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The depolarization of resonant exciton radiation in a cubic crystal located in a longitudinal 
magnetic field is analyzed with allowance for the re-emission and multiple reflection of the light 
from the surface that occur under c o n d i t i o ~  of elastic exciton scattering by the impurities. An 
expression is found for the scattering matrix P, relating the Stokes parameters of the incident and 
scattered light for a single scatte~ing event occurring in the magnetic field. The transfer equation 
is solved by the Chandrasekhar S-matrix method, as generalized by E. L. Ivchenko, G. E. Pikus, 
N. Kh. Yuldashev [Sov. Phys. JETP 52,793 (1980)l by making allowance for the multiple reflec- 
tion from the surface. The dependence of the back-scattered radiation polarization on the longitu- 
dinal magnetic field is computed for the case of excitation by linearly polarized light. It is shown 
that the radiation depolarization that occurs in a magnetic field under conditions of multiple 
scattering of the light by excitons is approximately given by the standard Hanle-effect formulas 
with two characteristic times: the effective lifetime (7, ) and the effective alignment relaxation time 
(;i, ) of the exciton. A relation connecting 7, and 7, with the radiative and nonradiative exciton 
lifetimes is established. 

51. INTRODUCTION 

In Ref. 1 Ivchenko, Pikus, and one of us construct a 
theory of polarized-resonance-radiation transfer in cubic 
crystals in the exciton region of the spectrum. There the case 
of weak exciton-photon interaction is considered, and, in 
particular, the polariton effects are neglected. The transfer 
of polarized radiation by polaritons is the subject of investi- 
gation in Ref. 2. It is shown in Ref. 1 that the multiple pro- 
cesses of reabsorption-re-emission of light and reflection 
from the inner crystal surface have an appreciable effect on 
the polarization and intensity of the scattered radiation, as 
well as on its spectral and angular distributions. In that case, 
as the quantity 5, = r1/rrad (where 7 - 1  = T; + 7 2 ,  T, 

and rrad being the nonradiative and radiative exciton life- 
times), which determines the quantum yield of a single scat- 
tering event, increases, the degree of polarization of the radi- 
ation decreases, i.e., the re-emission and reflection processes 
constitute one of the mechanisms underlying effective spin 
relaxation. 

As is well known, the Hanle effect, i.e., the change in 
polarization in a magnetic field, is widely used to determine 
the lifetimes and spin relaxation times under conditions of 
spin orientation. 

The Hanle effect for excitons in the absence of re-emis- 
sion is considered in Ref. 3 for cubic crystals and in Refs. 4 
and 5 for uniaxial crystals (CdS and GaSe). In the simplest 
cases, e.g., for the T,Xr, exciton with angular momentum 
J = 1 in a cubic crystal, the longitudinal-magnetic-field (HI[ ) 
dependence of the linear polarization of the radiation in the 
coordinatesystemsX, YandX ', Y ', rotated with respect toX, 
Y through an angle of 7~/4, is given by the formulas (Ref. 6, 
Table I): 

Here fiwll = gil pFldiII is the Zeeman splitting of the exciton 
states with m, = + 1 and T is the half-life of the polarization 
( T -1  = T, - 1  + T; I, rs being the spin-relaxation time). Here 

it is assumed that the exciting light is polarized along the X 
axis, and, consequently, 

In view of this the question arises whether it is possible to use 
the Hanle effect to determine T, and rrad under conditions of 
intense re-emission. Below we consider precisely the case of 
a longitudinal magnetic field, since the cylindrical symmetry 
C, ,  is then preserved, which enables us to cbtain the exact 
solution with the aid of the Chandrasekhar S-matrix meth- 
od,' as generalized in Ref. 1 through the taking into account 
of the multiple reflection of the scattered light from the inner 
crystal surface. 

We compute the linear polarization of radiation scat- 
tered without a change in its frequency under conditions of 
resonant excitation of the J =  1 triplet excitons in a cubic 
crystal by linearly polarized light. Here, as in Ref. 1, we 
neglect the polariton effect and the exciton diffusion (which 
is permissible when T, (7, , where T, is the momentum-relax- 
ation time of the exciton), as well as the spin relaxation of the 
exciton (T, (T,). When the condition T, (T, is fulfilled, we, 
unlike Silant'ev,' can neglect the Faraday effect, i.e., the ro- 
tation of the light's polarization plane during the propaga- 
tion of the radiation in the crystal in the interval between two 
scattering events. Furthermore, we assume that the Zeeman 
splitting fiwll of the m, = f 1 exciton states in the magnetic 
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field is small compared to the radiation-line width Wzfi/ 
7. .  

