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A theory is developed for scattering, by a spherically symmetric potential, of electrons in a zero- 
gap semiconductor having a spectrum described by a Luttinger Hamiltonian. An exact solution of 
the scattering problem is obtained in the approximation P = m, /m, ( 1 (me and m, are the 
electron and hole masses) in the case of potentials V(r) = U at r < a and V(r) = 0 at r > a. It is 
shown that the results of the usual scattering theory do not hold in a wide range of incident- 
electron energies. The positions and widths of the quasilocal hole levels against the background of 
the conduction band are obtained for the potential well. 

1. INTRODUCTION 

The theory of kinetic effects in a zero-gap semiconduc- 
tor is based as a rule on the Born approximation.' It will be 
shown here, however, that in this case the condition for the 
validity of the Born approximation is quite restricted. The 
reason is that, as a rule, the masses of the electrons and holes 
in a zero-gap semiconductor differ greatly. In HgTe, for ex- 
ample, the ratio of the electron and hole masses is 0 = me / 
m, ~ 0 . 0 6  (Ref. 2). The energy dependence of the cross sec- 
tion for scattering of slow electrons is therefore by far not the 
same as in ordinary scattering theory, and this dependence 
cannot be described in the Born approximation (see Sec. 3). 

We propose in this paper an exact solution of the prob- 
lem of a spherically symmetric square potential well (or 
hump) within the framework of the Luttinger spherical Ha- 
miltonian. To our knowledge this is the first case in which 
the Luttinger Hamiltonian could be diagonalized analytical- 
ly and the wave functions of the quasilocal states could be 
obtained. The solution permits an analysis of the scattering 
phase shifts at all values of the energy and of the various 
parameters of the potential well. Moreover, it provides an 
idea of the character of scattering by a large class of poten- 
tials that can be roughly approximated by square wells or 
barriers. We consider this to be the main task of this paper. 

To find the scattering amplitude we need a partial-wave 
method, which has not been developed for a zero-gap semi- 
conductor, although it was found3 for the valence band of a 
Ge-type band. " 

The specific feature of a zero-gap semiconductor is res- 
onant scattering of electrons by quasilocal levels. The cross 
section for this scattering is determined by the level width. 
The width of the lowest level was obtained for the case of a 
Coulomb center by computer calculations in Ref. 4. In the 
present paper the widths and positions of the resonances 
were analyzed as functions of the well parameters (Sec. 4). 

2. METHOD OF PARTIAL WAVES 

The spectrum of a zero-gap semiconductor is described 
by the Luttinger Hamiltonian. The Schrodinger equation in 
an external potential is 

where 6 = - ifiV; J is the angular-momentum operator 
with value 3/2 (its projections are 4 x 4 matrices); P i s  a four- 
component wave function; y, and yare the Luttinger param- 
eters. 

The Luttinger Hamilton@ cgmm-utes wiih the total- 
angular-momentum operator F = L + J, were L is the orbi- 
tal-momentum operator. In a centrosymmetric potential the 
wave functions are classified in accordance with the tot% 
angular momentum F and its projection M. The operator L 
does not commute with the Hamiltonian, so that a wave 
function with fixed values of F and M is a superposition of 
four states with different 1 from F - 3/2 to F + 3/2. In addi- 
tion, the parity operator i commutes with the Hamiltonian. 
At a given parity I, this superposition contains only a pair of 
values of 1 of like parity. The general solution of (2.1) is 

Y ( r ,  0 ,  9) = C B p.1 R pi I ( r )  ~ F M I ~ ,  (2.2) 
FF,r 

where BFM are the expansion coefficients. The values of I, 
are F - 3/2 and F + 1/2 for one parity and F - 1/2 and 
F + 3/2 for the other. The angle function is 

