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We consider the interaction between a strong electromagnetic wave and electrons localized in the 
space between a metal-vacuum interface and the electric retarding potential (the potential bar- 
rier). An expression is derived for the probability of passage of the electrons through this barrier as 
a result of multiphoton absorption. The possibility of experimentally observing this effect is 
discussed. 

INTRODUCTION known Volkov solution when the field is turned off, and into 

The passage ofan electron through a potential barrier in a traveling electron wave in the absence of the electric field 

the presence of a strong electromagnetic field was consid- and of the laser wave. We neglect here and elsewhere the 

ered by many workers in connection with various problems. gradient terms of A ( ~ 9 ~  1.' 
In particular, following the paper by L. V. Keldysh,' many We carry out a phase transformation of the wave func- 

papers were devoted to multiphoton ionization of atoms (see, tion in Eq. (I):  

e.g. Refs. 2 and 3). This problem was investigated also in 
connection with the multiphoton photoeffect from crystals4 
and with the Franz-Keldysh effect in  semiconductor^.^ In 
the case of multiphoton ionization of atoms, the investiga- 
tion deals with the transition from the bound state of an 
electron to the continuous spectrum. One can, however, con- 
sider also a transition from a continuous spectrum with ener- 
gy E into a continuum state with energy E ' > E, i.e., the pas- 
sage of an electron through a potential bounded in space, in 
the presence of a strong magnetic field. This problem can 
arise if the electrons move in a half-space bounded by a "po- 
tential wall" in the presence of a retarding electric field and a 
laser wave.6 Electrons with initial energy E( IeV,Il (V,  is the 
electric potential, e the electron charge, and 1 the barrier 
width) cannot overcome this barrier in the absence of an 
electromagnetic field. In the presence of such a field, how- 
ever, multiphoton capture of electromagnetic-field quanta 
by the electron becomes possible from a state with energy 
E( IeV,II to a state with energy E'  > JeV,II. The present pa- 
per is devoted to a solution of this problem. 

where @ satisfies the equation 

iti a q  ($9 t) tiZ d 2  

d t 
+ - A (x, t) dx-el'x @ (x, t) . J =[-%% c I 

(3) 
We get 

where is the laser-wave field strength. We recall that the 
gradient terms were left out of Eq. (1). The second term in the 
square brackets in the right-hand side of (4) can be excluded 
by using the Husimi transformation8: 

i (x, t) dx,+io (x, t) cp (x,, t) , I ( 5 )  

wherex, = x - v(x,t ). We choose the functions 7 andasuch 
that the function q, satisfies the equation 

FORMULATION OF PROBLEM, ELECTRON WAVE FUNCTION 
i 

av (XI, t) - 1 a2v(xI, t) --- 
Let electrons move in a plane-polarized electromagnet- d  t 

- elrx,cp. 
2 dx12 

ic field along thex axis. An electromagnetic wave propagates 
The equations for 7 and a are then 

perpendicular to the electron motion (along thez axis) and its 
vector potential A (x,t ) is directed along thex axis. The non- q=e8(x, t), 
stationary Schrodinger equation that describes the electron b='/,i2+ e 8  (x, t) q+eZrq. 
motion in the electric field and in the laser wave is then 

The system (7), (8) has a simple solution, if 8(x, t  ) is ch 
ifi-= fir, the form 

d t (1) 
\ ,  

A A e B e2 8(~, t)  =B (x) cos ~t 
H=B,+iA - A (s, t)- + - A2 (x, t )  -egrx, (9) 

mc dx 2mcZ 
(here w is the laser-wave frequency). Integrating the system 

# a2 where H, = - - - , m is the electron mass, and gf is of differential equations (7) and (8) we obtain 
2m ax2 

the electric field strength. 
We seek also for Eq. (1) a solution that goes over into the 

e'(x) cos at+Ct+B, q = - 7  
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a 

e B ( X )  eos o t + ~ .  B sin a t -C  - +-C2t+- 
2 o2 

We turn now to Eq. (6). We express p(x,,t ) as 

cp ( x i ,  t )  =exp ( - iE t )  Q ( x , )  , (12) 

where @ (x,) is a certain function ofx, only. The result is an 
equation for @ (x,) in the form 

The solution of (13) is 

@ ) = A i x )  ) , ( x i )  = (xi+E/e&') ( 2 m e 8 ' )  ", (14) 

where Ai [ 6 (x,)] is an Airy function and C, is a normaliza- 
tion constant. 

