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Self-defocusing in sharply focused laser beams is investigated. The analysis is valid for thermal 
defocusing and defocusing due to the presence of free carriers generated during multiphoton 
ionization by the incident light. Stationary and nonstationary self-defocusing are examined for 
different nonlinearities of the medium. The effect of nonlinear absorption on the process under 
investigation is determined in the stationary case. It is found that the maximum change in the 
permittivity of the medium, in both stationary and nonstationary advanced self-defocusing, is 
independent of the frequency of incident radiation and is determined by the square of the focusing 
angle. Intensity saturation occurs in the region of the nonlinear focus for stationary self-defocus- 
ing. For nonstationary defocusing, the pulse of transmitted radiation is cut off, and the maximum 
intensity in the focus is determined by the nature of the nonlinearity of the medium and the slope 
of the leading edge of the incident-radiation pulse. The change in the divergence of the beam in the 
case of sharp focusing in a nonlinear medium is elucidated, and the feasibility of experimental 
observation of the phenomenon is analyzed. Comparison of numerical calculations with the 
solution obtained in the aberration-free approximation is used as a basis for a discussion of the 
range of validity of this approximation for this class of problems. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 

Self-defocusing of light is among well-known phenom- 
ena in the physics of interaction between powerful laser radi- 
ation and matter. It is interesting in itself, from the stand- 
point of nonlinear optics, and because self-defocusing can 
modify the process of interaction between laser radiation 
and matter. 

Most publications have examined the effect of defocus- 
ing on the propagation of a collimated laser beam (see, for 
example, Refs. 1-5). However, studies of these interaction 
processes frequently employ high light intensities produced 
by sharp focusing. Self-defocusing is therefore of particular 
interest in the case of sharply focused beams. 

Interaction processes that may be accompanied by a 
reduction in the refractive index of the medium include mul- 
tiphoton ionization, heating resulting from laser absorption, 
laser thermochemistry, and so on. Since each type ofinterac- 
tion is characterized by its own variation of the refractive 
index of the nonlinear medium, it is interesting to examine 
common features of self-defocusing for different types of 
nonlinearity of the medium. This question has not been ex- 
amined in the literature although there are some individual 
publications in which particular cases are investigated nu- 
merically .6 

The aim of this paper was to determine the light-field 
characteristics of the interaction region such as maximum 
intensity and energy density, the space-time dynamics of the 
transmitted pulse, as well as their depe'ndence on the type of 
nonlinearity and focusing conditions. 

The propagation of a powerful light beam in a nonlinear 
medium will be discussed in terms of the well-known para- 
bolic equation for the electric field E of an electromagnetic 
wave propagating in the z direction: 

where k is the wave number, E = E~ + SE(IE I )  is the permit- 
tivity of the medium, and S E ~ E ~ .  The nonlinear part SE is 
determined by the type of interaction between the field and 
the medium. For example, if the self-defocusing process is 
due to the presence of free carriers generated by multiphoton 
ionization by light, the behavior of the real part of SE is de- 
scribed by 

where a, is the coefficient of n-photon ionization by a pho- 
ton of energy k, B is a constant governing the connection 
between the real part of 6~ and the density of nonequilibrium 
carriers, and T is the nonlinearity relaxation time. 

It is important to note that nonstationary thermal self- 
defocusing can also be examined on the basis of (2) when 1/ 
T  = 0. 

2. STATIONARY SELF-DEFOCUSING 

Consider the self-defocusing process for short nonlin- 
earity relaxation times T < T ~ ,  where rp is the incident-pulse 
length (stationary case). We may then write 

To elucidate the qualitative features of the process, con- 
sider the behavior of a focused Gaussian beam in the so- 
called aberration-free approximation7 in the absence of ab- 
sorption. To this end substitute E = A  exp ( - ikS) and 
consider the set of equations for the amplitude A and phase S 
of the field. Following Ref. 7, we shall seek A and S in the 
form 
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The initial conditions for the basic problem are: f (0) = 1, 
p (0 )  = 1/R, where R is the radius of curvature of the wave 
front at entry to the nonlinear medium and a, is the initial 
width of the Gaussian beam. 

