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The dynamical theory of a closed isotropic and homogeneous cosmological model filled with 
elastic gas is considered. The phenomenological equation of state of the gas at low densities 
corresponds to the case of dust, and at high densities to an ultrarelativistic gas. The quantization is 
done by choosing a parameter t that plays the part of time and can be expressed in terms of the 
dynamical variables of the system. The state vector satisfies a differential equation of first order in 
the time t, and this ensures the usual interpretation of the norm and expectation values of quan- 
tum-mechanical operators. After an appropriate canonical transformation, the Hamiltonian 
takes the form of an oscillator Hamiltonian. Operators of the scale factor, 8, and the proper time, 
?, are introduced and their spectrum investigated. It is shown that when quantum-mechanical 
effects are taken into account a cosmological singularity can still be reached. The behavior of the 
observables in coherent packets is investigated. 

1. INTRODUCTION 

After Hawking and Penrose had proved the theorems 
establishing the unavoidability of a singularity in cosmol- 
ogy, interest in a quantum description of the region of the 
singularity increased appreciably. It has frequently been 
suggested that on extrapolation backward in time allowance 
for the quantum effects of the gravitational field will halt the 
collapse of the Universe at Planck radii - cm. HOW- 
ever, there is as yet no consistent scheme for constructing a 
quantum theory of gravitation. In our view, the main diffi- 
culty here is related to the general covariance of the theory, 
which has the consequence that the total Hamiltonian of the 
system is equal to zero due to the arbitrariness in the choice 
of the parameter called "time," this creating the appearance 
that there is no dynamical development in the quantum case. 
The studies on the quantum theory of cosmological mod- 
e l ~ , ' - ~  beginning with DeWitt's fundamental paper, were 
methodological in nature rather than giving a possibility of 
analyzing the quantum behavior of the Universe near the 
singularity. Because the model considered here is strongly 
simplified and specific, the present paper also follows pri- 
marily methodological aims, but since the model is exactly 
solvable it permits some general conclusions to be drawn, the 
main one of which appears to be that when quantum phe- 
nomena are taken into account the Universe can still reach 
(and pass through) a singularity. 

Before we attack the quantum theory, we consider from 
the clossical point of view an isotropic cosmological model 
with matter having the energy-momentum tensor of dust at 
low densities and of ultrarelativistic type at high densities 
(ensuring at high densities the ultrarelativistic relationship 
E = 3p between the energy density and the pressure). 

2. CLASSICAL DYNAMICS 

this case, there are two integrals of the motion-the total 
mass M of the dust and, by virtue of the conformal invar- 
iance of the radiation, the "energy" E of the radiation; if the 
metric is chosen in the form 

this leads to the following dependence of the energy density 
on the scale factor a (Ref. 4): 

?cO~=3M/a3+3E/2ab. (2) 

The Friedmann equations in this case (when the condition 
f (77) = 1 and the Planck system of units are chosen) have the 
form 

(i2f (a-M) '=E+M2, (3)  

and its solutions are 

a(q)  =%[I-(1+E/M2)"cos q], (4) 

~ ( ~ ) = J a d q = ~ [ q + ( I + ~ / ~ ~ ) " s i n ~ ] ,  (5) 

where T is the proper time. 
The solutions (4) and (5) determine in parametric form 

the dependence of the scale factor a on the proper time T. 

This dependence is shown graphically in Fig. 1 for different 
relationships between Mand E. ForE /M = 0 we get a pure- 
ly Friedmann solution, and for M = 0 the curve degenerates 
into the circle obtained in cosmological models with pure 
radiation.' 

The most characteristic feature of the solutions is the 
transition to the region of negative values of the scale factor 
a. What is the geometrical and physical meaning of this re- 
gion of solutions? 

