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The weak link between conductors with a charge-density wave is analyzed (the weak link is a 
tunnel junction or a system with a direct conductivity). The current in the system is calculated 
from a microscopic theory. The current has, in addition to a term determined by the product of 
state densities, a term proportional to the cosine of the difference between the phases of the 
charge-density wave. The current is also calculated for a system which contains amplitude soli- 
tons. At high voltages the current in a system with a direct conductivity is lower than the ohmic 
current by a constant amount. 

1. INTRODUCTION 

We know that the Peierls transition in a quasi-1-D con- 
ductor has much in common with a superconducting transi- 
tion. At temperatures below the transition point (TP) in a 
Peierls conductor there is a displacement of the lattice ions, 
and a charge-density wave can arise. By this we mean that 
the electron density will be modulated in space: 
p =po cos(Qr + x), where Q = 2k, is the wave vector of the 
charge-density wave, andx  is its phase. A gap proportional 
to po appears in the excitation spectrum of the Peierls con- 
ductor. As in a superconductor, the modulus of the order 
parameter A determines the size of the energy gap, and its 
phase isx. It has also been established that when there is an 
electric field E in a Peierls conductor the current along the 
conducting filaments is determined not only by quasiparti- 
cles but also by a condensate, whose role is played by a 
charge-density wave. While the condensate current in a su- 
perconductor is proportional to the gradient of the phase, 
j, a N, VX (N, is the density of the condensate), the current 
due to a charge-density wave in a Peierls conductor is pro- 
portional to the time derivative of the phase: j, a dx/dt. In 
the simplest case, that of a conductor with a static field E, the 
phase of the charge-density wave increases linearly over 
 time,^ a Et, so that j, remains constant over time, and-in 
contrast with the case of a superconductor-is nonzero only 
if E #O. 

Josephson discovered some interesting effects when a 
weak link is fabricated in superconductors.' The weak link is 
produced either by an insulating film at a tunnel junction or 
by a local suppression ofA (by a current flow, for example) in 
a direct-conductivity system. We might ask what the conse- 
quences of a weak link would be in conductors with a charge- 
density wave. A weak link can be fabricated in a Peierls con- 
ductor either artificially (an example might be a tunnel 
junction or a conductor with a contracted region) or natural- 
ly (there may be microscopic cracks or extended defects in a 
sample). In this paper we derive a theory for the effects which 
occur in a Peierls conductor containing a weak link. We exa- 
mine a tunnel junction and a system consisting of two Peierls 
conductors connected by a narrow neck. In the calculations 
we assume that a 3-0 ordering of the charge-density wave 
has occurred, so that the phasesx on different filaments are 
correlated. 

2. TUNNEL JUNCTION 

2.1 The method of a tunnel Hamiltonian 

We consider a tunnel junction: two Peierls conductors 
separated by an insulating film. We will calculate the current 
in this system by the method of a tunnel ~amiltonian.'' In 
this method the tunneling is described by adding to the Ha- 
miltonian a term which would be written in the present case 
as 

h 

where T = Tol + TQCx are the tunneling matrix elements; 
specifically, To describes the case without tunneling, and TQ 
describes the case of a transition from one Fermi surface to 
another, displaced by a vector Q from the first. Here a, 
p= 1,2 specify the Fermi surface; i.e., c,, = c, + .,, , c,, 
- - c,  _ .,,. The matrix elements To and TQ depend only 

weakly on the momenta p and q, and we will ig>ore this 
dependence. Let us examine the Green's function Gk in the 
Keldysh technique. This function is a 4 X 4 matrix G :B (the 
superscripts are time indices). The equation obeyed by the 

h A A 

functionG = G l2 + G whichdescribes the kinetics, can be 
derived in precisely the same way as in Refs. 3 and 4 [see Eq. 
(12) in Ref. 41. This equation is 

(p  - 
) I ,  A=* (& cos .-dg sin x) . 