Using (4), we find from (1) and (3) that the dimensionless 
width f (z) of the beam is the solution of the equation 

The maximum light intensity is determined from (5) as the 
value off for which df /dz = 0. 

We now define the defocusing threshold as the condi- 
tion under which the maximum intensity on the caustic is 
reduced by a factor of two as compared with the linear prob- 
lem, i.e., 

where 1, = kao2 is the diffraction length of the incident 
beam. Substituting df/dz = 0 in (5), we then obtain the 
threshold (critical) value SE,,, at entry to the medium: 

Analysis of (5) shows that, in the highly nonlinear re- 
gion (well above the threshold), the light intensity in the focal 
region ceases to increase with increasing incident intensity, 
and there is merely a broadening of the beam. The field am- 
plitude in the focal region, and the corresponding nonlinear 
permittivity of the medium under the conditions of satura- 
tion, are given by 

The resulting expression An-(aJR )' has a simple 
physical interpretation. It is a reflection of the fact that the 
intensity at the focus decreases when the nonlinear advance 
in phase along the caustic becomes equal to ~ / 2 .  

Let us now consider the variation in the divergence of 
the beam as it passes through the nonlinear medium. Equa- 
tion (5) shows that the intensity distribution is completely 
symmetric with respect to the nonlinear focus (df /dz = 0). 
Moreover, at large distances from the geometric focus If2 I), 
the curvature of the phase front is df / dzz  1/R, which shows 
that the variation in the divergence of the beam is small in 
comparison with linear optics. 

3. STATIONARY SELF-DEFOCUSING. NUMERICAL 
CALCULATIONS 

As a check on the predictions of the aberration-free ap- 
proximation, we carried out a numerical solution of (1) and 
(3) for sharply-focused beams with an initial Gaussian inten- 
sity distribution over the cross section and different values of 
m. The numerical solution was based on the difference 
scheme proposed in Ref. 8. In the case of strong nonlinearity, 

we used the scheme with viscosity (see, for example, Ref. 9). 
Our calculations have shown that, even then the nonlin- 

earity is slight, the numerical solution of (1) and (3) is qualita- 
tively different from the solution obtained in the aberration- 
free approximation, just as in the case of self-focusing. lo.'' 

To compare the numerical calculations with the aberration- 
free approximation, Figure 1 shows the self-defocusing 
threshold [see condition (6)]  as a function of the nonlinearity 
index m. The threshold nonlinearity of the permittivity is 
normalized to S,cCrit given by (7). The calculations are shown 
for two values of Id/R. It is clear from Fig. 1 that, when 
m>2, the threshold nonlinear permittivity (in units of S E , ~ ~  ) 
is not very dependent on the focusing conditions, i.e., on I ,  / 
R. This is a consequence of the fact that the interaction is 
mostly confined to the region near the focus. 

When the self-defocusing threshold is substantially ex- 
ceeded, the maximum light intensity ceases to grow with 
increasing incident intensity (saturation effect) and we ob- 
serve only broadening of the focal region, which confirms 
the basic conclusion of the aberration-free approximation. 
We note that, in the case of cubic nonlinearity, the nonlinear 
focus is shifted along the path of the ray. The variation in the 
radial distribution of intensity with z is shown in Fig. 2 for 
the cubic nonlinearity 6~(0 ,0)  = lo3 SE,~,. It is clear that the 
radial distribution ceases to be Gaussian in the course of 
propagation, and the lateral intensity profile acquires a flat 
top with raised edges. For convenience, the intensity is ex- 
pressed in terms of SE(O, z)R ' /aO2 and the distance to the 
geometric focus in units of the length I, of the linear caustic. 
In terms of these variables, the above solution for sharply- 
focused beams is practically independent of the focusing an- 
gle and wavelength. 