On the three-dimensional spatial sphere we introduce a 
parametrization by Euler angles 8, p, IC, with three mutually 
orthogonal infinitesimally small displacements: 

There have been numerous studies (see Ref. 4) of the dl,=a(sin 0 sin $&+ cos $do), 
classical dynamics of systems containing dust or radiation, d12=a (sin 0 cos $&-sin $do), d13=a(cos 0drp-F d$) . 
and also compressible matter. We give only the simplest so- 
lutions relating to noninteracting dust and radiation and re- A change in the modulus ofa leads to a change in the volume 
strict ourselves to the case of a closed cosmological model. In constructed using these elements and proportional to a3. A 
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FIG. 1. Curves illustrating the dependence of the scale factor on the prop- 
er time in aclosed isotropic cosmological model: a) E / M  ' of order unity, b) 
E / M  small, c) E / M  ' large. 

change in the sign of a leads to a change in the direction of 
each of these displacements, i.e., it is a spatial reflection (P 
transformation); under it, the metric (I),  which depends on 
a', does not change. In addition, for negative a the flow of the 
proper time (dr  = adr]) is in the direction of its decrease, i.e., 
the change in the sign of a is simultaneously a local (with 
respect to the time) reversal of time (T transformation). The 
quantity M-pa3 is an integral of the motion, and for positive 
a we have interpretedp as the density of the matter (particle 
number). When a changes sign the integral M is conserved, 
whilep changes sign; this must necessarily be interpreted as 
a particle-antiparticle transformation (C transformation). 
Thus, at the point of the singularity there is a CPT transfor- 
mation of the space, time, and matter. 

Even in the classical case one can attempt to interpret 
the section of the curves with negative a as the dynamics of 
the development of an anti-Universe, without claiming that 
this expression has the usual meaning. Fig. l a  along the ab- 
scissa, we see that the section of the curve up to the proper 
time T, corresponds to decrease in the scale factor a, i.e., to 
contraction of the Universe. At the time T,, a Universe-anti- 
Universe pair is created. At the proper time T, the anti-Uni- 
verse annihilates the originally contracting Universe, and 
the additionally created Universe continues to expand, re- 
peating then the complete cycle. Although this interpreta- 
tion is conditional, it should be pointed out that the solution 
we have obtained is an analytic solution of Einstein's equa- 
tions without the introduction of any additional hypotheses 
into the theory of gravitation. In contrast, for example, 
DeWitt's subsidiary condition' postulating an infinitely 
high potential barrier at a = 0 that prevents penetration into 
the region a < 0 is an additional modification of the general 
theory of relativity. 

We show that the existence of the loops is not peculiar 
to the model considered but is a characteristic type of solu- 
tion in the general case. The disappearance of th loops (pure 
dust), like the degeneration into a circle (pure radiation) rep- 
resent singular (limiting) points in the general solution. As is 
shown in Ref. 5, in the most general case when the densities 
increase without limit the leading term in the energy is 
-ap4.  As a-0, one can also ignore the term corresponding 
to the three-dimensional curvature of space, which is -a -2 ,  
and therefore near a = 0 the cosmological equation has the 

FIG. 2. Dependence of the scale factor on the proper time in an open 
isotropic cosmological model. 

form 

The solution (6) describes the appearance (for the plus sign) 
or disappearance (for the minus sign) of two branches of a 
parabola. On the transition to the region of values of a with 
large modulus, we go over to solutions of the type shown in 
Fig. 1. In the case of open isotropic models (for example, for 
three-dimensional curvature that vanishes) the solution giv- 
en in Ref. 4, 

~~2 (Ma-2E) (Ma+E)'"/3M2, (7) 

also has a loop (Fig. 2). 
To construct the quantum theory of the model, we must 

formulate it in Lagrangian (and then in Hamiltonian) lan- 
guage. 

3. EQUIVALENT DYNAMICAL MODEL WITH ELASTIC GAS 

In the general theory of relativity, adiabatic irrotational 
motion of elastic gas can be described by means of a potential 
function a(xi)  that determines the specific enthalpy of the 
gas (cf. Ref. 6): 

The action for the gas has the form 

sm= J p (w) 17 a4x, 
where the Lagrangian density is the pressure of the gas given 
(adiabatically) as a function of the enthalpy. Variation ofS, 
with respect to a leads to the equations of motion 

Since (dp/dw), = p is the gas density, and the vector field 

satisfies the relation 

g,uiui=l, 

(ui can be interpreted as the field of the 4-velocity of the gas), 
Eq. (10) takes the form of a mass conservation law: 

vi (pui) =o. (13) 
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From (9), we obtain the energy-momentum tensor 