92. THE BASIC EQUATIONS 

The intensity and polarization of the radiation scattered 
in the crystal, and propagating in the direction of the unit 
vector SZ = SZ(6,p), where 6 is the polar angle, determined by 
the directions of the vectors no and SZ (no being the normal to 
the surface of the crystal), and p is the azimuthal angle, will 
be represented by the Stokes matrix 

(in the Chandrasekhar basis7). Here I, = dl, and I, = d,, are 
the intensities for the I and r polarizations, the unit basis 
vector 1 lies in the plane of the vectors no and 0 ,  the vector r 
is perpendicular to this plane, U = 2 Re dl, ,  V = 2 Im dl, ,  
and dV a (E ,  E:) .  If the crystal is excited by monochromat- 
ic light that, after refraction at the surface, propagates in the 
direction SZo (Bo,p0), then the transfer equation for the radi- 
ation in the magnetic field can, when the above-indicated 
conditions are fulfilled, be written as: 

a0 x 1 (A, 8')  - - exp 
4 

h 

where r F  is the flux incident on a unit area normal to the 
direction of propagation of the light, p = cos 8, 
po = - cos 6, > 0, and A = az, z being the distance from the 
crystal surface and a is the coefficient of absorption at the 
ysonance frequency. The angular scattering matrix 
P ,  (SZ,SZ1), being the kernel of the integral part of the equa- 
tion, describes an elementary act of elastic scattering of the 
radiation in the magnetic field with excitation of an exciton 
in the intermediate state: 

I(A, ~ ) = P H  (P, 8')f (A, 8'). 

The matrix P ,  is most easily determined by treating the 
exciton in the magnetic field as a classical oscillating dipole. 
In the case of resonant excitation by linearly polarized light, 
the dipole moment of the exciton is initially oriented along 
the polarization vector e = E/JEI of the light. Upon the ap- 
plication of a magnetic field, this dipole begins to rotate 
about the direction of the vector HI, with angular fr~quency 
wll /2. In the absence of a magnetic field, the matrix P (SZ,SZf) 
can, according to the formula (1 1) in Ref. 2, be written in the 
form 

P (0, Q') = 3 / 2 ~ 6  (p, cp) 6+ (pl, q') 0-l, (2) 

where 

and 6 ( p , p  ) is a 4x9 matrix with elements 
@,, ,, (0) = e,, (SZ)ep, ( a ) ,  the e,, (a) being the Cartesian 
components ( r] = x ,  y, z) of the polarization vector e, 
(a = I,r) of the light propagating in the direction of 0 .  In a 
longitudinal magnetic field the azimuthal angle p' acquires 
in the time period t an increment equal" to wll t /2. Taking 
account of the fact that the probability for radiative recom- 
bination of the exciton at the instant t is determined by the 
lifetime r l  : 

we can write the angular matrix describing the scattering of 
light by excitons in a longitudinal magnetic field in form 

A 

The matrix P ,  , like the matrix P in  the_formula (6 )  in Ref. 1, 
can be expanded in terms of matrices P(") that respectively 
depend only on m$, where $ = p' - p: 

pH (PI p1)=6  ( 3 / 4 P ( O '  (p? p') + [ (1-p2) ('-pl') 1% 
x [PxlP(i)  (Q, 8') 

+pxl~ii' (8, 8') ] +9xP(Z' (8, 8') +~xP:' (a,Q') ). 

(3) 

Here the matrices 6, ?(I), and P(2' are given by the ex- 
pressionsjn the f~ rmu la  (6)  of Ref. 1, and the additional 
matrices P  k) and P arising in the magnetic field are given 
by the formulas 

- p2p'2 sin 29 p2 sin 29 p v '  cos 2$ 

fig) (Q, $2') = - pt2sin 29  - sin29 - p1cos2$ 0 
4 - ppJ2 cos 29  p cos 29  - pp' sin 29 0 I 0 0 0 

and 

h 

It is convenient to represent the scattering matrix P ,  (SZ,SZ1), 
given by the expression (3), inAa factorized form, similar to 
the formula (2) for the matrix P  (SZ,SZ1): 
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I 
&(h) 0 0 0 

D (h) = 
0 E3 0 
0 0 &(h) 0 O 1 9  

0 0 0 dEl (h)4 . , 
&, (h) = [8x' -px'] i 2 ( h )  = [px 

9 (6) 
px' 9x' ' px p x  

h h A 

E, and E, being 3 x 3 and 5 x 5 unit matrices. The matrix P ,  
given by the formulas (3) and (5) is normalized to unity (see 
the forr;?ula (7) in Ref. 2). Let us note that the scattering 
matrix P ,  (fl,fll) in a longitudinal magnetic field in the form 
(3) and (5) can also be derived on the basis of the kinetic 
equation for the exciton density matrix. 