Calculations, performed for other cases of negative 
nonlinearity (m = 1 4 )  have shown that the type of nonlin- 
earity does not modify the basic self-defocusing structure. In 
particular, it has been found that, whatever the degree of 
nonlinearity m in the focal region, the maximum intensity 
and maximum nonlinear part of the permittivity of the medi- 

FIG. 1 .  Threshold value of nonlinear permittivity for stationary self-defo- 
cusing as a function of the nonlinearity exponent m. The numerical solu- 
tion is shown for two values of I, /R,  namely, 30 (curve 1 )  and 300 (curve 
2). For comparison, we also show the threshold in the aberration-free 
approximation (curve 3). 
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FIG. 2. Variation in the radial intensity distribution for the cubic nonlin- 
earity when &(O, 0 )  = 1036~,,,, near the focus and I,/R = 100. Curve 1 :  
R - z =  -201c ;curve2 :R-z=  - 8 l C ; c u r v e 3 : R - z =  -31 C .curve , 
4 : z = R ; c u r v e 5 : R  -z=2.51 , .  

um in the case of saturation are given by l 2  

We have also investigated the effect of nonlinear ab- 
sorption on self-defocusing. Absorption was introduced in 
(3) as follows: E, = E, ' + i ~ ,  ". Numerical calculations 
show that inclusion of absorption reduces the longitudinal 
size of the focal region, and a well-defined dip appears in the 
radial intensity distribution as the nonlinear focus is ap- 
proached. However, the maximum intensity that can be 
achieved on the caustic is determined exclusively by the real 
part E, ' [see (9)] and is not very dependent on the degree of 
absorption. The validity of this conclusion was checked 
against examples in which the total beam intensity behind 
the caustic fell by a factor of more than 100. 

An important feature of the self-defocusing process is 
the variation in the phase characteristics of the wave due to 
the appearance of the induced negative lens in the medium. 
Numerical calculations have shown that, for sharp focusing 
of incident radiation, the wave front at the center of the caus- 
tic is nearly plane, and a considerable departure from the 
planar configuration (greater than A /4) occurs only in the 
wings of the radial distribution, which contain no more than 
10% of the beam energy. The presence of such a cross section 
with a plane phase front ensures that, when it is coincident 
with the exit surface of the nonlinear medium, a reduction is 
observed in the divergence of the beam, due to the increase in 
its diameter. This effect was first observed and explained 
qualitatively in Ref. 13. 

However, when the focus is located deep in the medium, 
no change in the divergence of the beam is observed, and the 
radial field distribution well away from the caustic remains 
symmetric relative to the focal plane.1' The change in the 
optical characteristics of the nonlinear medium results only 
in an additional advance in the phase of the beam as a whole, 

i.e., the nonlinear medium is then equivalent to a flat plate 
with a negative refractive index. Aberration of the phase 
profile at the exit from the nonlinear medium occurs only in 
the wings of the radial distribution, and has therefore no 
appreciable effect on beam propagation. 

It follows from the foregoing that, when the focus lies 
deep inside the medium, the amplitude and phase distribu- 
tions at the exit (z 2 2R ) carry practically no information 
about the self-defocusing in the focal region. This informa- 
tion is carried only by the additional advance in phase Ap. 
However, an appreciable value of Ap can be obtained only 
well above the threshold (Ap = 2 7 ~  with SE(O) =: 1 58eCrit ). 

4. NONSTATIONARY SELF-DEFOCUSING IN THE 
ABERRATION-FREE APPROXIMATION 

We have examined above the basic feature of the self- 
focusing process for the instantaneous-type nonlinearity. 
However, the more usual situation is that where defocusing 
occurs in a medium in which nonlinearity accumulates in 
time. Examples include thermal defocusing, defocusing by 
free carriers during slow recombination r)rp,  and so on. 
Processes due to the nonlinear imaginary part of SE were 
examined in Ref. 14. 

