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Surface waves of new type are predicted in a semi-infinite piezomagnetic material. The best 
material for observing these waves is the tetragonal antiferromagnet CoF,. 

Under certain conditions the propagation of a Rayleigh 
wave along the free surface of a piezoelectric crystal may be 
accompanied by the propagation of a purely shear surface 
acoustic wave polarized along a high-symmetry axis of the 
crystal.'s2 A purely shear surface acoustic wave may also 
propagate in magnetic crystals by virtue of magnetostric- 
t i ~ n . ~  Such waves are damped only slightly with distance 
into the interior of the material and thus hold promise for 
practical applications in high-frequency acoustoelectronic 
devices. 

In a magnetically ordered crystal with a compensated 
magnetic moment (in antiferromagnets) there is yet another 
effective mechanism (in addition to magnetostriction) for 
magnetoelastic coupling: a piezomagnetic In 
the present paper we analyze the possibility that shear sur- 
face magnetoacoustic waves can propagate in a semi-infinite 
antiferromagnetic crystal by virtue of a piezomagnetic ef- 

Borovik-Roman~v.~ For such structures the free energy de- 
scribing the piezomagnetism is4,6 

FPmz-7% (~zzHu+~uzHs)  - y z b H z ,  (3) 

where y, and y, are piezomagnetic constants. 
We assume that the crystal occupies the region y > 0. 

We consider a transverse-polarized acoustic wave which is 
propagating along the surface of the crystal. The propaga- 
tion direction is the x axis, and the displacement direction is 
thez axis, which is the easy axis of the antiferromagnet. Sys- 
tem (2) can then be written 

pii(z)=kAu(z)-2y,$, ,v,  ~ $ + 4 n ~ ~ u ~ ~ ' = 0 ,  (4) 

where R = 4R, is an elastic con~ tan t ,~  $ is the magnetic 
potential (H = - grad*), A is the Laplacian, and the sub- 
scripts on tC, and u''' mean differentiation: ax,,=a2a/dxay. 
These equations are to be solved under boundary .conditions 
at the surface of the crystal: 

fect. ( f )  

Magnetostriction and piezomagnetism should evident- $ ( i ) = $ ( e ) ,  a,,=O, B, = - - d ~ $ ~ ) l d y  at y=O. (5) 

ly lead to physically different results, since the terms in the The superscripts i and e mean that the given quantity per- 
magnetoelastic energy which are responsible for each of tains to the regions y > 0 and y < 0, respectively. We seek a 
these effects are invariant under various symmetry elements solution in the form 
of the crystal.' The magnetoelastic part of the free energy of u ( ~ ) ,  $ ( i ) m e s p  [ - x y + i ( k x - o t )  1, 
an antiferromagnet can be written 

Fme=AijklMiMj~kl+BijhlLiLj~kl+CijktMiLj~ki, (1) $("mexp [ k y + i ( k ~ - - o t )  I. 
From system (4) we find 

where M = MI + M, and L = M I  - M, are the ferromag- 
netism and antiferromagnetism vectors, M,,, are the sublat- po2=k ( k 2 - g Z ) ,  %=x ( l f 4 A )  '", 

tice magnetizations, uk,, is the strain tensor, and A, B, and C 
are magnetoelastic constants. The first two terms in (I), 
which pertain to the magnetostriction, are invariant under 
the interchange of the magnetic moments of the sublattices, 
while the last term-the piezomagnetic term--changes sign 
under this operation. 

The system of equations describing the propagation of 
magnetoacoustic waves in magnetic materials consists of the 
equations of the theory of elasticity and magnetostatics: 

where A = 2?rd/R is the magnetochemical coupling con- 
stant. The relationship between x and k is found from 
boundary conditions (5): x = Ak. Substituting the latter 
expression into (6), we find the dispersion relation 

p o " k [ l - A z ( l + 4 A )  ] kZ .  (7) 

Expressions for the displacement and the magnetic potential 
can be found within a constant factor A: 

zz(")=exp ( - x y )  A e s p  i ( k x - o t )  
piii=aoidax,, div B=O. (2) ~ p ( ~ ) = Z n i y ,  exp  ( - x y )  A exp i ( k x - o t ) ,  

Here uik = dF/duik is the stress tensor, B = H + 4 r M  is 
the magnetic induction, p is the mass density, H is the alter- 
nating magnetic field, and the total free energy F has mag- 
netic, elastic, magnetostrictive, and piezomagnetic compo- 
nent~.~. '  

For the remainder of this analysis we assume an easy- 
axis tetragonal antiferromagnet; examples are fluorides of 
transition metals, such as MnF, and CoF,. A piezomagnetic 
effect was discovered experimentally in these materials by 

*("'=2niyi  exp  ( k y )  A exp  i ( k x - a t ) .  (8) 

System (4) and its solutions (7) and (8) differ substantial- 
ly from the initial equations (and thus the solutions) describ- 
ing both shear surface acoustic waves in piezoelectric mate- 
rials'.' and shear surface acoustic waves propagating in 
magnetic materials by virtue of the magnetostriction mecha- 
n i ~ m , ~  because of the different symmetry of the problem. 
The primary difference is in the distribution of the alternat- 
ing magnetostatic field in the crystal. While either the pie- 
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zoelectric field or the magnetic field in a shear surface acous- 
tic wave has two components-a rapidly damped 
component ( a e - ky)  and a slowly damped component 
( a e - x Y , ~ ( k  )-the wave under consideration here has only 
a single component: a field which is damped slowly with 
distance into the interior of the cryustal ( cc e - x y ) .  There are 
also differences in the dispersion relations describing these 
types of waves ($17 in Ref. 6). 

The antiferromagnet CoF, can be recommended as a 
material in which the effects predicted here could apparently 
be seen. This antiferromagnet has piezomagnetic moduli 
higher than those of any other unaxial c r y ~ t a l . ~  Working 
from the results of Ref. 5 ,  we estimate a value1' y, - lo4. If we 
use instead Moriya's estimate,* which is eight times that in 
Ref. 5,  we find values for the piezomagnetic moduli y, which 

We thank A. S. Borovik-Romanov and R. Z. Levitin for 
discussions. 

')I_" Ref. 5 the piezomagnetic potential is written in the form 
F,, = - y,,Hiuk,, so that y ,  and 7, are related by y, =4/l,y, 
[y, = 2-lOP3 G(kg/cm2)-', A,, - lo6 kg/cm2]. 
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