Here E(  p)  is the energy spectrum of the metal at T >  T, , an< 
Vis the voltage across the barrier. The self-energy part 2f fH 
stems from tunnel Hamiltonian (1). An expression for 2 in 
second order in T, in which we are interested here, will be 
derived below. I t j s  convenient to use an equation for the 
Green's function G integrated over the variable f (when the 
vector Q runs parallel to the filaments we have f =pQ/  
2 m ~ p u ) .  An equation can be derived for the function 
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in precisely the same way as in Ref. 4; the result in the pres- 
ent case is 

where 
A A A 

[a ,  g]  *=kg*gci, K = ~ A  (a, cos X+G sin X) , (5) 
.. A A - .. A - 
Z=T,26,gBZ-TQ26,g6,-iT& (o,g6,+6,gb,), 

and is ihe Green's function of the $her electrode. The 
operatorBR ( A  ) is related to the function? ( A  ) in ananalogous 
way. 

To find the current (I) in the system we calculate the 
change in the number of particles in one of the electrodes: 

X [gR(&+) -gA(&-) I (th E+$-th E-$). (6) 
We do not need an explicit expression for the proportionality 
factor a here; E* = E V/2. In deriving (6) we used the 
expressions 

where ,8= 1/(2T), which hold in an equilibrium state. 
Expression (6) can be used to find the current I in a quite 
general case. 

We will first calculate the current by ignoring the cur- 
vature of the Fermi surfaces, impurity effects, and the possi- 
ble presence of solitons in the Peierls conductors. In this case 
the functions ( A  ) are4 

Substituting (5) and (7) into (6),  we find an expression for I: 

V I , Z ( E ) = [  I E  ~ / ( E ~ - A I ~ Z ) " ~ I @ (  I E I - A I , ~ ) .  (8) 

Here the Y,,, (E) are the state densities in the electrodes, and 
RN is the resistance of the junction above the critical tem- 
perature. It can be seen from (8) that the current due to the 
last three terms in braces (curly brackets) depends on the 
phase in each of the electrodes. This unphysical result stems 
from a limited applicability of the tunnel-Hamiltonian 
method in this case of a spatially inhomogeneous system 
(with a charge-density wave). These terms actually drop out 

of the final result. To see this, we note that it follows from the 
way (1) is written in the coordinate representation that with 
Ta,B(p,q) independent of p and q we have 
T(x,x') a TS(x)S(x'). The tunneling thus occurs at a fixed 
point in space and therefore depends on the electron density 
at that point, i.e., on the phase of the charge-density wave. If 
we write T(x,xl) in the form T ( x j ' )  a TS(x - x0)S(xf - x,), 
we find a matrix Td of the form 

P = T , ~ + T ~  [o, cos Qzo+ia, sin Qz,l . 
When an average is taken over the positions of the tunneling 
point, i.e., over x,, the last three terms in (8) vanish. In the 
next subsection of this paper we will derive this result rigor- 
ously, using a direct method to calculate Zin a system with a 
potential barrier. 

We thus see that in addition to the first, ordinary, term 
in the tunneling current, which is proportional to the pro- 
duct of the state densities Y, and Y, and the difference 
between distribution functions, there is another term, which 
is proportional to the product A  ,A, cosCy, - x,). The first 
term is analogous to the quasiparticle current at a Josephson 
tunnel junction, while the second is proportional to the 
imaginary part of the Josephson c ~ r r e n t , ~  Im I, (V). Like the 
ordinary current I, ,  the current due to the second term, I,, is 
nonzero if V +O. Evaluating the corresponding integrals in 
(a), we find the current I for T = 0 and A ,  = A, = A  : 

T o V A 2 0  ( k )  
-&I -- V-2A 

2- To2+TQ2 T'+2A K ( k )  cos ( ~ 1 - ~ 2 ) ,  k = ---- 
V+2A ' 

Here K and E are the complete elliptic integrals of the first 
and second kinds, respectively. In principle, we can make 
use of the dependence of the current component I, on the 
difference between the phases of the charge-density wave in 
the electrodes to study the motion of the charge-density 
wave. Let us assume that the filaments run parallel to the 
plane of the junction and that a current I is passed through 
at least one of the electrodes in the direction of the filaments. 
If the charge-density wave moves as a whole, the phase dif- 
ference will increase in proportion to the additional current 
Ill :x, - X, a I t. This effect will cause the component I ,  of 
the tunneling current to oscillate over time. If an alternating 
external signal is also applied to the junction, then a reso- 
nance will be observed in a plot of Z (1 ) at a fixed V. At this 
resonance, the frequencies of the natural and external oscil- 
lations are equal. 

