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It  is shown that the Fokker-Planck equation that describes the motion of a Brownian particle in 
the presence of potential barriers can be reduced, if the interaction with the thermostat is weak 
enough, to an integral equation in terms of the energy variable, or else to a system of such 
equations. The basic small parameter is then the small ratio of the temperature to the barrier 
height. The proposed calculation scheme accounts in natural fashion for the quantum effects of 
above-barrier reflection and below-barrier passage. An exact solution is presented of the Kramers 
problem of the lifetime of a particle in a deep potential well. The problem of the lifetime of a 
particle in one of the minima of a two-well potential is formulated and solved. In a definite range 
of parameters, the results are useful for the description of the fluctuations of the phase shift of the 
order parameter in compact Josephson junctions. 

Fluctuations in a number of physical systems are simi- 
lar to Brownian motion of a particle in a certain potential 
relief. If the characteristic heights of the potential barriers 
exceed the temperature, the particle stays a long time near a 
certain local potential minimum before proceeding to the 
next minimum. States corresponding to energy minima are 
therefore metastable, and the lifetime in them is given by the 
Arrhenius law 

where R is the frequency of the particle oscillations at the 
bottom of the given potential well and U,, is the height of the 
potential barrier. The nondimensional coefficient A is deter- 
mined by the actual form of the potential, by the interaction 
with the thermostat, and also by the barrier transparency if 
quantum effects are taken into account. 

The decay of metastable states via fluctuations and tun- 
neling is attracting considerable interest at present in con- 
nection with experiments on Josephson junctions (see the 
review by Likharevl). In this article the lifetime of a particle 
in a potential well is calculated in the case when the particle 
leaves a single minimum of the potential, and when it goes 
over from one minimum of a two-well potential to the other. 

The basic results in this field were obtained in 1940 by 
Kramers, who developed a theory of the absolute rates of 
chemical reactions under the assumption that molecule dis- 
sociation is the analog of the exit of a Brownian particle from 
a potential In the Kramers model the motion of a 
Brownian particle is described by the Langevin equation 

mx=-mri-dU/dx+q ( t )  , (2) 

where m is the particle mass, y the viscosity coefficient, U (x) 
the potential, and 7 a random force whose correlator 
satisfies the fluctuation-dissipation theorem ( ~ ( t  )7(t ')) 
= 2myTS(t - t '). The potential U (x) is of the form shown in 

Fig. 1. The frequency R previously introduced and the fre- 
quency w that will be used later are defined by 

It  can be seen that R and w correspond to the minimum and 
maximum of the potential. 

It is convenient to use, besides the Langevin equation, 
also its equivalent, the Fokker-Planck equation for the dis- 
tribution function f (p, x) in the momentump = mx and in the 
coordinate x of the particle: 

This equation is written under the assumption that the parti- 
cle lifetime in the well exceeds all the characteristic time 
scales (wr, Or, yr) 1), so that a quasistationary distribution 
is established in all the regions of the well. The time depen- 
dence of this distribution is given by 

f (P, 2 7  t )  =f (p, x) e-"'. 

The function f (p, x) should be assumed normalized to 
unity, corresponding to the presence of one particle in the 
well at the initial instant of time. In the interior of the well, 
f (p, x) should take the Boltzmann form 

Xf xu -x, 

FIG. 1 
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if it is assumed that a parabolic approximation can be used 
for the potential up to energies exceeding T. Outside the well 
there is only a flux of particles that go off to the infinity on 
the slope of the potential. This corresponds to the condition 

Solution of Eq. (3) with boundary conditions (4) and (5) 
determines the particle flux from the well. At the chosen 
normalization this flux coincides with the reciprocal of the 
particle lifetime in the well: 

1 - P 
j=T= j f(p.r);dp, r>O. 

-m 

The flux-conservation condition guarantees independence 
of this expression of x, provided x is on the right of the region 
that determines the normalization off @, x). 