Calculations performed for stationary defocusing have 
shown that the basic features of this process are qualitatively 
described by the aberration-free approximation. It follows 
that this approximation will probably also reproduce the ba- 
sic features of self-interaction in the presence of accumulat- 
ing nonlinearity S E ( ~  ). 

Consider the case where recombination can be neglect- 
ed, i.e.,r)rp. The nonlinear part of the permittivity (2) is 
then given by 

1 

68 ( t )  =&,j Em (t') dtf .  ( lo) 
0 

We now substitute 

E - E ~ Y ~ A  erp (-i S )  , 

where p(t ) is the incident intensity pulse and E is its peak 
value. The equations for the dimensionless amplitude A and 
phase S of the light-wave field can then be written in the 
following form: 
aA aA as 
-=-- 

I , . , ,  

We have transformed here for convenience to dimensionless 
variables (z+z/R, r-tr/ao). In addition, since the time deter- 
mines only the process of accumulation of&, it is convenient 
to transform to the new coordinate 

which carries all the necessary information about the nonlin- 
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FIG. 3. Maximum intensity on the beam axis as a function of (x/xCrit)*'"' 
for nonstationary self-defocusing ( 1 / ~  = 0) for different values of m. The 
aberration-free approximation is shown by curves 1,2, and 3 for m = 2,4,  
and 8, respectively. The numerical solution form = 2 is shown by curve 4. 
I,  is the intensity on the beam axis at z = 0. 

earity of the medium, the shape of the incident radiation 
pulse, and its amplitude. We note that the variable x(t ) en- 
ables us to deduce the function E (t ) from the solution A (x) of 
(12) for an arbitrary pulse shape. The coordinate system (r, z, 
x ]  chosen in this way gives us a set of equations with the 
single parameter Id /R. 

In the aberration-free approximation (5) for the dimen- 
sionless beamwidth f (z, x), we can readily show from (12) that 

This equation was solved numerically for the following 
boundary conditions: 

af f(O,x)=1, -(O,x)=-1, f(z,O)= 
az  

By analogy with the stationary case of defocusing (8), 
we introduce the critical nonlinearity 

whereS~(0,t )is the nonlinear increment to the permittivity of 
the medium in the z = 0 plane. For a given pulse shape q,(t ), 
the critical self-defocusing energy $,,, can be determined 
from x,,,, . By analogy with the critical power for instantan- 
eous-type self-defocusing, $,,, is determined by the degree 
of nonlinearity of the medium and depends on the radiation 
wavelength and focusing conditions (m # 2). 

Numerical solution of (13) has shown that x,,, depends 
on the defocusing thresholdx,, [see condition (7)] as follows: 
x,, --0.7xcrit for m>2, Id /R) 1. 

In the case of strong defocusing, x > x,,, and broaden- 
ing of the beam is accompanied by a shift of the nonlinear 
focus counter to the direction of propagation. Figure 3 
shows the maximum light intensity on the axis as a function 
of (X/X,,,)~'" which is linearly related to the total beam 
energy for t)r,. 

Since for sharp focusing Id /R$1, the interaction is lar- 

gely confined to the focal region, and we can choose for the 
problem parameter combinations such that the solutions are 
practically independent of I ,  /R. Figure 3 and all the subse- 
quent figures are plotted in just these coordinates. 

Our numerical calculations have shown that unlike in 
the instantaneous-type self-defocusing (characterized by sat- 
uration of the nonlinear part of the permittivity), in the case 
of nonstationary self-defocusing the nonlinearity of the me- 
dium does not saturate at x%xcrit but continues to grow. 
Figure 4 shows the distribution of SE along the beam axis for 
different values of x. We note that, in this case (m = 2), the 
distribution S~(0,z) is exactly the same as the axial distribu- 
tion of the beam energy density inside the medium. 