Here xZ(p) is an eigenvector of the matrix J,: 
J,xZ ( p) = pxZ ( p); The index p takes on values + 3/2 and 
+ 1/2, and the Wigner 3j symbols and the spherical func- 

tions are defined in the same manner as in Ref. 5. The radial 
functions R,, are defined for each parity value by a system of 
two equations4: 

(7%-2y C O S  U F )  PF+PFRp, ~ + l , , + 2 ~  sin CCaPF+P-pRF, F - * / ~  

+ (2m,/A2) (E-  V )  RF, F + I I ~ = ~ ,  (2.4) 
(7i+2y cos aF) P-F+P-FRp, F-3/,+2~ sin ~ F P - P + P F R F ,  P+V, 

+ (2m,/AZ) ( E -  V )  RF, F-31.=0; 

(7,-27 cos a"#) P ~ ~ , P ~ + ~ R ~ . ~ + ~ , + ~ . (  s i n  C P P ~ + : , , P - ( F + ~ ) R P , F - ~ I ~  

+ (2mo/R2) ( E - V )  RF,F+Y,=O, 
(2.5) 

(y1+27 cos a F )  P ~ F + ~ , P - , ~ + ~ , R ~ , ~ - ~ ~ ,  

f 27 s in  B ~ P ~ ( ~ + , , P ~ + ~ R ~ , ~ + Y ,  
+ (2mo/RP) (E-V) Rp/-l,,=O, 
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where I, = F - 3 / 2  and in the difference with 1, = F + 1 / 2  respec- 

d F+'lr d F-'Is tively as r-+ co : 
P p = - + -  , p p + - - - - ;  

dr r dr r (+) 'I2 exp [ i  + ( F - ~ / , )  - i 8 F 1  , 

2F-3 
cos a ~ =  - 2F+5 

cos &=- - ' sin a p ,  sin Bl>O. 
4P ' 

I 
4(F+1)  ' XBFMt- ( - 1 )  F+"-3n [ (2F+1)  (2F-2)  ] I h  

The asymptotic forms of the functions R as r-+ co and at 
E>Oare 

BF 
R ~ + + a = t g  - R F ~ H ,  2 (2 .7)  

where k,  = (2m,  E / f i l l 2 ) ,  and me = m d ( y ,  + 2 y )  is the elec- 
tron mass. To introduce the scattering amplitude we must 
subtract from the function !P(r, 8 ,  p )  [Eq. (2 .2)]  the wave 
function of the incident electron 

Here p = + 1/2 ,  corresponding to the conduction band. 
This equation is transformed into the usual expansion of a 
plane wave in spherical functions if allowance is made for the 
summation formula5: 

The coefficient B,,, must be chosen such that as r - t m  
the general solution (2 .2)  be a sum of the plane wave (2 .8)  and 
a scattered and diverging waves, i.e., 

exp ( ik ,r )  
=f,(01 (PI 1 

where f, ( 8 ,  p  ) is a four-component column. In the case of a 
simple band all the radial functions are independent, so that 
the converging wave can be eliminated by suitably chosen 
numerical coefficient in each radial function. The specific 
feature of the case considered is that two radial functions 
with specified values of F and I have one and the same nu- 
merical coefficient B,,, whose choice must eliminate the 
convergent wave in the difference (2 .10)  simultaneously for 
two different values of I , .  Let us verify that this can be done, 
using as an example the parity I to which correspond 
I ,  = F - 3 / 2  and F + 1/2 .  Using (2 .6) ,  we write down the 
coefficients of the converging wave in the difference with 

Both expressions vanish at the same value of B,,, , as can be 
verified using the identity 

The parity corresponding to I ,  = F - 1/2,  F + 3 / 2  can 
be similarly treated. As a result we get 

It can be seen from (2 .13)  that, in contrast to a simple band, 
the scattering amplitude f, depends on the azimuthal angle 
p .  It is easy to verify, however, that If, 1' depends only on the 
polar angle 8 .  