2 d ( p ~ g )  dp 1 do do T 
lk-+'? dgik d w w  d x i d z k  

Pgib 

=pwuiuh-pgik= (e+p) uiuk-pgf,, (I4) 

where E is the energy density. If we consider small oscilla- 
tions of the gas in flat (or locally flat) space-time (represent- 
inguin the form u = c2t + Su), then Eq. (13), linearized with 
respect to Su, is the d'Alembert equation with speed of sound 

For ultrarelativistic gas E = 3p, i.e., the limiting speed of 
sound is v2 = c2/3. At the same time, 

wp=e+p=4p=dp/du1, p=w4/4A2, (16) 

For dust, 
e=pcZ. 

We consider gas with compressibility law 
e=pc2+ 3/ ,A fip"31 (19) 

which ensures the asymptotic behaviors (17) and (18) at low 
and high densities, respectively. For the given case, 

Assuming in the homogeneous and isotropic case 
u = 47) (W = u/(af )) and choosing the space-time metric in 
the form (I), we obtain the total action of the model in the 
Planck system of units: 

The canonical variables and Hamiltonian take the form 

P,=O, 

and the equations of motion are 

dH/dP,=O, f=const, dH/do=O, P,=const, 

ti=-P,, P,=a-Po, &=~+A~'P;". (23) 

The condition Pf = 0 in (22) leads to H = 0; this last relation 
is a subsidiary condition (constraint) for the canonical varia- 
bles a, Pa,  P,. Taking into account this condition and 
adopting the "gauge" f = 1, we obtain the solutions 

.=P~{I+ [ I + ~ / .  (%) " 1'" c- q}, 

(24) 
.=P.{.+ [ 1+3i2 ($) ' I" sin q}. 

When the notation is changed appropriately, the solutions 
(24) are identical to the solutions (4) and (5). The Friedmann 
case corresponds to A = 0. 

4. REDUCED HAMlLTONlAN DYNAMICS 

We consider for the Hamiltonian system the extended 
phase space ' that includes not only the coordinates and mo- 
menta (xi, Pi ,  1 <i<n) but also the time and energy as dyna- 
mica1 variables on an equal footing (we shall denote the com- 
plete set of canonical variables by P, 1 <a<2n + 2). These 
variables have the Poisson brackets 

{xi, xi) =O, {Pi, P,) =0, {xi, P,} 

{E,  xi}=O, {El Pi)=O, (25) 

{t ,  xi)=O, {t ,  Pi) =0, {t ,  E )  =- I ,  

which in terms of the variables za  can be expressed in the 
form (za , fi j = OI["*@] with corresponding nondegenerate 
skew-symmetric matrix O I [ " ~ ~ ] .  The existence of a constraint 
between the canonical variables that is specified by a func- 
tion F (z) = 0 determines trajectories that lie entirely on the 
constraint surface: 

d F dF dF 6F = -- 6z"=oaR 6q=O, 
dz" dza dza 

Equations (26) can be rewritten in parametric form with re- 
spect to the parameter v: 

dz" 
-- 

d 11 

or, taking as independent variable the time t, 

dxi dF/dt 
dt 

which go over into the usual Hamiltonian equations if the 
equation F (x, P, E, t ) = 0 can be solved for E in the form 
(E = E ( x ,  P, t ). Equations (27) have the form of Hamilton 
equations with "Hamiltonian" F (z) "canonically conjugate" 
to the nondynamical parameter 7. In parametric form, the 
change in the function f (z) with the parameter 7 is deter- 
mined by the Poisson bracket (with E and t as dynamical 
variables together with xi and Pi ): 