For a semifinite crystal the Stokes matrices of the radi- 
ation incident on, and the radiation scattered back in the 
opposite direction from, the inner crystal boundary 
(z = + 0) are, just as in Ref. 1 [see the formula (15) there], 
connected by the relation - 

I ^ (  +o ,  a )=%@(a ,  n o ) ~ ( n O ) .  
4~ 

The equation for the matrix ?& can be derived from the 
invariance principle formulated earlier [Ref. 1, formula ( 16)] 
for crystals, which remains valid in the presence of a magnet- 
ic field, since this field does not destroy the homogeneity of 
the medium. This equation differkfro~ the fo~mpla (A? of 
Ref. 1 only in the replacement of S  by S ,  and S  by S  fi : 

h 

Let us recall that the matrix S ,  relates the incident and 
scattered fluxes in a magnetic field without allowance for the 
light reflected fromhthe inner surface. The equation dete5 
mining the matrix S ,  also differ~irom~the equ~tion~for S  
(Ref. 6) only in the replacement of P  by P ,  and S  by S ,  : 

where 

G (n, sat) =a, (n, 3) 

- - 
Q=Q(-p, cp) .  

As i%dicated^ab_ove, i ~ a  longiudinal magnetic field the 
matrices S ,  and S  E ,  like S and S R, are invariant under the 
operations of the symmetry group C,", while the invariance 
under time reversal leads to the relation 

pH (P, 9 ' )  =GP-H (P', P) G-' 
h A ^  

and si%ilar relations for the matrices S ,  and S  fi . The form 
of the G matrix depends on the choice of the basis. For the 
Chandrasekhar basis it is given by the formula (23) of Ref. 1. 

The changes that occur in the direction of propagation 
of the light and in the Stokes matrix upon the passage of the 
incident and scattered light through the crystal surface do 
not depend on the magnetic field, and are taken into account 
in the same way as is done in Ref. 1. 

§3. SOLUTION OF THE EQUATION FOR THE MATRIX S, 
h h 

Let us represent the matrix S ,  similarly to P ,  in the 
following factorized form: 

Then the variables in Eq. j\8) are szparable, and for the new 
unknown, 9 X 9 matrices 2? and A?, we obtain the integral 
equations: 

h h 

The characteristic matrix YJ(  p),  like the matrix d ' ,  is real, 
and is an even f p c k o ~ o f  With the aid of the unitary 
transformation D + Y'D = P, with 

%nd 2, is given by the formu@ (6), we can reduce the matrk 
Y ' to a quasidiagonal matrix Y (see Ref. 2). Performing the D 
transformation in (lo), we find 

where the matrix 2 = 2 +312 is obtained f r o ~ t h e  matrix 
d given by the formula (6) by replacing the last d , ( h  )block 
by 2 , ( h  ). The solution to Eq. (1 1) has the form 

A 

  ere the matrices H 'O' and H :)do not depend on the magnet- 
ic field, and the matrix 
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coinc id~ with the fiO matrix given by the formula (31) of 
Ref. 1; H 'I), fi'" , and H '2' are 2 x 2 matrices with compo- 
nents: 

h 

The matrix H '+, the equation for which is easily obtained 
from (10) in much the same w2y as (1 1) is derived, also has the 
form (12), with HtO+(p) = HO(p) an2 a magne$c-field de- 
pendent part satisfying the condition H '+( p)=H ( p) .  COE- 
sequ~ t ly ,  the solution of the system of equations (10) for % 
and Z' reduces to the soktion of three independent systems 
of two equations for the H"] ( p)-matrix elements. 