The right-hand side of (2 .13)  can be made more compact 
by replacing the spinors X, ( p ' )  with the spinors X, ( p' )  that 
are eigenfunctions of the helicity operator (nJ) ,  where n is a 
unit vector in the direction of the momentum k of the scat- 
tered wave. We have 

where D iF is the finite-rotation matrix5 corresponding to 
the angular momentum 3 / 2 .  Substituting (2.14) in (2 .13)  we 
get 

where f,,, (6, p) is the scattering amplitude of an electron 
with helicities p and y' in the initial and final states, respec- 
tively. It can be seen from Fig. 1 that in elastic scattering of 
an electron with positive energy ( I p (  = 1 / 2 )  a transition is 
possible only into states with helicities y' = 1 / 2 .  This is 
demonstrated in Appendix 1 by analyzing the explicit 
expression for f,,. . It is also shown there that 
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is the hole mass. It is convenient to determine the coefficients 
A, B, C, D, and G from the conditions that the functions (3. l), 
as well as the function XF and YF (Ref. 4), viz., 

FIG. 1.  Energy spectrum of zero-gap semiconductor. Positive energies 
correspond to electronic states with helicitiesp = + 1/2. Corresponding 
to holes (negative energies) are states with helicitiesp = f 3/2. 

where 

1 for lr=Ff'lz (2.16a) 
= { - for zI=F-'/. 

This is in fact the main result of the partial-wave method for 
the band structure of a zero-gap semiconductor. The general 
expression for the integral scattering cross section is6 

0 ( E )  = dQ 1 f,~ ( 8 , ~ )  I ' = 2 (2F+1) s i d  GF1. 
P' 

k.2 
p.1 (2.17) 

We present explicit expressions for the scattering am- 
plitude in the case of greatest importance for what follows, 
when it can be assumed that only one phase shift S and 
F = 3/2 and I = 1 differs from zero: 

1 
fv, , [ j2  = -(em-1) e-iq/z cos 

zke 
1 

f-'l,,'h = -(eZt6-I)  eiq12 sin- 3 
zk. 7 2 2 

3. ELECTRON SCATTERING BY A POTENTIAL WELL 

Consider a potential well in which V (r) = Uat r < a and 
V (r) = 0 at r > a. The most interesting results are obtained in 
scattering of slow electrons, for which k, a( 1. In this case, at 
any fixed value of F, the system (2.4), which contains the 
function R ,  .- ,,, with minimal orbital angular momentum 
I = F - 3/2 yields a phase (k, times larger than the sys- 
tem (2.5). We turn therefore to the system (2.4). Its solution is 

where 
x,= [2me ( U - E )  /hz] ", xh= [2mh(U-E) /h2] 

kh= (2mhElfi2)'", 
mh=mo/ ( 2 ~ - 7 , )  

X,=cos ( 4 2 )  PpRF+#-sin ( ~ P / ~ ) P - P R P - ~ I , ,  

yF=-~-'  [sin ( a F / 2 )  PFRF+t/,+cos  UP/^) P-FRF-~I  (3-2) 

be continuous at the point r = a. These conditions are 

It can be seen from (2.6), (2.7), and (3.1) that 
t g  6F=G/D. (3.4) 

It can be shown that at U(fi2/mea2 (i.e., at xea(l  and 
k,a(l) the terms in the right-hand sides of the first two 
equations in (3.3) can be neglected, and in the left hand sides 
it is necessary to expand in powers of k, a and x, a. Solving 
the system in this approximation, we get 

JP+l(xha) + 

Qa= KF+I ( h a )  YE-=- k.z E 
(xha) Jp(xha) (kha) Kp (kha) ' x.2 U - E '  

(3.5a) 
Equation (3.5) was obtained under the assumption that 
x, a(1 and ke a( 1. It was assumed in addition that U > E .  At 
U < E  expression (3.5) retains the same form, but we must 
substitute J, (x, a)-tIp (Ix, la) in (3.5a). The ratio of x,a and 
kea can be arbitrary. Ifxea>kea, we must put v = 0 in (3.5). 
It can be shown that Eq. (3.5) with v = 0 remains valid also at 
%,a> 1 (but k,a(l). 