Moreover, Eqs. (27) determine extremals of the functional 

where Pi and E must be expressed in terms ofdxi/dv and dt / 
dv by means of the equations 
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Thus, we have a correspondence between the dynamic 
and parametric forms of the equations determining the dy- 
namics of the system with the same action (30). If the action 
is such that the Hamiltonian, conjugate to the parameter 7, 
vanishes (constraint condition), we are dealing with a pseu- 
dodynamical system, in which 7 is not a dynamical param- 
eter. At the same time if originally there were 2n variables 
that depend on 7, then the extended phase space is re- 
duced-it has dimension 2n, and not 2n + 2, as in an ordi- 
nary Hamiltonian system. For reduction of the system to the 
ordinary dynamic form it is necessary to choose among the 
2n dynamical variables one (t ) as the time (pseudotime) and 
n - 1 dynamical variables, whose Poisson brackets with t 
vanish. Simultaneously, we must find the Hamiltonian, con- 
jugate to t, and then - 1 momenta conjugate to the dynami- 
cal variables, with corresponding Poisson brackets between 
all the variables. Thus, the system actually has n - 1 dyna- 
mical degrees of freedom. 

In the quantum theory, the state vector is determined as 
a function of these n = 1 dynamical variables, is normalized 
with respect to them, and evolves in the pseudotime. The 
expectation value of any operator for given value of the pseu- 
dotime is expressed in terms of an integral with respect to the 
n - 1 variables. 

Thus, to determine the quantum dynamics it is neces- 
sary to choose one of the dynamical variables as a pseudo- 
time. The dynamical development of the state vector is then 
determined by the dependence of the momentum conjugate 
to it (the energy) on the other dynamical variables. This de- 
pendence can be obtained from the constraint F(z) = 0. 

If as such a variable we take a variable t (z) such that 

{ t ,  F )  =dt /d11=1 (32) 

(we shall call it the kinematic time), then the constraint equa- 
tion is linear in the momentum canonically conjugate to it. 
Indeed, if we introduce n - 1 variables yi (z) and ri (z) with 
the usual mutual Poisson brackets and having vanishing 
Poisson brackets with t and P,, and (t ,  PI ) = - 1, then for 
@ (z) = F + P, we have ( t, @ ) = 0, i.e., @ (z) is a function of 
only Y', ri , and t, and the constraint equation takes the form 

i.e., it is linear in P,. In the quantum theory, this leads to a 
differential equation of first order in the kinematic time for 
the state vector and to the usual interpretation of the norm 
and expectation values of the operators. All this will be dem- 
onstrated for the cosmological model defined above. 

It should be noted that in a series of papers8 devoted to 
the dynamical description of dust, Lund also obtained a 
quantum-mechanical equation of first order in the time. 
However, in his papers the order of the equation depends 
essentially on the law of compressibility, first order corre- 
sponding to dust. 

5. QUANTUM THEORY OF THE COSMOLOGICAL MODEL 

The vanishing of the Hamiltonian (22) leads to the con- 
clusion that the variables a, Pa, (T, and P, form an extended 
phase space, and the proper time T and the kinematic time t, 

regarded as dynamical variables, must be functions of these 
variables. Thus, the relation dr  = afdv, regarded as a dyna- 
mical relation, 

d.c/dq=af = {t, H ) ,  (34) 

leads to the representation of the proper time and the dyna- 
mical variables additional to it in, for example, the form 

In the general case, the Poisson bracket 

{a, T) = [ I +  (P , /A) 'b ]  -' (36) 
is nonzero (it is zero only in the purely Friedmann case 
A = 0); this indicates that these quantities cannot be mea- 
sured simultaneously in the quantum theory, and figures of 
the type shown in Fig. 1 have meaning only for the expecta- 
tion values. 

In the variables (35), the constraint equation has a rath- 
er complicated form. We therefore introduce canonical var- 
iables associated with the kinematic time t, choosing as var- 
iables 

x=a-IJc, P,=P,, 

{ t ,  H)=dt/dq=f,  { t ,  x)=O, { t ,  P,)=O. (37) 

In these variables, the constraint equation (H,  = 0, see (22)) 
takes the form 

P,  =P,2/2+x2/2, (38) 

i.e., in the variables x, t the cosmological model is described 
by an oscillator Hamiltonian. The general solution of the 
quantum problem, 

is normalized with respect to the variable x (U,, are normal- 
ized wave functions of the stationary states of the oscillator). 
It is this circumstance-the normalization of the wave func- 
tion with respect to one and not two variables-that leads to 
ordinary quantum dynamics of the system despite the exis- 
tence of the constraint, which appears formally as vanishing 
of the Hamiltonian. The quantity (38) is an integral of the 
motion in the cosmological model, restoring the energy con- 
servation law for the given case. 