The solution of (13) enables us to determine process pa- 
rameters such as the nonlinear refractive index and the la- 
teral dimensions of the beam in terms of the integral variable 
x, whereas the dynamics of the transmitted radiation and its 
energy characteristics are determined in addition by the 
shape of the incident pulse I = Iop (t ). Since the beamwidth 
on the caustic always increases with time as a result of the 
accumulation of SE, the intensity dynamics in the interior of 
the medium may be very different from the incident-pulse 
dynamics, and the pulse may be cut off in the case of strong 
nonlinearity. The cutoff time to shifts toward lower t as I. 
increases. The most interesting situation is that where cutoff 
occurs on the leading edge of the pulse and I (to) is the peak 
intensity. 

To be specific, let us suppose that the leading edge of the 
incident pulse is described by p (t ) - t" . The condition for 
cutoff on the leading edge of the pulse q, (t ) is then 

2 d l  
I+ I f -  I -=0 ,  ( n m )  dz 

where I = l/f '. 

FIG. 4. Distribution of 6~ on the beam axis in the focal region for nonsta- 
tionary self-defocusing with m = 2 for different values of incident-radi- 
ation energy in units of the critical beam energy. Dashed curves corre- 
spond to the aberration-free approximation. 
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Since f is a function of the two variables z and x(t ), the 
pulse dynamics will be different in different z planes. The 
absolute intensity maximum (maximum with respect to z 
and t ) can be calculated from (15) by using the relationships 
shown in Fig. 3. Analysis of the solution f, (x) has shown 
that, when n > l  and m>2, condition (15) is satisfied for 
xex,,, . (We note that, well away from the focal regionz < 1, 
the cutoff sets in for x)~,,, .) Hence, it is readily shown that 
the peak intensity in the focal region is given by the following 
function of I,: 

i.e., nonstationary defocusing does not produce saturation of 
the light intensity either. By analogy with nonlinear absorp- 
tion,14 the rise in intensity in the nonlinear focus during de- 
focusing is determined by the curvature of the leading edge 
of the incident pulse and the degree of nonlinearity of the 
medium. 

The solution obtained in the aberration-free approxi- 
mation shows that the accumulation of the nonlinearity in 
time leads to an asymmetry in the field distribution relative 
to the focal plane when SE/E~Z - (ao/R )' is reached in the 
medium, and this means that additional beam divergence is 
produced. It seems to us that the extent to which the strong 
additional divergence is produced by the medium well be- 
yond the geometric focus cannot be judged from the solution 
obtained in the axial approximation because it is not clear to 
what extent the aberration of the induced lens affects wave 
propagation. 

5. NONSTATIONARY SELF-DEFOCUSING. NUMERICAL 
CALCULATIONS 

In view of the foregoing, we have carried out a direct 
numerical solution of (12). The solution is based on the meth- 
od proposed in Ref. 8. As in Ref. 8, the system (12) was 
written in terms of the Lagrange energy coordinates. The 
fixed grid in Lagrange coordinates is then equivalent to a 
mobile grid, in Euler coordinates, which is automatically 
adjusted as the solution develops. This formulation of the 
problem also enables us to introduce artificial viscosity as a 
way of combating the resulting nonmonotonic behavior of 
the phase. When the equation is solved with an integrating- 
type nonlinearity, the values of the nonlinearity SE in the 
two-dimensional r X z  region must be stored for each step in 
x. The number of points for which the values of SE were 
stored was N,  = 25 and N, = 40. For points that did not 
coincide with the nodes of this grid, the values of the nonlin- 
earity were calculated by linear interpolation. 