The thus obtained solution to Eq. (8) can be written in 
the form 

s ~ ( Q , P ~ ) = Q { ~ / ~ S ( ~ ) ( ~ ,  P O ) +  [ (I-pZ) (1-po2) 

+gIZ' (p, ,.Lo) Pt2' (Q:Qo) +Si2' (p, po) P:) ( ~ ~ 3 0 )  1. (13) 

This expression is equivalent to (9). ForhHoil = 0 it goes 
over into the formula (29) in Ref. 1. In (13), S ( p ,  p,) is the 
matrix (20) in Ref. 1, while 

The functions Sy)(h, p ,  po) (where i = 1,2; r and j = 1,2) in 
(13) and (14) combine into matrices of the form 

h 

which can be expressed in terms of the corresponding H(') 
matrices by the relations 

PPo 
S(') (h, pl po) = - H(') (p) ~ 2 ~ )  (h) HI(') (po), 

F + P ~  
(16) 

A h h A h h h 

where d"' = d") = d l ,  M'2' = d 2 ,  and MI and d2 are 
given by the formulas (6). In the absence of a magnetic field 
(i.e.,forh =O)Sf)  =SY)=St) =~andS' : ' ,S ' ," ,andS~'go 
over into the functions S "', S(l), and S 3 of Ref. 1. 

s4. SOLUTION OF THE EQUATION FOR THE MATRIX S i  

With the aid of a number of transformations, we can 
factorize the matrix integral equation (7), and reduce it to 
simpler equations more convenient for iteration. For this 
purpose we represent the solution to (7) in a form similar to 
(13): 

SIXfi (9, Q0) 

= Q^ {; St' (p, po) + [ ( l  - p2) (1 - &qfb 32 (Q. no) 

By substituting (17) into (7), we can verify that the first term 

h 

$g)(p ,pO)  of the solution, like the s'O'(p,pO) term in (13), 
does not depend on the magnetic field, a ~ d  is given by the 
formula (35) in Ref. 1, while the matrices Skml (m = 1,2) sa- 
tisfy the equations 

Skm) (9, 9,) = 3im) po) ijim) (Q, g)  
- 

+ Jim) (p, Po) P$' (9, Qo) + 

+ 3im' (p, pf) (9, a')] fi (pr) 03'bm) (Q,  go), 
(18) 

where @ "'( p) = 1 - p2, @ = 1. We canshow that thesolu- 
h 

tion to this equation for St' has the following form: 

h 

Here the matrix P!), is given by the formula (39) in Ref. 1, 
while the matrix 

d 

h 

If we introduce the matrix B ( p , p o )  composed of the un- 
known functions Bk ( p ,  p,), Ck ( p,  pO) (k  = 1 - 4): 

then, by substituting (19) into Eq. (l8) and using (14)-(16) and 
(20), we can show that the matrix B satisfies the equation 

where 
S ( I )  (p, pl) =I?(') (p) if2 ( I )  (h) I?(') (pl), 

8"' 0 0 ] , g i n  (n) = 
0 H") (p) 

h 

the R, (p) being the elements of the matrix R (p) formed by 
the reflection coefficients. NOF let us introduce a new matrix 
6 ( p ,  PO), which determines B ( p ,  p,) through the relation 
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Substituting (23) into (21), we obtain an equation for 6: 

where 

& ( I )  ( p )  =k(') ( p ) i ( ' )  ( p )  k(') ( p )  M(')  (h)  . (25) 

From this it is easy to observe [see (22) and (25)] that the 
solution to Eq. (24) has the form 

,. ii - b  bil - bi, 
b= [i ] = bil ] ' 

and, consequently, it splits up into three independent sys- 
tems of equations for the pairs of functions bi, ( p ,  po) and 
biz ( p, pol (i = 1,2,3). A 

We can satisfy Eq. (18) for the matrix Sg) (fl,flo) by 
setting 

+id,"' ( p ,  po) P:) ( 0 ,  fro) - (26) 

If we now introduce, similarly to (15), the matrix 

then, substituting (26) into Eq. (18) form = 2, we obtain the 
following integral equation: 

8 2 )  ( p ,  ~ o ) = s ( ~ )  ( p ,  P O )  

where 

~ ( " ( p )  = R 1  ( p )  p 4 - 2 R 3 ( p )  p 2 + R 2 ( p ) ,  
and the matrix $'2)(p, po) is defined by the relation (16). Let 
us sim~lify Eq. (27) by introducing the matrix 2 that deter- 
mines S !) through the formula 

PPo A sd" (p, po) = - H(') ( p )  iZ ( h )  a ( p ,  po) I?(') ( p O ) .  (28) 
~ f ~ o  