We turn now to a calculation of the voltage-current 
characteristic of a junction for Peierls conductors which 
contain a soliton band.6 Many experiments7 have demon- 
strated the existence of amplitude solitons in polyacetylene, 
in which there is a period doubling. On the other hand, we 
lack such proof for systems in which the period of the 
charge-density wave differs from twice and lattice period (in, 
for example, the transition metal trichalcogenides TaS, and 
NbSe,). Measurements of the voItage-current characteristics 
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of tunnel junctions made from such systems will help us de- 
cide whether solitons can arise in Peierls conductors of this 
type. To calculate I (V) in this case we should substitute into 
(6)  an expression for the Green's functions? ( A  ) found for the 
case in which there is a soliton band. To f i n d p  ( A  ) we can use 
Eqs. (1 8) of Ref. 4. Solving the equations for ( A  ) , and ignor- 
ing impurities and curvature of Fermi surface, we find, for 
? , for example, 

where the matrix elements of are 
g,l=-g22=[~eSAZ(x)/2-A,2 (l+k2)/4k"/F ( E ) ,  

g,,= [-&A (x) -iuaA (x)/dz] IF (E) , 

The parameter k varies from 0 to 1 and is associated with the 
period of the soliton lattice: In the limit k-1 we find an 
isolated soliton, A (x) = A tanh(Ax/v). 

We now consider a sparse lattice in which the distance 
between solitons is substantially greater than the dimension 
of a soliton. The width of the soliton band, 
24 - = A exp( - 24 /nu), is then small in comparison with 
A + = A  (n is the density of solitons per unit length). We as- 
sume that the temperature satisfies the condition A - ( TgA; 
then at voltages I V I < 24 we find a current which is deter- 
mined by the soliton band, in addition to the small current 
proportional to exp( - A /T),  which is related to excitations 
with I E  1 >A. The calculations lead to 

If V> 20, the current begins to increase in accordance with 
(9). The first term in (10) describes transitions between states 
in the soliton bands, while the second describes transitions 
between a soliton band and states with I E I  > A .  The singulari- 
ties in (9) and (10) stem from the divergence of the 1-D state 
density. Incorporating the transverse electron dispersion re- 
lation erases these singularities and causes a gradual increase 
in the tunneling current. Furthermore, the soliton band may 
be smeared by impurities and other defects, so that the vol- 
tage dependence of the current described by (10) would not 
be as sharp. 

2.2 Direct method for calculating the tunneling current 

We will now calculate the tunneling current (I ) in this 
system without resorting to the method of a tunnel Hamil- 
tonian. The method which we will use here can also be ap- 
plied to other systems, to which the tunnel-Hamiltonian 
method is not applicable. We consider two Peierls conduc- 

tors in which the filaments and the wave vector Q run paral- 
lel to the plane of the junction and are directed along the z 
axis. The conductors are separated by a potential barrier 
U (x); in the simplest case we would have U (x) = U,$(x). The 
following functions then form a complete set of wave func- 
tions: 

X exp (ip,z+fp,y), 

Y d2) (r) Y: ' )  (-x, y, z), 

where m, is the effective mass along the x axis. The func- 
tions Y 'I' (Y"') describes a particle which is incident on a S- 
function potential from the left (from the right). If the poten- 
tial U (x) has a different form then the wave functions will 
also be different, but these differences will not affect the final 
results. A dependence of the potential barrier exclusively on 
x means that the reflection of particles will be specular; i.e., 
the components p,, and p, will be conserved. In the tunnel- 
Hamiltonian method, none of the momentum components 
are conserved. This situation corresponds to a potential U 
with a roughness of an atomic scale. We therefore also intro- 
duce a random potential U, (r) = U,(x)p (r, ), where the func- 
tion U,(x) is localized at x = 0. We assume that the expecta- 
tion value of the potential, ( U, (r)), is zero in the plane of the 
junction and that we have ( p  (r,)q, (r; ) = y(r, - r;), where 
the correlation function y(r, ) decays over distances on the 
order of interatomic distances. We expand all the Green's 
function in basis2' (1 1): 

The current in the system can be found by determining the 
rate of change of the number of particles in one of the half- 
spaces: 

The time evolution of the Green's functions averaged in 
the plane ofthejunction, (G l) and (G 12), is proportional. to 
the transmission U; ',while the product Y ' Y also contains 
a factor U, '. The second term in (13) can thus be discarded. 
It is not difficult to see that N,,, = 2S(c -pf). 

