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The experimentally demonstrated anomalously high sensitivity of electrical conductivity y of 
conductor-insulator mixtures to changes in pressure P is explained within the framework of 
percolation theory. The increase AP in pressure that produces the sharp change in y is related to 
the compressibility 0 of the conductor and insulator and the difference between the existing and 
threshold densities of the conductor. The shape of the function y(P) in the region of the critical 
pressure PC is discussed. 

The anomalously high tensosensitivity (ATS) of the 
electrical conductivity y of inhomogeneous media (conduc- 
tor-dielectric mixtures), whereby the value of y of the system 
increases by orders of magnitude for a small change in the 
pressure, was discussed in Ref. 1. According to percolation 
theory,' an increase in the volume fraction @ of the conduc- 
tor in this kind of mixture to the critical value 0, (percola- 
tion threshold) is accompanied by the insulator-conductor 
transition. The sharp increase in the electrical conductivity 
of the mixture as @+F, has suggested the possibility of an 
anomalously high pressure sensitivity of the electrical con- 
ductivity of mixtures close to the critical state.' 

The anomalous tensosensitivity effect has been ob- 
served in powdered mixtures of soot and solid polymers with 
roughly equal particle dimensions (Fig. 1). Uniaxial com- 
pression of this type of mixture in a cylindircal cell was 
found to be accompanied by threshold phenomena, namely, 
a sharp increase in the electrical conductivity at a particular 
(critical) pressure PC (Ref. 3). As the fraction @ of the con- 
ducting component is reduced as compared with @, , there is 
an increase in the pressure necessary to produce the sharp 
rise in conductivity. 

We shall now try to estimate in the first approximation 
the effect of pressure P on the attainment of the percolation 
state in the mixture for different initial (with Po %lo5 Pa) 
"deficit" of the conducting phase as compared with the criti- 

FIG. 1. Conductivity of a powdered conductor-insulator (polymer-soot) 
mixture as a function of pressure for different initial volume fractions @, 
of the conductor; I-@, = 0.23, 2-@, = 0.265, 3-@, = 0.28, G 
@, = 0.3 1,5-@, = 0.39. The threshold concentration under atmospher- 
ic pressure is @, e0.32.  The conductivity was measured at 20 kHz. 

cal volume @, . The volume fraction of the insulator (1 - @ ) 
consists of the volume fraction of the solid polymer and air. 

In the elementary description of the effect, we start with 
the model in which: (1) the mixture is deforemd in a "congru- 
ent" manner under pressure, so that the conducting parti- 
cles, which take the form of spherical inclusions, approach 
one another without change of shape or volume, i.e., only the 
surrounding insulating medium is compressed and (2) the 
electrical conductivity of the mixture can be calculated with- 
in the framework of the random-site problem. 

The critical volume fraction @, of the conductor can be 
determined experimentally for a given type of mixture (see 
Fig. I), or can be calcualted from the known structure of the 
mixture. For a given system at P = Po, we have @, -0.30, 
which is close to the estimated critical volume fraction in the 
random-site model (@, -0.29). In that case, for 0, < @, , 
which is the necessary condition for attaining the critical 
threshold, the increase AP, in pressure can be obtained from 
the formula 

cDol (1-PAP,) =cDc=0,3, (1) 

where is the compressibility of the insulating matrix, or 

It is clear that, whenP= const, the dependence ofAPon A@ 
must be linear. On the other hand, if we know @,,A@, AP, , 
we can calculate the compressibilityg. From the data of Fig. 
1, i.e., @, ~ 0 . 3 0 ,  @,z0.27, and AP, = 0.6.105 Pa, we find 
that 8-0.1. This is a very large value for g ,  but we must 
recall that, firstly, powders have high "initial" compressibil- 
ity at low values ofP  and, secondly, the model is crude, since 
the compression of the matrix is in fact accompanied by con- 
siderable deformation of the conducting inclusions in the 
system of pores. Moreover, for plastic conducting inclusions 
in a rigid porous medium, one would expect that percolation 
due to the change in the shape of the inclusions is more prob- 
able than compression of the matrix. Let us examine this 
particular case. 

We shall suppose that the concentration of inclusions 
remains constant, but the size R of the effective sphere of 
influence of the particles changes (increases) by an amount 
proportional to the degree of compression: 

AEE=kP 'AP, f3) 
where k is the proportionality factor andg  ' is the compress- 
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ibility of the inclusions. To reach the percolation threshold 
in a system with initial concentration No for P = Po and ini- 
tial radius R, of the sphere of influence (which can be the 
initial size of the conducting inclusions), we must increase 
the pressure by AP, = PC - Pa where PC is the pressure that 
has to be reached to satisfy the percolation condition2 
47rNR2/3 = 2.7. The condition for the appearance of the 
sharp rise in electrical conductivity due to compression is 

(Ro+kj3'AP,)3=R,3, ARc/Rc=krF'AP0, (4) 

where k ' is a constant given by k ' = k /R,, and 
ARC = R, - R, = kD1APc. 