At U> 0 the denominator of (3.5) vanishes at certain 
values of the energy. This leads to resonant peaks in the ener- 
gy dependence of the scattering cross section. The positions 
and widths of the resonances are analyzed in the next sec- 
tion, and now we consider energy regions far from the reson- 
ances. 

As can be seen from (3.5), at k, a 4 1 we can confine our- 
selves to one phase with angular momentum F = 3/2. In the 
case of a simple band the condition k, a( 1 also means that 
we can confine ourselves to one phase corresponding to scat- 
tering with zero orbital momentum. In this case the scatter- 
ing cross section is known to be 

0=4xa2, UBh2/m,a2,  (3.6) 

Equation (3.6) corresponds to scattering by a hard sphere. 
Equation (3.7) is obtained in the Born approximation, which 
is applicable at k,a( 1 if U<fi2/mea2. 

Analysis of (3.5) shows that Eqs. (3.6) and (3.7) are not 
valid for electron scattering in a zero-gap semiconductor. It 
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turns out that the Born approximation can be used only un- 
der the much more stringent condition U(fi2/mha2 at 
~ ( f i ~ / m , a ~  or U ( E  at fi2/mh a2(E(f i2/mea2.  In this case 
we obtain from (3.5) and (2.17) 

( m . U ~ ~ / h ~ ) ~ ,  (3.8) 
which is half the value for the case of a simple band. The 
same result is obtained in ~ ~ ~ e n d i x  2, where a Born approxi- 
mation is constructed for electron scattering in a zero-gap 
semiconductor by a potential of arbitrary form. 

If the conditions for the applicability of the Born ap- 
proximation are not satisfied, i.e., if U%fi2/m, a2 at E(fi2/ 
mh a2 or U>Eat fi2/mh a2(E(fi2/mea2, we obtain from (3.5) 
and (2.17) the following expressions for the scattering cross 
section and phase: 

tg 6 ~ ~ 6 * ~ ~ = ' / ~  ( k , ~ ) ~  [I f3 /kha+3/  ( k h ~ ) 2 ] ,  (3.9) 
a=8naz (m,/mh) [l+kha+ (kha) ' / 3 ]  ' .  (3.10) 

These expressions, just as Eq. (3.6) in the case of a simple 
band, correspond to scattering by a hard sphere. They can be 
obtained from (3.1) under the assumption that the functions 
R 3/2,0  and R ,,,, vanish at r = a. We note that in contrast to 
the usual scattering theory the cross section (3.10) is much 
less than the square of the geometric dimension of the well. 
At E(fi2/mh a2 

a=8na2 (m,/mh) ', 
and at fi2/mh a2(E(fi2/me a2 

a ~ " / , n a ~  (meEa2/h2) ' ,  

i.e., the cross section increases as the square of the energy, 
again contrary to the usual scattering theory. 

We have considered so far the case k, a (1 .  At k,  a> 1 
the main contribution to the scattering cross section is made 
by phases with large values of the angular momentum. In 
this case the cross section is described by the usual scattering 
theory and is given by 

0=2na2, U B  ((n2E/m,a2)'", (3.11) 

a= (nh2/m.E) (m,Ua2/h2) ' ,  Ua (h2E/rn,a2) Ih. (3.12) 

A scheme that indicates the values of the scattering cross 
sections at all energies and well parameters is shown in Fig. 
2. 

4. RESONANCES AND THEIR WIDTHS 

As noted by Gel'mont and D'yakonov,4 in a zero-gap 
semiconductor there can exist quasilocal levels with positive 
energy. They have a finite width T ,  since they are against the 
background of a continuous electron spectrum, but this 
width is small to the extent that the electron mass is small. In 
our calculation scheme these levels occur as poles of the 
function (3.5) as well as of another function, not written out 
here, that corresponds at fixed F to the solution with the 
other parity. It differs from (3.5) in that F is replaced by 
F +  1 anda, by 6,. 