The substitution of (28) into (27) yields an equation for 2: 

where the characteristic matrix 

%(" ( p )  =x'" ( p )  (A'" ( p )  ) G2 ( h )  . 
h 

The matrix 2 "', like the matricesg(2' and d 2 ,  has two inde- 
pendent components: 

reduces to the solution of a system of two equations for the 
components a ,  and a, of the matrix 

In the case of normal excitation of the crystal the inten- 
sity and degree of circular polarization of the radiation scat- 
tered back the opposite direction are determined only by 
the matrix Sg) ,  and therefore do not undergo any changes 
upon the application of a longitudinal magnetic field. If in 
this case the incident light is linearly polarized, then the de- 
gree of linear polarization of the light scattered in the direc- 
tion perpendicular to the surface decreases, according to the 
formulas (13), (17), and (26), with the field according to the 
law 

I - I  2 s" )  ( h ,  n, 63,) 
g J ~ : n l ( ~ l l ) = - =  I ,  +Ir 2 (n, G o )  

7 

here n is the refractive index of the crystal, 2 is a quantity 
determining the scattered-light intensity I = I, + I,, which 
does not depend on the magnetic field, and is given by the 
formula (5 1) in Ref. 1; for n = 1 we haves '2' = S (:I, while for 
n f 1 we have S(2' = S g), the quantities S (:)(h,Zo) and S g', 
(h,n,Zo) being given by the relations (16) and (28): 

(2) S, =cI9'x-~zpX, 
SRI= (c la l -c2a2)  YX-  (c,a2+cza,)  px, (31) 

c,='/ ,[  (H,") ( I ) ) ~ - ( H ~ ( ~ )  ( I ) ) ~ ] ,  C ~ = H : ' )  ( i ) ~ ~ ( ~ ) ( i ) .  
In the case when the excitons are excited by linearly 

polarized light in a longitudinal magnetic field, the rotation 
of their electric dipole moments in the scattered light results 
in the appearance of polarization PI\, in the ( I  ',rf) coordi- 
nate system, rotated relative to the (I,r) system through an 
angle of 7~/4 about - no: 

tI U g~ ( H ) = - = -  2s:;: ( h ,  n, 
lin II I E (n, a O )  

Heres:), = S f )  for n = 1 and S$j4 =SE? for nf 1. The 
functions S f ) (h ,~ , )  and S !I2 (h,n,Zo) are also determined 
from (16) and (28): 

( 2 )  ( a )  
Sz = ~ ~ p ~ + c ~ 9 ' ~ ,  SR? = (c la i -c2aZ)  pX+ ( ~ ~ a ~ + c ~ a , ) 9 ~ .  

(33) 

In the case of small values of the quantum yield Go for a 
single scattegng act,^w_e can solve the integral equations for 
the matrices S, and S fi by expanding them in series in pow- 
ers of Go. If we limit ourselves to the first approximation in 
Go, i.e., if we consider only the first- and second-order contri- 
butions of the light scattering, then for PI, and P;,',, we 
obtain in the case when p,=p = 1 the following expres- 
sions: for n2 = 1 

and for n2 = 10 

and, consequently, the solution of the matrix equation (29) 6; =- [ I - ( 0 , 7 6 6 - 0 , 9 3 3 Y x )  O o ] p x .  
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FIG. 1 .  Dependence of the degree of linear polarization Y,,, of the exci- FIG. 2. Longitudinal magnetic field dependence of the degree of linear 
ton radiation on the longitudinal-magnetic-field strength (h = oIl T, polarization y;,',, of the exciton radiation in the coordinate system X ', Y'  
= gil pd l l  T,) in the case when the excitation is effected by linearly polar- making an angle of 45" with the polarization plane of the exciting light. 

ized light. The curves 2-5 were computed for n2 = 10; the curves 2' - 5', The curves 2-5 and 2'-5' were computed with those same n2 andi3, values 
for n = 1 .  The following Go values were used: for the curves 2 and 2', that were used to compute the corresponding curves in Fig. 1. The curve 1 
Go = 0.2; for 3 and 3', 0.6; for 4 and 4', 0.99; for 5 and 5' ,  1.0. The curve 1 depicts the Haale contourp, = h / ( I  + h '1. 
depicts the Hanle contour P, = ( 1  + h ' ) - I .  