The numerical calculation was performed form = 2 up 
to x = 120xCrit, where x,,, is given by (14). As in the case of 
the instantaneous nonlinearity, inclusion of aberrations for 
the integrating nonlinearity leads to a much higher value for 
the defocusing threshold: x,, = 3.5xc,, . In contrast to the 
aberration-free approximation, there was practically no 
shift of the nonlinear focus in the numerical solution. The 
dependence of the maximum intensity I,,, on x was analo- 
gous to that obtained in the axial approximation (see Fig. 3), 
and has the same asymptotic behavior, namely, I,,, - l/x 
for x>x,,,. This asymptotic behavior shows that the nonlin- 

FIG. 5. Radial intensity distribution (left) and nonlinear part of the per- 
mittivity E (right) in different z planes for nonstationary self-defocusing 
with m = 2, x = 100~, ,~ , :  R - z = - 7.51, (curve 1); R - z = - 2.91, 
(curve 2); R-z = - 1.461, (curve 3); z = R (curve 4); R - z = 1.731, (curve 
5), and R - z = 41, (curve 6). 

earity of the medium does not saturate in the focal region (see 
Fig. 4) 

The operation due to the induced lens can be assessed 
from Fig. 5, which shows the radial distributions of the light 
intensity and of the linear part SE in the difference sections z 
at x = 100xc,, . We note some similarity between the I (r) dis- 
tributions for nonlinearities of instantaneous and integrating 
type. 

Once the solution I (r, z, x) is available, we can calculate 
the dynamics of an arbitrary pulse at any point in the nonlin- 
ear medium. As an example, consider the point r = 0, z = 1, 
which is practically coincident with the nonlinear focus in 
the case of sharp focusing. Analysis of the numerical solu- 
tion I(0,1,  x) has shown that if the leading edge of the pulse is 
described by p(t)-t",  the cutoff occurs in this case for 
x = 5x,,, to lOx,,, for any n) 1. Moreover, the peak intensi- 
ty in the geometric focus is described by (16), just an in the 
aberration-free approximation. 

When the problem (12) was solved in the aberration-free 
approximation, it was found that the induced lens and the 
field distribution relative to the focal plane were both highly 
asymmetric (cf. Fig. 4). The numerical solution of (12) 
showed that the beam was, in fact, asymmetric, but the 
asymmetry was weaker than in the aberration-free approxi- 
mation. Thus, the increase in the divergence behind the geo- 
metric focus (z = 2) is twice that for x~43, , ,  or 
8' = 12.38',,. 

We have examined two cases, namely, instantaneous 
(stationary) and cumulative (integrating) nonlinearity. We 
have shown that, for an arbitrary nonlinearity that can be 
described by a power-law formula, the defocusing threshold 
is determined by S~(0 , t  ) which depends both on the type of 
nonlinearity and the shape of the incident pulse. Numerical 
solution of (1) and (2) in the aberration-free approximation 
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has shown that, in the presence of relaxation of the nonlin- 
earity, the defocusing threshold is determined by the extre- 
mum of the quantity 

t 

be (0,  t )  =cnEom exp (- IT) exp ( t T / r ) c p m ~ ( t r ) d t '  

during the pulse. The threshold condition is 

where T is the nonlinearity relaxation time. 

CONCLUSION 

Our analysis has thus shown that self-defocusing of 
sharply-focused beams leads to beam broadening and to a 
reduction in the intensity in the focal region. Both for sta- 
tionary and nonstationary defocusing, the maximum change 
SE in permittivity does not depend on the frequency of the 
incident radiation and is determined by the square of the 
focusing angle (SE - (a,/R )2). For stationary defocusing, a 
limitation on SE leads to intensity saturation in the focal re- 
gion and to a cutoff in the nonstationary case. In the latter 
case, the maximum intensity increases with increasing inci- 
dent power. 

Analysis has shown that beam broadening in the case of 
stationary self-defocusing occurs only near the focal region. 
It follows that, when the focus lies deep in the nonlinear 
medium, defocusing cannot be observed by recording 
changes in the amplitude and phase profile of the transmit- 
ted radiation. Defocusing must then be recorded by the in- 
terferometric method, using the advance in phase. 

On the other hand, additional beam divergence occurs 

for nonstationary self-defocusing when m = 2. However, ex- 
perimental detection of this effect for sharp focusing when 
the focus lies deep inside medium is possible only well above. 
the threshold. 
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