We can now write an equation for G ", expanding in the 
potential U, and retaining terms of up to second order in- 
clusively. We find an equation of the form in (2), in which we 
have, for example, 

(2) $1' = U R 8 s  (BR) dtd2URa1*', (I4) 

397 Sov. Phys. JETP 60 (2). August 1984 S. N. Artemenko and A. F. Volkov 397 



where 
4.' 

.UB = j drL ui;: q (rL) ~ X P [  i (P,-P,') r L l p  ( z ) ,  
.. 

P ( z )  = i + d ,  cos QZ - 0" sin Qz. (15) 

In (14) we have 

( e R )  ;::-s,,, s ( * - P I )  cR ( P ) .  

In precisely the same way as in the preceding subsection, we 
can write an equation which the adjoint of (2) and then sub- 
t ra2  one equation from the other. For the time derivative of 
Sp GI1 we find 

21 
= ( t h  e+p-th e-p)  dpr dp,' dr, dr,' q:: (r,) q.,, (r,') . 

x exp[ i (p,--pLr) (r,-r,') I 
Sp{P ( z )  (GR-GA) p l i P ( ~ ' )  ( G R - c A )  9-22)  . (16) 

We average (16) over the random potential p(r, ) and integral 
over p, . We ignore the weak p, dependence of the Fourier 
components yo(p, ) and y, (p, ), where yo corresponds to a 
small change in the momentum along the filaments, and y, 
corresponds to a large change in the momentum, upon 
which there is a transition from one sheet of the Fermi sur- 
face to another. We now write an expression for the current 
in terms of the functions introduced in the preceding sub- 
section. From (1 3)-(16) we find 

x J de ( th  e+p-th e-b)vi (e+)vZ(e-)  

where ii is a proportionality factor. This expression is the 
same as the first two terms of (8). The additional component 
of the tunneling current is therefore proportional to the co- 
sine of the difference between the phases of the charge-den- 
sity wave. 

3. POINT CONTACT OF TWO PEIERLS CONDUCTORS 

In this section we consider a system consisting of two 
bulk quasi-one-dimensional conductors (the banks) with a 
charge-density wave, which are separated by an impenetra- 
ble membrane in which there is an aperture with characteris- 
tic dimensions smaller than the correlation length. A weak 
link between the banks is thus provided by a direct-conduc- 
tivity neck. A similar model has been used elsewhere9 to 
describe a point contact between two superconductors. We 
again assume that the conducting filaments are directed 
along the z axis and parallel to the plane of the membrane 
(the yz plane). It is a rather difficult matter to find a general 
solution for the problem of the current flow in this system. 
We therefore consider two limting cases, that of a "clean" 
conductor (AT) 1, where T is the momentum scattering time) 
and that of a "dirty" conductor (AT< 1). In the dirty limit we 
can use the time-dependent Ginzburg-Landau equation," so 
that the problem can be solved rather simply. In the clean 

limit, in which the charge-density wave contributes substan- 
tially to the conductivity, and the related effects are more 
obvious, we must solve equations for the Green's functions. 
The results in the two cases are qualitatively similar. 

3.1. The dirty limit. Approach using the Ginzburg-Landau 
equation 

We first consider the simpler and more illustrative case 
of a dirty material, in which the Peierls conductor is gap- 
free, and we can apply to it a Ginzburg-Landau equation 
generalized to the time-varying case." Gor'kovl' wrote 
these equations for the case in which the order parameter 
depends on only the coordinate along the conducting chains. 
For our purposes, we should allow A to depend on all three 
coordinates. 