Kramers solved the Fokker-Planck equation and ob- 
tained the coefficient A for two limiting cases. For the region 
he obtained 

In the limit y(w it follows from this that A=. 1. It is clear, 
however, that in the limit as y 4  we should have A = 0, 
since a classical Brownian particle leaves the well only under 
the influence of fluctuations. Accordingly, Kramers showed 
that the following relation holds in the limit of small y: 

0 

A=s/T, W T ,  8 = y ~ o = 2 y  J [-2rnU(r)]' dr, (7) 
I, 

where So is the action, during the period, for a particle with 
energy on the barrier level in the absence of friction. The 
quantity So appears in natural fashion if, allowing for Eq. (I), 
the energy loss per particle oscillation in the well is calculat- 
ed in an approximation linear in y: 

0 

6=2yrn 5 i d;c=2y p (z)dx=ySo. 
2, 

i 
ri 

Expression (7) is valid so long as ySo(T. In order of 
magnitude, So - UJw, so that on the side of small y the value 
ofA should approach unity at y)wT/U,. It follows from a 
comparison with (6)  that A is close to unity in a wide range of 
7'5 

In this region of y the particles that leave the well have a 
Boltzmann distribution that does not depend on y. We recall 
that T/Uo is the basic small parameter of our problem. 

It can be seen that the solution obtained by Kramers is 
incomplete at least in two respects. First, there is no expres- 
sion forA at S - T, i.e., the transition from the linear relation 
(7) to A =: 1 at S) T is not tracked. Second, Kramers's results 
pertain only to classical Brownian motion and take no ac- 
count of, say, a quantum effect such as the finite transparen- 
cy of the barrier. It is clear that with allowance for tunneling 
the particle flux may turn out to be larger than the maximum 
above-barrier flux, so that A will vary in the interval (0, 03) ,  

whereas in the classical case we always have A <  1. 

It was shown in Refs. 3 and 4 that when account is taken 
of the quantum transparency of the barrier, expression (6) 
should be replaced by 

where r (x) is a gamma function, andAt and A t  are the eigen- 
values of the linearized equation (2) near the minimum and 
maximum of U (x): 

To solve our problem in the entire range of y we must 
therefore generalize expression (7), which Kramers obtained 
in the limit of low viscosity, to include the case of arbitrary 
S /Twith account taken of the finite character of the ratio w/ 
T that determines the quantum effects in the interaction of a 
particle with a barrier. We note that the result that we plan to 
obtain must be matched in the region wT/Uo<y<w with the 
result A = (w/2T)/sin(w/2T) that follows from (8). 

We begin with small y. In this case, neglecting viscosity, 
the energy is conserved and in the next-order approximation 
the Brownian motion of the particle reduces to diffusion in 
energy, so that instead off @, x) we must use the distribution 
function f (E )  in energy, as was done earlier by Kramers. The 
energy E, just as in (4), is measured from the top of the bar- 
rier. Allowing for quantum effects, the transparency of a 
parabolic barrier is [ l  + exp( - 2n-~/w)]-'. If it is assumed 
that in the actual energy region the transparency is low and 
is given by the expression exp(2m/w), we can write for f (E )  

the expression 

- + - =f exp (2ne/o), 6 ( ~  ;: ;2 
the solution of which with the boundary condition (4) is 

m/2nT o exp ( d o )  
~ ( 2 n ( a T ) % )  K v  ' ( n(8T)' ) (11) 

where K, is a modified Bessel function of imaginary argu- 
ment. The significant values of E correspond to the region 
where the argument of K,, is of the order of unity. From the 
condition that the transparency coefficient be small at these 
energies we obtain the criterion S<w2/T for the validity of 
the solution obtained. 

To calculate the particle flux with account taken of the 
ratio pdp/m=d~ we must integrate the right-hand side of 
(10) with respect to E,  using (1 1) for f (E). This yields 

This equation generalizes the Kramers result (7) to include 
the quantum case. It is applicable so long as S<w2/T. In our 
situation the significant energies are of the order of (w/ 
T) In [ (~S) l /~ /w] .  Obviously, with decreasing& viz., at ln(w/ 
S ) - Uo/w, the parabolic approximation we have used no 
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longer holds, and the deviation of the potential from para- 
bolic must be taken into account. 

We proceed now to solve the problem with allowance 
for the finite S /T. We show for this purpose that under the 
restriction S g  U, i.e. at ygw, we can derive from the Fokker- 
Planck equation (3), or from the Langevin equation (2), an 
integral equation that is valid for any relation between 6 and 
T. Of course, the differential equation (10) is obtained from 
this integral equation in the limit of small S. 