Taking into account the relation (37) between PI and 
Po, we obtain a discrete spectrum of the operator P, : 

where w ,  is a positive root of the equation 

o,'+~lt~"o? =212+1. (41) 

The solutions of this equation for the lowest values of n are 
given in Table I. We note that P, determines the total mass 
of the gas in the Universe in accordance with 

M =  (3ncW2k) '"P,, (42) 

where the mass is measured in dimensional units. 
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TABLE I. Eigenvalues o, for different values of A. 
-- 

In the variablesx and t, the scale factor a and the proper 
time r are represented by 

The Poisson bracket [ r ,  t ) vanishes only for t = 0 (this is the 
condition of the choice of the initial value oft ), in agreement 
with Misner's conclusion8 that the proper time has an opera- 
tor nature in the quantum theory of gravity. 

An important question about the quantum behavior of 
the system is that of the spectrum of the operator 2. In the 
energy representation, the matrix elements of 2 have the 
form 

a,,=o,6,, ,+ (n/2)'"eit6,. ,-,+ ((n+1)/2)"e-"6k, ,+,. (44) 

To establish the nature of the spectrum of 2, numerical com- 
puter methods can be employed. This analysis shows that if 
the matrix is truncated at large n (40<n<500) the following 
occurs: For A = 0, the eigenvalues of the matrix are positive 
and crowd together with increasing dimension of the matrix, 
the lowest level tending monotonically to zero (its values for 
matrices of ranks 40, 100, 500, respectively, are 1.37 10W2, 
3.6. 5.2. lop4 in units of the Planck length). For 
a > 0, the levels pass over to the region of negative values and 
crowd together with increasing rank of the matrix. This cor- 
responds to the fact that forA = 0 the spectrum of the opera- 
tor ci is continuous and positive with lower limit a = 0. For 
A > 0 the spectrum is continuous, but a may be either posi- 
tive or negative. We arrive at the same conclusions if we 
make a semiclassical analysis of the spectrum (the idea of this 
analysis was proposed by A. M. Satanin). Indeed, regarding 
2 as the Hamiltonian of some dynamical system, let us inves- 
tigate the phase trajectories for constant value of a. We have 

from which it can be seen that in the plane Cy, P,, ) the phase 
trajectories go away to infinity for any value of a and the 
parameter A. For A = 0, we have a = x + (x2 + p:)lJ2 > O  
for all x and P, . 

Thus, even in the Friedmann model (dust) none of the 
quantum processes can hinder the existence of states for 
which the value of the scale factor a is arbitrarily near zero. 
At the same time, in this model penetration into the region of 

negative a does not occur even without the DeWitt "wall" 
(the spectrum of 2 is positive). 

We now consider the proper-time operator .i. We also 
estimate its spectrum by the quasiclassical method: 

; = ~ , t + ~ , ( t )  =P,t+P,O cos t-2' sin t.  (46) 

Here, P: and i0 are constant, time-independent matrices 
with the commutation relations of a coordinate and momen- 
tum. We have separated the time dependence explicitly, 
since the spectrum of the operator .i depends on the time, and 
we shall regard t simply as a parameter. Substituting P,, 
expressed by means of (38), in (46), and taking into account 
(37), we obtain 

IP,=t+z'ain t-P," cos t ,  

t- (P,"'+xo') = (T+ xO sin t-P,O cos t)'  

f *l,t 'A"(.i+xo sill t-P," cos t ) ' ' ' .  

Collecting on one side of the equation the terms quadratic in 
P 2 and xO, we obtain 

(t2-cos?) P,O'+ (tz--sin2 t )  x o Z t 2  sin t cos tP,oro 

=T'+ 27 ( xO sin t+P,O cos t )  +3/2t''3A2'a (.c+xO sin t+P,O cos t ) .  