Using now relations (5), (lo), (1 l), (12), (14), and (2) we 
obtain an expression for P (x,t ): 

1 e 8  ( x )  2Lsin20t Y ( x ,  t )  = C  exp { i ~ t  + - 
8 a 

A similar relation was obtained by another method in Ref. 5. 
The constants C, B, and D are chosen to satisfy the condition 
that the wave function obtained become the Volkov func- 
tion9 when the field is turned off. The function (15) satisfies 
this condition at C = B = D = 0. The quantity x ,  in (15) is 
given by 

cos a t .  X ~ = X + ~ + -  
e  8 o2 

We emphasize that the solution obtained in this manner for 
the Schrodinger equation is a particular solution and goes 
over, when the fields are turned off, into a plane traveling 
wave with momentum p and energy E =p2/2m. As 
t -+ - w (the instant when the electromagnetic field is 
turned off) the general solution of (1) should transform into 
the wave function Pg) (x,t ) of the motion of an electron of 
energy E in a uniform electric field. For an arbitrary instant 
of time, this solution should be represented by the superposi- 
tion 

Y ( x ,  I )  =Y? ( x ,  t )  + CLEE. ( t )  YE, ( 1 7  1 )  9 (17) 
E' 

where aEE, is the amplitude of the transition of the electron 
from the state E into the state E '. Substituting (17) in Eq. (1) 
we obtain (in the usual units) 

&,qJ:") ( x ,  t )  +Ij. C o~., ( t )  YE, ( x .  t )  +%") ( x ?  t )  
E' 

where 

Recognizing that 

a ~ : )  ( x ,  t )  - 
i f i  = H,Y;) ( x ,  t ) - e 8 ' x Y $ )  ( x ,  t )  

d t  

and YE, (x,t ) satisfies Eq. (I), we get from (18) the following 
equation fora,. (t ) [usingalso the orthogonality of PEP (x,t )] 

t 1  
e 

CLEE, ( t )  = J J YE,. ( x ,  I ) -  A ( x ,  t) V Y ~ )  ( x ,  t ) d x  dt  
mc 

The differential probability W i) of the multiphoton process 
can then be written in the form 

d ~ : '  = I a ~ ~ r  (m) ( ' g ( E f )  dE'. (22) 
Here g(E ') is the density of states: 

g (E' )  = L f  (2mEf)"/2nAE', (23) 

and L ' is the normalization length. 
We take explicit account of the dependence ofA (x,t ) on 

x: 
A (r,  I )  =-8% exp [- ( x - s o )  ' /2d2]  sin a t ,  

where d is the width of the laser beam and x, is the position of 
the maximum of the laser-wave field. We express the wave 
function P g)(x,t ) in (21) in the form 

Y:" ( x ,  t )  =YE''' ( x )  e-iEt, 

where 

1 I Y E ( ~ '  (x) = - ;( e8'x-E ) , x > x f .  (24) 
2 L'" e8'10 

Here x' = E /eg '  is the turning point, L the normalization 
length, and I,, = (fi2/2mekT')1'3 the field length. 

For the potential considered, Eq. (24) is valid down to x 
values close to the point x = 0. We assume that the electron 
motion at x(O is bonded by a "potential wall." In this case 

YE (0) =o. (25) 

The wave function (24) satisfies the boundary condition (25) 
if the following phase relation is satisfied 

We assume further that the final state of the electron corre- 
sponds to above-barrier motion: E ' > e g  '1. Neglecting the 
reflected wave and assuming that E'/egl>(ekT/ 
mu2) cos a t ,  we get from (15) 
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Y ,$ (5 :  t )  = - 
(L')" 

We calculate first in the expression for a,. (CC ) the integral 
with respect to t: 

e 8  ( x )  f. E-E' 
I ,  = --- 7 (sin o t )  exp{ i e 8  (x)p'  cos atp i  - 

n t  
mc - % 

mo'h 

E-E' xexp {-i e8 (+)p' cos 0 - i  - t 
mw2h fi 

The integrals in (28) are calculated in Appendix 1. As a result 
we get 

e8 (') ' ( e ~ ~ ~ ~ '  ) 6 (El-E-nho) , (29) I, = - 
nzc 

where J,, is a Bessel function. We have taken into account 
here only absorption processes, since the initial energy 
E ( h .  We now calculate the integral with respect tox in the 
amplitude a,. (CC ). The calculation is given in Appendix 2. 
As a result we have two cases: 1) egp'/mw2fi( 1, 

where 
8 x ( - . ~ , ~ / 2 d ~ ) ,  

and in case 2) egop'/mw2fi> 1 

Using relation (23) and integrating with respect to E', we 
obtain the probability per unit time: 

for the case when egop'/mw2fi< 1, and 

for the case when e6?,p'/mw2fi> 1. 
Equations (30) and (3 1') are valid so long as the gradient 

terms, which are estimated in the Appendix, can be neglect- 
ed. In the derivation of (3 1) and (3 1') we used a quasiclassical 
normalization condition for the initial state of the electron, 
viz., the wave function is localized between the potential 
wall and the turning point in the electric field. 