In the considered limit y - w T/Uo(o the motion of the 
particle breaks up into two qualitatively different and spa- 
tially separated stages. This corresponds to the fact that the 
characteristic well dimension (Uo/mf2 2)112 exceeds in terms 
of the parameter (u , /T) ' /~)~ the width (T/mw2)'I2 that is 
essential for the formation of the above-barrier flux (we as- 
sume that f2 -w). This means that the viscous friction and 
the fluctuations alter the energy of the particle as it moves in 
the main part of the well, but their relative influence on the 
motion near the barrier is small in terms of the parameter y/ 
w< 1. We can consequently assume that the particle is re- 
flected from the barrier while possessing a definite energy, 
after which it oscillates in the well. The particle energy is 
altered by the friction and by the fluctuations, and with the 
particle with this altered energy makes the next attempt to 
go through the barrier. 

We introduce in accordance with the foregoing the dis- 
tribution function of the particles incident on the barrier, 
given by the relation (see Fig. 1) 

The motion of the particle near the barrier can be regarded as 
nondissipative, so that we obtain for the rate of decay of the 
metastable state 

We write down the equation for f (E) using the following 
considerations. A particle with energy E' is reflected from 
the barrier with a probability [l  + exp(2r~'/o)]-' and re- 
turns to the barrier after one oscillation in the well. The aver- 
age energy lost thereby is S = yS,, and the mean squared 
energy spread is  ST)'/^, so that the probability of having an 
energy E is given by the Gaussian expression 

g ( E - E 1 )  = (&6T)-"' exp [- (E-8'4-6) ' / 4 6 T ] .  (15) 

we rewrite (16) in the form 

- m 

The Fourier transformation 

permits the integral equation (18) to be reduced to the multi- 
plicative-difference equation 

The boundary condition for this equation is obtained from 
the boundary condition (4) and is tantamount to the require- 
ment that p(A ) have at A = - i/2 a pole of the form 

iQ exp ( - U J T )  
q ( h )  = - I h+i/2 1 el. 

2n (h+i/2)  ' 

To solve (20) we factor the multiplicand of p(A ): 

Those branch points of the integrand in (23) which are clos- 
est to the real axis are located a t2  ' = + i/2. This means that 
the functions G+(A ) and G-(A ) are analytic at I d  > - 1/2 
and Im A < 1/2, respectively, and the intersection of the 
analyticity regions is a strip I I d  I < 1/2. 

We introduce a new function 

1 " G+ (h+2ninTlo)  *cu=-H G- ( A )  n-1 G- (h-2ninTlo)  ' 

It can be directly verified that 

It follows from a comparison of (25) with (20) and (21) that 
p(A ) differs from $(A ) by a function that reverses sign follow- 
ing a shift by 2ri/Tw and has a pole at A = - i/2. Obvious- 
ly, thisfunctionis l/sinh[w(A + i/2)/2T]. Thus, thesolution 
of Eq. (20) with boundary condition (21) is 

We express f (E) in the form of the condition for reproducing i Q o g ( h )  exp ( -U, /T)  
cp(h)= - 

f (E)  after reflection of the particle from the barrier and one 4nT sh[o ( h + i / 2 ) / 2 T ] $ ( - i / 2 )  ' (26) 

oscillation in the well: When (23) is allowed for, the infinite product (24) is trans- - 
(e-s ')  f (8')  de' r c & ) =  J 

- m 
l  +exp (2ne ' lo )  ' 

Introducing the function 

q ( e )  =f (6) [ l+exp(2nelo) l - ' ,  

formed into 
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The time r is connected with the function p(R. ) by the 
relation 

which is obtained when account is taken of the definition (14) 
and of the substitution (17). For the sought quantity A we 
obtain after substituting (26) and (28) and allowing for (1) 

Substituting here expression (27), we get ultimately after 
simple transformations 

o/2T 
A =  

sin ( o / 2 T )  

Lo  
(chF- c s ) }  2T . (29) 

Neglecting quantum effects (w/T = 0) we have 

In the case of small dissipation S(T this leads to the 
Kramers result (7). Allowing for the next term we obtain in 
this limit 

where f (x) is the Riemann zeta function, f (1/2) = - 1.46. 
We note that (3 1) is not analytic in S in accord with the fact 
that reversal of the sign of the viscosity coefficient changes 
qualitatively the properties of a Brownian particle. In the 
limit S) Ti t  follows from (30) that 

Acl *1-2 (Tln6)'" exp (-6/4T),  6 B T .  