Since we are dealing with the case of an aperture which 
is small in comparison with the correlation lengths, we need 
retain in the Ginzburg-Landau equation ford only the terms 
with derivatives (the situation here is analogous to the case of 
a point contact in a gap-free supercond~ctor~~).  The equa- 
tion for the complex order parameter A is therefore 

( u 2 a z ~ ~ z 2 +  ( v , ) ~  vL2) A =o. (18) 
Here the coefficient (v, ) 2  of the second derivatives with re- 
spect to the coordinates transverse to the filament is the 
square of the group velocity u, = d~/dp,  averaged over the 
momenta. It determines the value of the second term in (1 8) if 
the electron spectrum is substantialy three-dimensional 
[when ( v , )  is larger than the scale sound velocity s(m*/ 
m)'I2, where m is the electron mass, and m* is the effective 
mass of the charge-density wave]. The vector Q is then tilted 
away from the z axis (and a period doubling occurs along the 
x and y axes if we can use the approximation of a strong 
coupling of the electrons at the filaments). In the opposite 
case, the coeffiicent of V: is determined by the elastic of the 
crystal. 

It is a simple matter to solve Eq. (18) in the coordinates 
of an oblate ellipsoid of revolution (u,r,p): 
x=ao.t, y2=aZ(i+a2) (1-7') cos2cp, 
zZ= (ualv,) ( i + o z )  (1-2') sin2 (P. 

This solution is 

(19) 
We are assuming for simplicity that the aperture is elliptical 
(in which case we would have a = 0). The order parameter 
A (8) satisfies the boundary conditions A ( - C O )  = A, 
X exp(i;y,) and A ( + co ) = A, exp(i;yl). 

The current density in the direction perpendicular to 
the filament is 

jL=a,NEL(l-dlA 1 2 ) ,  (20) 

where a,, is the transverse conductivity in the normal state, 
and the second term in parentheses describes the decrease in 
conductivity due to the Peierls transition. The form of the 
coefficient d depends on the transverse dispersion relation 
on the Fermi surface. In the limit of a small curvature of the 
Fermi surface, lj1<1/r, we would have d = v1/2v, where 
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Y = v1 + v2/2, and v, and v2 are the electron scattering fre- 
quencies respectively without a transition and with a transi- 
tion between opposite parts of the Fermi surface of the quasi- 
one-dimensional metal. Localization effects were ignored in 
the derivation of this expression; this simplification is justi- 
fied if, for example, the elastic scattering is a scattering by 
phonons. 

To calculate the current through the aperture we must 
use Eqs. (19) and (20) in the vicinity of the aperture, a = 0, 
and find the relationship between the voltage across the 
point contact, V, and the field El. After carrying out these 
calculations, we find the current across the contact to be 

where RN is the resistance of the contact in its normal state. 
It follows from (21) that the current through a point 

contact depends on the difference between the phases of the 
charge-density wave in the banks, as in the case of a tunnel- 
ing contact. In the present case, this dependence stems from 
the circumstance that the amplitude of the order parameter 
near the contact depends on the difference between the 
phases in the banks. When a current flows parallel to the 
filaments in one or both banks, the relative motion of the 
charge-density wave in the banks will cause a change in the 
phase difference X, - x2 and give rise to the time-varying 
effects described in Subsection 2.1. 

3.2 The clean limit. Microscopic equations 

Let us consider a point contact between clean conduc- 
tors with a charge-density wave (Ar)l); as before, we as- 
sume that the dimensions of the aperture are much smaller 
than the correlation length. To calculate the current through 
the contact we use the equations of Ref. 4 for the Green's 
functions: 

i - +, i.9 Vgl+=O, 

where 

p is the electrostatic potential, and v + = a ~ ( p  Q/2)/+ 
are the group velocities at parts of the Fermi surface dis- 
placed by the wave vector Q of the charge-density wave. In 
the elastic-collision integral 

"--I- al'{vl (k,+klr ) k g  (k,') 6 - vz (k,-k,') 
2 S 2 

the functions Y, and v, describe the probabilities for scatter- 
ing without and with a change 2k, in the longitudinal mo- 
mentum. Otherwise, the notation is the same as in Subsec- 

tion 2.1. We consider the case in which the curvature of the 
Fermi surface is smaller than the energy gap (744 ), and for 
simplicity we assume that v does not depend on k, . 