CONCLUSION 

The effect considered here is similar to the multiphoton 
photoeffect from metals.'' In contrast to the photoeffect, 
however, the probability of multiphoton absorption by elec- 
trons emitted from a cathode is determined by the potential- 
barrier parameters and by the electron momentum in the 
final state. The experimental setup for the observation of this 
effect can be similar to that described in Ref. 6, where a 
vacuum-tube-like device was used and the beam of a pulsed 
neodymium laser passed between the cathode and the re- 
tarding grid. 

Observation of the effect considered in the present pa- 
per, requires rather high electromagnetic field strengths at 
the metal-vacuum interface, comparable with those indicat- 
ed in Ref. 10. It appears that the electromagnetic field 
strengths at the cathode-vacuum interface in Ref. 6 were 
lower. 

The multiphoton absorption effect considered above 
can be masked by inverse bremsstrahlung of electrons on 
molecules of the residual gas. Let us estimate the upper limit 
of the molecule density at which this inverse bremsstrahlung 
is negligible. 

The probability, per unit time, of inverse bremsstrah- 
lung of an electron with absorption of n field quanta, is1 ',12 

where v is the initial velocity, Nis the density of the residual- 
gas molecules, and ue, is the cross section for elastic scatter- 
ing of the electrons by the molecules. 

We then obtain in accordance with (3 1) and (32) 

Using gel - 10-16cm2, v - 107cm/sec, 8' - 1 V/cm, and 
p'- lo8 cm-' we obtain Wjf)/W',Z)>l if N(10I6 cmP3. 

The effect considered above can thus predominate even 
in the case of very deep vacuum. We note that the presence of 
an electromagnetic-field gradient does not alter our conclu- 
sions, since an estimate of the corresponding terms in the 
Hamiltonian (1) leads to the inequalityI4 

Even in the most unfavorable case when x - d this inequality 
is satisfied with large margin for the fields used in Ref. 6. 

The foregoing results are, strictly speaking, valid for 
specular reflection from a potential wall. Of course, another 
model of the potential energy of an electron incident on a 
metal from vacuum can also be considered, that of a deep 
potential well. This, however, will lead to an insignificant 
renormalization of the momentum p' in the multiplicand of 
the exponential, since the decisive factor in the derivation 
(3 1) and (3 1') is the abrupt potential discontinuity at the met- 
al-vacuum interface. 

In conclusion, the authors thank N. B. Delone, S. P. 
Goreslavaskii, B. P. Krainov, V. V. Lomonosov, and M. V. 
Fedorov for valuable remarks. 
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APPENDIX 1 

We calculate the following integrals: 

Here r = 1 and 2. We calculate the integral at r = 1. The 
procedure for the integral at r = 2 is similar. Before calculat- 
ing the integral we use the expansion13 

°* e 8  (x) p' 
exp[-i mw2fi 

moZA 

X exp[ pinot-in- , 
2 " I 

Substituting these relations in the integral with respect 
to t, we have 

~ r [ ~ t u t - ~ - i u t ]  F, y, In ( e B  (2) p' e t  (x) p' 
2i mwZA )]A( mwzfi ) 

Let n + 2k + 1 = no = const, then 2k = no - n - 1 and the 
sum over k  can be removed 

1 nq LCi exp [-i $(++%-;)].J~(- ) 

Let us determine the extremum of the expression 

under the assumption that the arguments are smaller than 
unity. Then 

where 

For the derivative f '  we have 
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Hence 
n= (no-1) (1-2y/x) -I. 

Since y/x(  1, we have n z no - 1. The function f has thus an 
extremum at n =no - 1 and is equal to 

Thus, 

A similar calculation for I ( 2 )  yields 

APPENDIX 2 

We present the calculation of the integral with respect 
to x in the amplitude a,. ( co ): 

4 dx. 
We integrate I, by parts. Separating the most rapidly oscil- 
lating exp [ - ipfx/t i ] ,  we have 

where 

We ultimately obtain 

a a 
x [ y  (x) -& ~ 1 0 '  (x) +f (x)? y:" ( 4  )I dx} 

The omitted integral is smaller by eg/Ep'  than the retained 
term. 
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