In the case S(w2/T Eq. (16) goes over into the differen- 
tial equation (lo), and the result for A is given by (12). The 
general expression (29) enables us, in the limit 6, w(T, to 
obtain the following expansions: 

where Cz0.577 is the Euler constant. It can be seen that in 
both cases the quantum corrections do not exceed in order of 
magnitude the classical correction - (6 /T)~". 

If 1 - w/2aT( 1 the bulk of the flux is due to tunneling, 
so that 

+ f $ l {  n I-exp [- 6 (P a)]} /.ch 2d.. 

The negative correction from the second term can be large 
only if S(T. In this case 

A *  
1 1 T -- In - 

I-o/2nT 8n 6 ' 

Expressions (29) and (30) yield the complete solution of 
the Kramers problem in the quantum and classical cases, 
and the expressions that follow them give the expansions for 
A in limiting cases. These results were obtained assuming 
validity of the classical treatment in the main part of the 
well. This assumption is justified because for particles with 
energy E close to the top of the barrier the period of the 
oscillations diverges logarithmicaly in the absence of fric- 
tion, and the distance between the quasiclassical-quantiza- 
tion levels decreases and is of the order of w/ln(U0/&). 

The exact expression obtained above for A is valid at 
sufficiently high temperatures T> w/2r and at not too low 
values of the viscosity coefficient ln(w/y)(U,/w. If one of 
these criteria is violated, it is necessary to allow explicitly for 
the non-parabolicity of the barrier. A problem of this type 
was investigated in an exponential approximation by Larkin 
and Ovchinnikov5 using a differential equation of the type 
(10) employed in the limit S( T. Siito and the author (Ref. 6) 
investigated the case of extremely low viscosity, when y is 
comparable with the rate of tunneling decay of levels that are 
close to the bottom of the well. In this case it turns out that at 
T * > T >  0 /ln(UJ0 ) we get the activation relation 

and it is assumed that Uo& T * & 0  /ln(UJ0 ). The transition 
to a pure tunneling decay from the ground state takes place 
at T - 0  /ln(UJ0 ). 

We have assumed so far that after overcoming the bar- 
rier the particle leaves the potential well forever. Assume 
now that the decrease of the potential on the right of the 
barrier, shown in Fig. 2, gives way at some instant to an 
increase, so that the potential has two minima and one maxi- 
mum, as shown in Fig. 2. If the dimensions of the right-hand 
well are large enough, the particle that lands in the well loses 

FIG. 2 
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in one oscillation an energy larger than T, and cannot return 
to the left-hand well. In this case our previously assumed 
one-well approximation is valid. If, however, a particle with 
energy on the barrier level loses in one oscillation in the left 
and right wells energies S, and 8,  comparable with T, it is 
necessary, when calculating the lifetime of the particle in the 
left-hand well, to take into account the possibility of its re- 
turn from the right-hand well. 

We introduce in analogy with (13) the functions f , ( ~ )  
and f,(e), which yield the densities of the particles incident 
on the barrier from left and right wells, respectively (see Fig. 
2). The function f , ( ~ )  is formed by left-well particles with a 
period earlier than those reflected from the barrier, and 
right-well particles with period earlier than those passing 
through the barrier into the left well. The function f ,(~) is 
formed similarly, so that the system of equations for the two 
functions is 

gl (8-8' )  2ne' 
f l ( E ) =  J i+exp ( 2 n e f / o )  [ f l  ( 8 ' )  + f 2  ( e l )  exp -1 def ,  

- m 
0 

whereg, (g,) differs from (15) in that 6 is replaced by 6, (6,). 
The particle is initially in the left well, therefore Eqs. 

(32) must be supplemented with the boundary conditions 

The rate of departure of the particles from the left well is 
then given by 

Introducing the functions 

and using the Fourier transformation (19), we obtain the sys- 
tem of equations 

cpz (A-2niT/o)  =g2 (A) 9 ,  ( I -2niTlo)  - [ I-g, (A) 19, (A) ,  (35) 

where 

To calculate TI it is suffices, according to (33), to know 
only the difference p, - p,. The equation for it can be easily 
found by solving the system (35) for p,,, (A  - 2viT/w) and 
forming the required difference. We then obtain 

This equation is solved in trivial fashion, since the coefficient 
of p, - p, in the right-hand side is made up of functions 

such as (22), and can therefore be directly factorized. In full 
analogy with the transition from (20) to (29), we obtain 

where 

with A (6) given by (29). We indicate by way of example that 
in the case S ,,, (w2/T we have according to (12) 

It follows from (38) that the transition to the one-well ap- 
proximation takes place at S,>S, when A (S,)=A (6, + 6,). 