We must solve Eq. (22) and then use the results found 
for as a function of the coordinates to calculate the current 
through the aperture. System (22) is a system of linear differ- 
ential equations with partial derivatives with respect to the 
coordinates, and a general solution is quite difficult. It can, 
however, be easily solved in the particular case in which the 
dispersion relation in the direction transverse to the fila- 
ments is described in the strong-coupling approximation 
with allowance for an interaction between nearest neigh- 
bors: 

d L = E i  COS lLPx+ez COS 

In this case the vector Q corresponds to a period dou- 
bling along the transverse directions, and we have 
v- = - v,. As a result, the terms with derivatives with re- 
spect to the coordinates assume the form iv+V#. All the 
characteristic curves of the equations then coincide, and at a 
fixed value of the velocity v+ system (22) can be reduced to a 
system of ordinary differential equations which depend on 
the coordinate along the characteristic trajectories, 
r = v+t + r,, as was done by Kulik and Omel'yan~huk.~ As 
in Ref. 9, the scale lengths in these equations are the correla- 
tion length v/A and the mean free path v/v, while A, p, and 
all the quantities which are found from g after an average is 
taken over v+ vary over small distances, on the order of the 
dimension of the aperture. The reason is that the number of 
trajectories which pass through a given point into the aper- 
ture falls off as rP2  as this point is removed from the aper- 
ture. Consequently, in solving Eqs. (22) along the trajectories 
we can assume that A and q, change abruptly at the aperture. 

We must therefore find a solution of the equations along 
the trajectories by joining the solutions at the aperture and 
using as boundary conditions at infinity the requirement 
that a perturbation caused by the weak link decay with dis- 
tance from the aperture. 

Solving Eq. (22), we find that the perturbation decays in 
accordance with exp(ixs), where s is the coordinate along the 
trajectory. At energies I E  + I > A [the variable E arises from 
the Fourier transformation over the time difference t-t ' in 
Eqs. (22)], the index x for the functions 8 and 8 is 

and that for the anomalous Green's function is 

The plus and minimum signs in (23) and (24) refer to the 
regions x > 0 and x < 0, respectively; v, = vl + v2, 
v, = Y+ + v2/2, f ,  * and E , = E f V/2 are defined as in 
(6)  and (7); V = q , ( +  CO)-q , ( -  W )  is the voltage drop 
across the point contact; v, is the velocity projection onto the 
trajectory; and A is the gap in the banks. In the derivation of 
these expressions and in the calculations below we assume 
that the dependence of all quantities on the average time 
(t + t ')/2 is slow in comparison with frequencies on the order 
ofA . We also ignore the possible existence of amplitude soli- 
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tons in the banks. 
In the low-voltage limit, VNA, the state density in the 

aperture is 

The state density is seen to depend on the difference between 
the phases in the banks. 

Under the same assumptions, the function f - f A ,  

which determines the order parameter at the aperture, is 

f R - f A  = 
2A exp[i (x,+x,) 121 cos [ (x,-xz) 121 (e2-A2) 'h 

&'-A2 cos8[ (x i - -~2)  121 
x e ( l ~ l - A ) .  (26) 

To calculate the order parameter we need to multiply (26) by 
/Z tanh ED, where /Z is the electron-phonon interaction con- 
stant, and we need to integrate this product over E from 0 to 
w . If x1 - X, = (2n + l ) ~ ,  the order parameter obviously 
vanishes at the aperture. On the other hand, a gap remains in 
the state density, according to (25). The reason for the differ- 
ence between the energy gap and the modulus of the order 
parameter in this case is that the change in the order param- 
eter near the aperture occurs over distances short in com- 
parison with the correlation length, and the state density 
cannot adjust fast enough to keep up with changes in the 
order parameter. 

We seek the current which flows through the aperture, 

It follows from (22) that at the aperture we have 
4E+& (th ~+p-th &-p)sgn v, 

s p g =  
E+E-+~+E--A'  C& ' 

(27) 

where 

E+=(E,'-A')''~O(I &*(--A) sgn E*. 

Using (27), we find the total current through the contact 
to be 

In the case under consideration here, of a Peierls con- 
ductor for which the curvature of the Fermi surface is small 
in comparison with A, the condition TgA usually holds. In 
this case the dependence on the phase difference which ap- 
pears in the current becomes particularly sharp. For small 
voltages across the contact (V<T(A ), for example, the con- 
ductivity of the contact is 

According to (29), a plot of 1/R versusx, - X, is a sequence 
of narrow peaks at the valuesx = 2 n ~ .  The maximum value 
of the conductivity is (2/RN) exp( -A / T ) ,  and the mini- 
mum value is (2T/A )(2/RN) exp( - A /T). 

