equations with roots dl* ) = HI 11 * ) 9 E$* ) = H ( 33 * 9 

E\* ) = H k4f ) and E\* = H i $  ). Therefore the MO go over in 
this limit into the following AO: 

The molecular orbitals with n = Im 1 + i, where i = 5, 
6,  ... are made up respectively of five, six, etc., Coulomb MO. 
We shall not present the equations for these orbitals, since 
they are correlated in accord with the same rules as the orbi- 
tals considered above. 

The equations presented confirm that in symmetric (or 
homonuclear) multielectron quasimolecules the relations 
between the quantum numbers of the correlating MO are 
nyA = ntA, nyA = 2niA for symmetric orbitals and 
nyA = 2niA + 1 for antisymmetric orbitals, where nyAis the 
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number of zeros of the angular wave function of the electron 
in the united atom. The first of these relations coincides with 
the condition proposed in Ref. 9 for MO correlation. The 
relations obtained determine uniquely the state of the united 
atom into which each of the state of an isolated atom goes 
over in the limit of joining of the quasimolecule nuclei: 

for symmetric MO and 

no=n+l-Im(+l, 1,=21-Iml+ l (18) 

for antisymmetric MO. 
It can be seen from (17) and (1 8) that the terms with like 

n and m but with different I do not cross, so that the obtained 
MO correlation rules are adiabatic for these states. 

4. In the foregoing construction of the MO we did not 
take into account the behavior of the Coulomb terms as func- 
tions ofthe distance R between the nuclei. At large R (notice- 
ably exceeding the effective length of the AO) the positions 
of these terms are determined mainly by the linear Stark 
effect. For given n and m, the Coulomb terms with larger n, 
lie below the terms with the smaller n, (Ref. 7). It follows 
from Eqs. (1) that in the limit of the unit atom the higher of 
these terms are those corresponding to larger n,. Therefore 
Coulomb terms with identical n and m but with different n, 
cross at finite R. 

In the region where the Coulomb levels cross, the one- 
electron terms of a multielectron quasimolecule come very 
close together (it is assumed that the effective fields in the 
quasimolecule differ little from the field of two Coulomb 
centers). If the quasicrossings of the terms are regarded as 
crossings, each molecular orbital with given n, I, and m con- 
structed above in the limit of separated atoms will corre- 
spond to an A 0  different than the one that follows from Eqs. 
(17) and (18). 

It is easily seen that in this case the MO (9) with 
n = Im I + 2 go over in the limit of the united atom into the 
following AO: 

and the MO with n = Im I + 3 are transformed as R-0 into 
the following orbital of the united atom: 

We shall not present the equations for the A 0  into 
which the MO with n = Iml + 4, Iml + 5, ..., etc., go over as 

R-0, since these orbitals are correlated in accordance with 
the same rules as the considered MO. As for the molecular 
orbitals with n = Im I + 1, their correlation is determined by 
Eqs. (5) and (6). 

It can be seen from the equations above as well as from 
(5) and (6) that if the quasicrossings of the terms are regarded 
as crossings, the MO that correlate are those whose quantum 
numbers satisfy the relations nyA = niA, nyA = 2 ~ 2 : ~  for 
symmetric orbitals and nyA = 2nFA + 1 for antisymmetric 
orbitals. The first of these relations coincides with the MO 
correlation condition proposed in Ref. 13. 

The relations obtained determine uniquely the united- 
atom state into which of the states of the isolated atom goes 
over in the limit of unification of the quasimolecule nuclei: 

no=2n-1-1, l0=2n-21+ 1 ml-2 (21) 

for symmetric MO and 

no=2n-1, lo=2n-21+I ml-I (22) 

for antisymmetric MO. 
The rules (21) and (22) are the diabatic MO-correlation 

rules. 
5. We consider now a quasimolecule made up of two 

different atoms and assume that the effective fields in which 
the electrons are located in each of the atoms differ little 
from one another and from the Coulomb field. The molecu- 
lar orbitals of such a quasimolecule do not break up into 
symmetric and antisymmetric. Since the atoms are different, 
the quasimolecule levels that are doubly degenerate at given 
n, I, and m split in the limit of separated atoms. 

We represent the sought MO in the form 

Q,,,(r, R) =at+' (R) 0;;' (r, R) +at-' (R) @!,-,' (r, R ) ,  

where @ j.,;)(r,R ) and @ :;)(r,R ) are the symmetric and anti- 
symmetric MO defined in (4). Assume that the one-electron 
levels of the atom a are below the corresponding levels of the 
atom 6 .  To determine the expansion coefficients in (23) we 
can use the equations of the two-center approximation (8), 
where HU (R ) are matrix elements of the one-electron Hamil- 
tonian of the quasimolecule, taken over the wave functions 
p1 = @ i,+m)(r,R ) and p, = @ I.,;)(r,R ). 

In the limit of separated atoms we have H,, = Hz, and 
the MO go over into the following AO: 

where $",,,, and $:,,,, are the wave functions of the electron 
in the isolated atoms a and b. 

In the united-atom limit, owing to the spherical symme- 
try of the field and to the orthogonality of the angular wave 
functions of the electron, the off-diagonal matrix element in 
(8) is zero, H,, - Hz, < 0, and we can write for the MO 
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where the spherical quantum numbers no and lo are connect- 
ed with the quantum numbers n, I, and m by relation (18) or 
(22). 

It follows from the obtained equations that the correla- 
tion rules of MO of an asymmetric molecule coincide with 
rules (17) and (18). If the quasicrossings of the terms are re- 
garded as crossings these rules coincide with the (21) and 
(22). Relation (17) or (21) should be used for the orbitals of an 
atom whose energy levels lie lower, and ( 1  7) or (2 1 )  for higher 
levels. 

The authors thank 0. B. Firsov, Yu. N. Demkov, and 
M. I. Chibisov for a discussion of the results derived in the 
paper. 
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