The quantities T and T, obtained above must be regard- 
ed as the parameters of the elementary processes and used 
subsequently in the phenomenological equations for the 
populations. Assume, for example, that there is no barrier, 
and that U (x) tends with increasing x to zero in such a way 
that the integral (7) for the action converges. In this case, of 
course, we must set w = 0 and use expression (30) for A. 

The particles leaving the well will become thermalized 
in accord with Eq. (3), and after times t>y-' will have a 
Boltzmann distribution in velocity, while their density n(x, t ) 
will obey the diffusion equation with a diffusion coefficient 
D = T/my. The particle flux into the well will be propor- 
tional to n(0, t ), and the proportionality coefficient can be 
related with the well characteristic from balance consider- 
ations under equilibrium conditions. Accordingly, to find 
the well population n(t ) we must solve the system 

an ( x ,  t )  = d2n ( x ,  t )  
d  t  dx2 

with the boundary condition 

The solution is easily obtained by using Laplace trans- 
forms. Allowing for the exponential smallness of 1/r com- 
pared with the remaining quantities, we obtain ultimately 

2  exp( -zz t / to )  2ny 2Uo 
n ( t )  = -I dz, to = - exp -- . 

rc z2+ I Q T 
0 

Equally worthy of attention here are both the nonexponen- 
tial relation n(t ) and the fact that the activation dependence 
of the characteristic time to is determined by double the bar- 
rier height. 

The foregoing results can apparently be applied to such 
experimental systems as a compact Josephson junction and a 
superconducting ring closed by a Josephson junction. If the 
total current through the junction is given, the fluctuations 
of the phase g, of the order parameter are described by the 
equation7 

@ 0 @ 0 
C - q  4- -$+I,  sin rp=I+Z, ( t ) ,  

2n 2nR 
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where Cis the capacitance of the junction,@, the magnetic- 
flux quantum, R the resistance of the junction in the normal 
state, I, the junction critical current, and If(t ) the fluctu- 
ation current. The potential U (q, ) and the viscosity coeffi- 
cient are given in this case by 

cD0 1 
U(rp)=--[Iccosrp+Irp], y = ~ ~ .  

2n 

Ifthe current l i s  close to critical the shape of the poten- 
tial well is close to a cubic parabola. We then obtain for the 
quantities that enter in Eqs. (I),  (14), and (34) 

We note that for a strong enough dissipation the supercon- 
ducting-current damping time was calculated by Larkin and 
Ov~hinnikov.~ 

The fluctuations of the magnetic flux through a super- 
conducting ring closed by a Josephson junction are equiva- 
lent to the motion of a Brownian particle in a potential con- 
stituting a superposition of a parabola and a sinusoid. By 
variation of the external magnetic field the potential can be 
so transformed that it suffices to take only two minima into 
account. In this case the probability of the transition 
between the minima is given by (38). In a definite parameter 
range the decay of the metastable state of the superconduct- 
ing ring can be described also in the one-well approximation, 
when expression (29) is valid. We note that fluctuations in a 
superconducting ring were analyzed in the high-viscosity 
limit by KurkijarvL9 

It appears that Josephson junctions are the most suit- 
able experimental objects for the observation of the decay of 
metastable states.'' We note nonetheless that the problem of 
departure of a Brownian particle from a potential well is 
being actively discussed in connection with chemical reac- 
tions in a condensed phase,11 thermal desorption of atoms 
from a surface,12 catalysis on a surface,13 and dynamics of a 

charge-density wave.14 
It was shown thus in this article that the Fokker-Planck 

equation for the motion of a Brownian particle having a low 
enough viscosity, in the presence of potential barriers, is 
equivalent to an integral equation in the energy variable or 
else to a system of such equations. A Fourier transformation 
changes these equations into multiplicative-difference equa- 
tions that can be solved by a factorization method, as was 
done above, or by another method.'' The described scheme 
is suitable for the calculation of the decay rate of metastable 
states of a Brownian particle in one-well and two-well poten- 
tials with account taken of the tunneling transparency of the 
barrier. 

The author is indebted to S. V. Meshkov for a number of 
valuable discussions. 
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