At voltages V22A the conductivity increases sharply 
according to (28), and the small factor exp( - A / T )  disap- 
pears, since electrons begin to undergo transitions from 
states below the energy gap in one of the banks to states 
above the energy gap in the other bank. The dependence on 
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the phase difference remains strong. Near the threshold, i.e., 
at 0 < V - 24 424,  for example, the voltage dependence of 
the current changes from linear, I = (4 - T)(V - 24 ) at 
,yl - x2 = 2nr, to I = (?r/4A )(V - 24 )' at X, - X, 
= (2n + 1 ) ~ .  

In the limit I V 1 )A the voltage dependence of the cur- 
rent has the asymptotic behavior 

At high voltages V the function in (30) does not become 
Ohm's law but a straight line running parallel to Ohm's law; 
in this regard the situation is the same as at a superconduct- 
ing point contact. In superconductors, however, aso-called 
excess current is added to Ohm's law, while in the case of a 
point contact between Peierls conductors the current is 
smaller than the Ohm's-law current, by an amount which 
does not depend on V. The situation can be understood by 
noting that the current through the contact is determined 
exclusively by energies I E  + V/21 > 0, and under this condi- 
tion the state density near the aperture is essentially indepen- 
dent of the energy. Furthermore, near the energies I E I  =: I V/ 
2 + A I, where the state density diverges as E / ( E ~  - A in 
the interior of one of the banks, while it is unity in the other 
bank, we should see a strong above-barrier reflection of elec- 
trons going from one bank to the other. 

4. CONCLUSION 

A calculation of the current flowing between weakly 
lined conductors with a charge-density wave shows that he 
current I contains a component I, which depends on the 
difference between the phases of the charge-density wave: 
I, a A ,A, cos(;yl - x,). This result is independent of the na- 
ture of the weak link (a tunneling system or a system with 
direct conductivity). We thus see a analogy with the time- 
dependent Josephson effect in weakly linked superconduc- 
tors. On the other hand, there is also a fundamental distinc- 
tion: The phase in a superconductor is correlated over the 
entire volume of the superconductor, and the phase differ- 
ence x1 -x2 is determined by the applied voltage, 
x1 - X, = 2eVt / f i ,  according to the Josephson relation. In a 
conductor with a charge-density wave the phase difference 
does not depend on the current through the contact (al- 
though, as mentioned above, each of the phases x,, X, can 
vary over time if there is an additional current I,, flowing 
parallel to the plane of the junction; in this case we would 
havex,,, a I i,2t ). Furthermore, the phasex in a Peierls con- 
ductor fluctuates because of the presence of impurities, or it 
takes on different values in different regions if the sample 
breaks up into domains. These effects may extinguish the 
time-varying phenomena in these systems, but it may be that 
in junctions of small dimensions the current component I, 
may not average out to zero. 

There is yet another circumstance which complicates 
an experimental observation of the generation of oscillations 
at junctions. It was assumed above that the filaments in the 
banks run parallel to each other (it was also assumed that 
these filaments are parallel to the plane of the junction, but it 
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can be shown that this assumption is not of fundamental 
importance). What would happen if the filaments were ori- 
ented at some finite angle with respect to each other? It turns 
out that the local current density will depend on the coordi- 
nates in the plane of the junction, 

jz-A1A2 cos (xI-x2) cos Q (Z cos a+y sin a), 

so that the total current I, will vanish when an average is 
taken over the transverse coordinates (a is the angle between 
the filaments in the banks). This circumstance imposes some 
severe restrictions on the parameters of the system in which 
the time-varying effect is to be studied. The effect can appar- 
ently be seen most easily in the case in which a system of 
weakly linked conductors is fabricated from a common sin- 
gle crystal. 

As for the contribution to the current from amplitude 
solitons, we note that this contribution does not depend on 
the relative arrangement of the filaments, and it should be 
observed both at a tunneling junction and in a system with a 
direct conductivity. 
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