55. RESULTS OF THE NUMERICAL COMPUTATION 

As follows from the preceding sections, to compute the 
angular distributions of the intensity and degree of polariza- 
tion of the scattered light in a longitudinal magnetic fie15 we 
must numerically solve the integral equations (1 1) for H"', 
k(r) , and 2"' a_d (24) and (29) for 6 and 2. The field-indepen- 
dent matrices S ' O '  and Sg) are computed in Ref. 1. 

In the simplest case, when the crystal is illuminated 
normally and the light scattered back in the opposite direc- 
tion is detected ( p = p, = I), it is sufficient to determine the 
four f u ~ t i o n s  HY), Hy),  a , ,  and a,. The integral equations 
(1 1) for H '2' and (29) for 2 were solved by the iteration method 
on a computer.9 The convergence of this method for all h and 
5, values turned out to be sufficiently rapid. The iterative 
procedure was carried out with a relative error of 0.01% for 
the values of the sought quantities at allp points in the inter- 
val [0, 11. 

Figure 1 shows the dependence Pin (H ,, ) of the degree 
of linear polarization of the exciton radiation on the strength 
of the longitudinal magnetic field in the case when the crys- 
tal is excited by linearly polarized light. The curves were 
computed from the formulas (30) and (3 1). For comparison 
we show in the same figure the Hanle curve, 1 (for 
PIn (0) = I), corresponding to 5 , 4 ,  which has the classi- 
cal Lorentz shape, and describes the single-scattering-in- 
duced depolarization of the radiation in the magnetic field. 
It can be seen that multiple scattering of the light does not 
lead to any qualitative change in the Yhn (h ) contour, the 
shape of which remains almost Lorentzian. But as 5, and n 
increase, and the effects of the re-emission and specular re- 
flection from the inner surface of the crystal become impor- 
tant, the value of Y;, (h ) decreases rapidly with increasing 
Go, and the halfwidth hIl, of the Y,',, (h ) curves decreases. 

Here h , corresponds to P hn (h , ,,) = 4 9 6, (0). 
The behavior of the degree of linear polarization 

Pi:,, (h ) is depicted in Fig. 2; the curves were computed from 
the formulas (32) and (33) for n2 = 1, 10 and Go = 0.2, 0.6, 
0.99, 1.0. It can be seen that these curves also do not qualita- 
tively differ in shape from the corresponding Hanle curve 
(the curve 1). As the values of n and Go increase, the peak of 
the 9,'l'n (h ) curve shifts into the region of lower magnetic- 
field intensities, its halfwidth and the peak value decreasing 
monotonically in the process. 

In order to find out to what extent the curves in Figs. 1 
and 2 can be approximately described by the formulas (1) 
with 71, r, , and r in them replaced by the effective times TI, 

FIG. 3. Comparison of the results obtained for PI, in the exact and 
approximate computations carried out with the aid of the formulas (34) 
and (1). The curves 1-5 and 5' correspond to the curves 1-5 and 5' in Fig. 1. 
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that 

FIG. 4. Comparison of the results obtained for 9;; in the exact and 
approximate computations carried out with the aid of the formulas (34) 
and (1). The curves 1-5 and 5' correspond to the curves 1-5 and 5' in Fig. 1. 

;i, , and 7, where 7-' = T; + 7,- ', we constructed the func- 
tions 

Figures 3 and 4 show plots (thin lines) of these functions for 
different values of n and Go. The thick lines are plots of the 
functions F(;, = (1 + z2)- and FI; = z(l + z2)- ', which 
correspond to (1). It can be seen that the deviation of the 
exact curves (34) from (1) increases with increasing n and Go, 
but does not exceed 5%. 

Further, we determined ?, and 7, from the values of 
9;in(0) and h,,,, assuming in accordance with (1) and (1') 

I7 012 01 q 46 48 ',o 
G'7 

FIG. 5. The 25, dependences of the reciprocal T,/? of the half-life of the 
linear po~arizationbf the exciton radiation in a longitudinal magnetic field 
(the curves 1, 1' and 4,4'), the reciprocal T,/?, of the effective lifetime (the 
curves 2 and 2'), and th; reciprocal T,/?~' of'the effective spin relaxation 
time (the curves 3 and 3') of the exciton. The curves 1-4 were computed 
with nZ = 10; the curves 1'-4, with nZ = 1; and the dashed lines 4 and 4', 
with allowance for only the single and double scattering. 