All the levels (2F + 1 )  are multiply degenerate in the 
angular-momentum projection. The ground state corre- 
sponds to F = 3/2 and I = 1 ,  for only in this state does a 
radial wave function with zero angular momentum enter. 

FIG. 2. Illustration of the dependence of the cross section for scattering of 
an electron on its energy and on the potential: region I-Eq. (3.8); region 
11-u = 8ffaZ(m,/mh)2; region 111-Eq. (3.10). The usual scattering the- 
ory is valid in regions IV [Eq. (3.11) and V [Eq. (3.12)]. 

The system of levels with F = 3/2 and I = 1 is obtained from 
the solution of the transcendental equation 

relative to the energy E3,,  = fi2kh 2 /2mh,  where 
kh + xh = 2mh U / f i 2 .  AS in an ordinary three-dimension- 
al well, the levels appear only starting with a certain well size 
W =  2mh Ua2/fi2. The first level E(,O), appears at 
W = Wo = 4.86, almost double the value for a simple well 
with mass mh . Its goes deeper with increasing U in accor- 
dance with the law 

In a simple well the numerical coefficient in the equation 
analogous to (4.2)  is 1r4/128. The dependence of the ground- 
state energy on the well size is shown in Fig. 3 (curve 1 ) .  

From (3.5) we can also find the quasilocal-level widths 
r $I, where n is the number of the level. To this end we must 
expand the denominator in (3.5) near the value E = E $I, rep- 
resenting (3.5) in the form 

t g  ap=r:) / (E-E?) ) . (4.3) 

For levels described by the system (2.4), it is convenient to 
express the width T $) in the form 

rr) = p ~ ~ $ " )  G;) ( W ) ,  (4.4) 

where G $) ( W )  is a function that depends only on the size of 
the well. For levels described by the system (2.5) we have r $' 
a B F +  . It can be seen from (4.4) that at p = me /mh g 1 the 
level width is small compared with the energy. It is interest- 
ing to note that this property is preserved also at low ener- 
gies, when the level just appears in the well, and its position is 
described by Eq. (4.2). It can be shown that G 9, ( W )  tends to 
a value 2 as W+ Wo, in accordance with 

G:' ( W )  =2+2.56[ ( ~ - W o ) / W o l ,  (4.5) 
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FIG. 3. Curve l-dependence of ground-state energy in units of 
2m,Ey),aZ/fi2 on the well size. Curve 2-dependence of the quantity 
G ',O:, , which characterizes the width of the quasilocal level in the potential 
well [see Eq. (4.4)] on the size W of the well. The dashed curves are the 
asymptotic values of (4.5) and (4.6) for G y), as W- W, and W- rn , respec- 
tively. 

so that the ratio r y), /E y), tends to the value 2P 3'2(1. AS 
W-W . The width of the ground level in the well tends to 
zero: 

rg)/~!,:) -66.4pSW-I". (4.6) 

Curve 2 of Fig. 3 shows G 8, as a function of Was well as 
(dashed) the asymptotic forms of (4.5) and (4.6). 

The amplitudes of the resonant scattering at F = 3/2 
can be obtained with the aid of Eqs. (2.18), (2.19), (4.3), and 
(4.4). The integral cross section has the usual form (see the 
review 7 and the literature therein): 

(we omit the subscript 3/2 of E(") and T(")).  The phase and 
the cross section for resonant scattering, as can be seen from 
(4.3) and (4.7), tends to zero at IE - E(") I,r("). It is clear, 
however, that at energies far from resonance, the phase and 
the cross section tend to their nonresonant values (3.9) and 
(3.10). By using (3.5) we can obtain for the cross section an 
equation valid both near and off resonance, 