(47) 
We consider first of all the caseA = 0 (dust). Then (47) deter- 
mines a curve of second order with discriminant 

(t2-cos2 t )  (tZ-sinz t )  -sin2 t cos2 t=t2 ( t2 - I )  , (48) 

i.e., for - 1 < t < 1 (the initial phase of the time is distin- 
guished by the time of commutation of r with t ) we have 
hyperbolas-the spectrum of the operator .i is continuous 
and lies in the interval from - co to + CO. For t > 1, the 
spectrum is discrete and in accordance with semiclassical 
quantization, when the area of the ellipse is ~ ( 2 n  + l), we 
obtain 

T,= (2n+I)'" (tZ-I)"'t-'ia. (49) 

For t < - 1, the eigenvalues r, have the same modulus but 
negative sign, as can be seen from (46). This means that any 
wave packet contains states with different T,, varying in ac- 
cordance with the law (49) with the passage of time; in addi- 
tion, any wave packet spreads in the r space. 

In the caseA #O, we cannot calculate the spectrum, but 
qualitatively it stays the same as for A = 0, since the terms 
with x and P, for A + 0 have degree lower than the second. 

It should be noted that the actual values of r do not have 
a particular physical meaning. In the problem we consider, 
only the specific enthalpy is related to the proper time, 
w = da/dr, and the derivatives with respect to the proper 
time are expressed in terms of a. 
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TABLE 11. Values of ( w ) ,  D,, Q in coherent states for different values of 
  and^ =p,6. 

It is interesting to consider stationary and coherent 
states of a wave packet. In an arbitrary state (39), we obtain 
for the expectation values of a and T and their dispersions 

(a )=(o) -R  cos ( t - t i ) ,  ( ~ ) = ( a ) t - R  sin ( t - t i ) ,  

D,=D,+D,(t) -Q cos (t-t,) -2R(o> cos (t-t,) , (50) 
D,=D,t2+D,,(t) -Q sin (t-t,) -2R(o>t sin (t-ti) , 

where 

In the special case of stationary states, 

This means that in these states the expectation value of ii is 
always greater than zero and the proper time on the average 
always "flows forward." 

For coherent states (for t ,  = t ,  = 0) 

At largep, the centers ofthe packets move along the classical 
trajectories ((w) < R ), but it can be seen from the values of 
(w), Dm,  R, and Q given in Table I1 for A = 0,0.25, and 1 
that for small p((w) > R ) the centers of the packets do not 
enter the region of negative a but move along truncated cy- 
cloids. For A = 0, this occurs for any coherent packet (Fig. 
3). 

6. CONCLUSIONS 

Although the model is strongly simplified, it contains a 
number of characteristic features of cosmology near a singu- 
larity. Thus, if in the case A > 0 a simple topology is speci- 

FIG. 3. Dependence of the mean value of the scale factor on the mean 
value of the proper time in a coherent state with small value of the classical 
amplitude. 

fied initially, the topology is nevertheless nontrivial from the 
point of view of the proper time and varies with the time, 
namely, at different instants of the proper time there are 
different numbers of disconnected "Universes" and "anti- 
Universes," though it is true that the difference between 
their numbers is conserved. 

The most characteristic feature of the solution is the 
existence of a region with negative values of the scale factor 
a; as shown above, this can be interpreted as an actually 
realized CPT transformation of the space, time, and matter. 
Such behavior is manifested not only in the present model 
but is characteristic of cosmological models with elastic mat- 
ter. 

The positivity of the spectrum of the operator 2 in the 
case of dust in the absence of a wall at a = 0 indicates that the 
theory does not require any addtions of such type. At the 
same time, wave packets contain states with values of a arbi- 
trarily near zero and the quantum-mechanical effects do not 
eliminate the singular state; however, in a real wave packet 
an infinitesimally small fraction of the system is in such a 
state, as, for example, in the ground state of the hydrogen 
atom there is a probability for finding the particle at r = 0, a 
region with infinite value of the potential. 

In the case of elastic matter, the wave packets can be at 
least partly in the region of negative a, which can be inter- 
preted as the unavoidable presence of both matter and anti- 
matter near the singularity. 

We thank A. M. Satanin, M. G. Tetel'man, and A. S. 
GarevskiY for fruitful discussion. 
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