The critical (effective) volume fraction @, for percola- 
tion with ARC (R, is then given by 

[Q)O(I+3AR,/Ro)]  l ( l - j3APc)  =@'/(I- j3APC) =@,, ( 5 )  

where the denominator 1 -PAP, represents the compres- 
sion of the matrix, as in (1). The difference A@ f = @, - @ ' 
is, naturally, less than the (9 ~- @, in (2), so that AP, can be 
reached for lower values of the matrix compressibility /3. In 
particular, when 8-0.001, the fraction AR /R, must be of 
theorder of0.03 forAP, = 0.6X lo5 Pa for the soot-polymer 
mixture analyzed here (Fig. 1). Since soot is readily de- 
formed, the large values of AR /Ro seem reasonable. 

It is probalbe that the second model for calculating the 
tensoresistance is closer to reality although, unfortunately, it 
includes the relative increase in the effective radius of the 
sphere of influence, AR /R,, due to the deformation of the 
inclusions, which is difficult to determine. 

Apart from the concentrational dependence of the pres- 
sure shift of the conductivity threshold, it is also interesting 
to analyze the dependence of y on P when the pressure is 
increased near the critical point PC.  In the first model (defor- 
mation of the insulating matrix alone), the dependence of y 
on P is  determined only by the increase in the concentration 
of the conducting particles due to the compression of the 
matrix. In this case, we may wrrite for P >  PC 

00 ' yaPtcDO' (P-Pd  
y(P)='" (-- &) = (4-PAP.)' (I-PAP)' 

or, whenPAP< 1, 

y ( P )  =yaFf@o'(P-PC) ', 
where y, is the asymptotic conductivity corresponding to 
P>P, and t is the critical conductivity e ~ p o n e n t : ~  t = 1.5 for 
30, where0 is the dimensionality. A power-law relationship 
is thus seen to appear with the exponent t. 

In the second model (highly deformable conducting in- 
clusions), the calculation is more complicated. As already 
noted, in this case, the effective size R of the sphere of influ- 
ence increases under the influence of P. This does not, of 
course, imply isotropic "inflation" under the influence P, 
but the "flow" of the readily deformable conductor into the 
system of pores and cracks, the consequence of which is that 
the roughly spherical soot grains are transformed into an 

FIG. 2. Dependence of log y on log(P - PC for P >  PC : the points corre- 
spond to the curves of Fig. 1: 2--0, 3-A, 4-0. 

amoeba-like body with z protrusions, where z is the coordi- 
nation number of the network of cracks and pores. Since the 
flow effect is not random but is confined to the pore space, 
we may conclude that there is a certain correlation between 
the directions of penetration, and the inclusions must grow 
toward one another. 

It would seem that the exponent may be different in the 
second model. 

To estimate the exponent in the function A (P),  we have 
plotted the experimental data on the Ig y/lg y,, 
lg[(P - PC )/PI plane. The experimental value PC was known 
only for @,_~0.27 (Fig. 1). For this value of @,, the data can 
be described by the linear relationship 

Ig ylIg y . .=a+bIg[(P-Pc) lP, l .  (8) 

For the other curves, PC was chosen so as to ensure that the 
experimental data lay on the straight line obtained for 
@ , ~ 0 . 2 7  (Fig. 2). The coefficient b obtained after this (scal- 
ing) operation turns out to be approximately 0.2. This is 
much less than the value t = 1.5 expected on the basis of the 
first model. As already noted, this may be due to the defor- 
mation of the conducting inclusions. The exponent 0.2 is 
close in its order of magnitude to the exponent 1/6 for three- 
dimensional systems. More detailed data on the behavior of 
y near PC will be necessary before more reliable conclusions 
may be drawn. 

The anomalously high tensosensitivity can be charac- 
terized by the tensosensitivity coefficient k, = (dy/y)/(dL / 
L ) where dL /L is the relative deformation. The dependence 
of k, on @ takes the form of ail-shaped curve with a narrow 
maximum corresponding to @+@,. for which k, lies in the 
range lo5-lo6. Tensosensitive components can, in principle, 
be made from such mixtures. 

The author is greatly indebted to Professor A. L. ~ f r o s  
for interest in this research and for discussions of the final 
results. 
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