Figure 5 shows plots, obtained with the aid of the for- 
mulas (35) and the curves in Fig. 1, of T, fi, , T, /?, , and T, /? 
as functions of the quantity Go for nZ = 1 and 10. The dashed 
curves are r1/71(G0) curves computed by the method of itera- 
tions in powers ofGo with allowance for only single and dou- 
ble scattering. It can be seen that these iteration curves al- 
ready deviate from the exact curves at Go)O. l. 

It follows from Fig. 5 that, as Go (i.e., the number of re- 
emission events) increases, ?, increases, attaining at n2 = 10 
and Go = 1 the value 71, z 707,. The quantity 7, decreases at 
the same time, but remains greater than T[, i.e., greater than 
T,~. Thus, when Go = 1, i.e., T, = r,,, , and n2 = 10 we have - 
T, z 2 . 4 .  When Go is close to I,?, is smaller than 71. In this 
case, despite the decrease of ;i,, ? increases monotonically 
with increasing Go. For n2 = 10 and Go = 1 we have 71/ 
TI ~ 2 . 3 .  

Let us emphasize that, although the shape of the 
(H II ) and (H ) curves in the case under considera- 

tion is close to the shape given by the formulas (1) obtained in 
the simple theory, the computation of 7, and 7, even in the 
region G 0 2  0.1 or 0.2 requires exact allowance for the re- 
emission process, i.e., the exact solution of the radiation- 
transfer problem. Let us also note that, in the case under 
consideration, the total quantum yield and the angular dis- 
tribution of the intensity of the exciton radiation in the po- 
larization plane of the exciting light do not depend on the 
longitudinal magnetic field. 

In conclusion the authors consider it their pleasant duty 
to thank G. E. Pikus and E. L. Ivchenko for suggesting the 
theme and for fruitful discussions in the course of the perfor- 
mance of the computations and the preparation of the manu- 
script. 

"If the magnetic field HI, is oriented along the OZ I)( - no) axis of a right- 
handed Cartesian coordinate system, then the increment Ap' = Jell t > 0 
when gll > 0. 

'E. L. Ivchenko, G. E. Pikus, and N. Kh. Yuldashev, Zh. Eksp. Teor. Fiz. 
79, 1573 (1980) [Sov. Phys. JETP 52,793 (1980)l. 

'E. L. Ivchenko, G. E. Pikus, and N. Kh. Yuldashev, Zh. Eksp. Teor. Fiz. 
80, 1228 (198 1) [Sov. Phys. JETP 53,629 (1981)l. 

'G. E. Pikus and G. L. Bir, Zh. Eksp. Teor. Fiz. 67,788 (1974) [Sov. Phys. 
JETP 40, 390 (1975)l. 

4G. L. Bir and G. E. Pikus, Zh. Eksp. Teor. Fiz. 64, 2210 (1973) [Sov. 
Phys. JETP 37, 11 16 (1973)l. 

5E. L. Ivchenko, G. E. Pikus, B. S. Razbirin, and A. I. Starukhin, Zh. 
Eksp. Teor. Fiz. 72,2230 (1977) [Sov. Phys. JETP 45, 1172 (1977)l; E. M. 
Gamarts, E. L. Ivchenko, M. I. Karaman, V. P. Mushinskii, G. E. Pikus, 
B. S. Razbirin, and A. I. Stamkhin, Zh. Eksp. Teor. Fiz. 73, 11 13 (1977) 
[Sov. Phys. JETP 46, 590 (1977)l. 

6G. E. Pikus and E. L. Ivchenko, in: Excitons (ed. by E. I. Rashba and M. 
D. Sturge), North-Holland, Amsterdam, 1982, p. 205. 

'S. Chandrasekhar, Radiative Transfer, Clarendon Press, Oxford, 1950 
(Russ. Trans]., IIL, Moscow, 1953). 

'N. A. Silant'ev, Astron. Zh. 56, 37 (1979) [Sov. Astron. 23,21 (1979)l. 
9A. F. Verlan' and V. S.Sizikov, Metody resheniya integral'nykh uravenii 
s programmami dlya EVM. Spravochnoe posobie (Methods of Solving 
Integral Equations with Computer Programs. Reference Handbook), 
Naukova Dumka, Kiev, 1978. 

Translated by A. K. Agyei 

394 Sov. Phys. JETP 60 (2), August 1984 M. Sobirov and N. Kh. Yuldashev 394 