The phase S of the nonresonant scattering is given by (3.9). It 
can be seen that Eq. (4.8) goes over into (4.7) at energies close 
to the resonance at JE - E(") I g r ( " ) /6 ,  and coincides with 
(3.10) at IE - E(") I ) r (" '  /6. It is interesting to note that at 
E - E(") = - r'") /S the cross section (4.8) vanishes (antire- 
sonance), and then the phase shift S of the scattering with 
angular momentum F = 3/2 and parity I = 1 assumes a val- 
ue that is a multiple of T. The total cross section (2.17), how- 
ever, does not vanish exactly, but is determined by a contri- 
bution from other scattering phase shifts, which is 
parametrically small, to the extent that04 1. When there are 
many levels in the well (xh a s l ) ,  the distance between the 
positions of the resonance and the antiresonance is of the 

order of e l m h  a2. It is much larger than the resonance width 
r ,  but much smaller than the distance, of the order of 
(x, a)+i2/mh a', to the next resonance. 

APPENDIX 1 

We expand the angle functions PFM, (8, q, ) in the eigen- 
functions of the helicity operator. Substituting this expan- 
sion in (2.13) we get (2.16). We use Eq. (2.14) and the connec- 
tion between the spherical functions and the rotation 
matrices5: 

The angle functions (2.3) take the form 

YFxlI=iI1  

Substituting in (A1.2) the equation8 

changing the order of the summation, and using the equa- 
tions' 

(A1.4) 
(F')' X D-x*,-x, (n) = ( - i ) x " - ~ ' ~ c ; , M r f  (n)  , 

we obtain the expansion of the angle function (2.3) in the 
rotated basis X, (A ) 

Substituting (A1.5) in (2.13) and using the definition (2.15) 
we obtain the amplitude f,,. (8, q, ) of scattering of an elec- 
tron with helicity p in the initial state into a state with heli- 
city p': 

1 
f ~ - ( e , c p )  = - 2ik, (2F+l) [erp (Ziti,,) -I] D:,, (n)  zF', 

(A1.6) 

where 

(A1.7) 
Let us prove that 
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where is defined in (2.16a). Let the given parity I in (A1.7) 
correspond to orbital angular momentum values 
I ,  = F - 3/2, F + 1/2. Then 

It can be seen from (2.12) that A vanishes at (p I # lp'1 and is 
equal to tan2(a,/2) + 1 at (pi = (p'( = 1/2. Direct calcula- 
tion of the factor preceding A leads to Eq. (A1.8). The calcu- 
lation for the other parity is similar. From (A 1.6) and (A 1.8) 
follows the expression (2.16). 

APPENDIX 2 

The scattering cross section for a zero-gap semiconduc- 
tor takes in the Born approximation the form 

k ( (k, p I V (r) 1 kr, p') 1'6 (k2-k"), (-42.1) 

where 
(k, p>=eikrxr (p) (A2.2) 

is the wave function of the free motion of an electron with 
helicity p. We transform the matrix element contained in 
(A2.1) by using (2.14): 

where 8 is the scattering angle (between k and kt); 
q = k' - k, and q' = 2k sin(8 /2). From (A2.1) and (A2.3) we 
get 

0 2m sinqr 
I h r ( @ . ~ ) 1 2 = [ ~ ~ ~ ~ r ) 7 r d r ]  c! I D , ? . ( B ) I ' .  (A2.4) 

It can be seen that in scattering of slow electrons (k,a(l) by 
a potential well the angular dependence of the cross section 
is determined by the factor ID Fi (8 ) 12, as follows from the 
general formula [see (2.18) and (2.19)]. It is easy to obtain the 
total cross section for scattering by the potential well 

We note that for fast particles the answer coincides with the 
known result for a simple band. Scattering in a complicated 
well was first considered in the Born approximation by Bir, 
Normantas, and P i k u ~ . ~  
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