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The effect of slow excitation-relaxation processes on the temperature Kapitza discontinuity 
at a superconductor-dielectric interface is theoretically considered at heat fluxes that are not 
small, when the deviations of the distribution functions from equilibrium are not small and the 
equations cannot be linearized. Expressions are obtained for the temperature discontinuity as a 
function of the heat flux. It is shown that the absolute value of the Kapitza discontinuity changes 
when the heat flux changes direction. 

A temperature discontinuity, called the Kapitza dis- 
continuity, occurs when heat flows through an interface 
between two media. A theory of this phenomenon at an in- 
terface between superfluid He I1 and a solid was developed 
by Khalatnik~v.',~ Little3 extended this theory to include 
contact between two solids having different acoustic proper- 
ties (densities and sound velocities). The gist of the conclu- 
sions of the theory'-3 is the following. The energy is carried 
through the interface only by phonons. Since the acoustic 
properties of the two media differ, the phonons have a defi- 
nite probability of being reflected from the interface. As a 
result the relation between energy flux I, through the inter- 
face and the temperatures on both sides of the interface is 

Here A is a coefficient proportional to the probability of 
phonon passage through the interface. In the derivation of 
this equation it is assumed also that the phonon distribution 
functions on the two sides remain at equilibrium with the 
temperature To and TI all the way to the interface. 

Some experimental facts, however, have not yet been 
explained by the acoustic-mismatch theory.'-3 One is that 
the Kapitza discontinuity between a superconductor and a 
dielectric depends on the superconductor energy gap that 
can be varied in experiment with a magnetic field (see, e.g., 
Refs. 4 and 5). The Kapitza discontinuity in the supercon- 
ducting state is found to be larger than in a normal metal at 

superconductor on the value of the Kapitza discontinuity at 
a superconductor-dielectric interface. It was shown that the 
presence of hierarchy of relaxation lengths in the supercon- 
ductor leads to the existence of a nonequilibrium region near 
the interface, where the quasiparticle density distribution 
function is 

The dependence of the temperature Tand of the chemi- 
cal potential Y on the coordinate z, determined from the en- 
ergy-flux and particle-number conservation conditions, is 
found to be nonlinear. This produces an additional tempera- 
ture discontinuity that depends on the size of the energy gap. 
This dependence is bell-shaped, and in the vicinity of the 
maximum the discontinuity is tens to hundreds of times larg- 
er than predicted by the acoustic-mismatch theory.'-3 

Experimental investigations of the Kapitza discontin- 
uity at a dielectric-superconductor interface9 confirmed the 
conlusions of the theory of Ref. 8. The dependence of the 
discontinuity on the sample temperature is in fact as predict- 
ed in Ref. 8. The quantitative agreement is also good. The 
range of validity of the theory of Ref. 8, however, is limited. 
The point is that the entire analysis in Ref. 8 was carried in 
an approximation linear in the heat flux I,, when the chemi- 
cal potential Y and the temperature discontinuity S T  are 
much smaller than the unperturbed value of T, i.e., when 
[Ref. 81 

the same temperature. This fact does not agree with the the- 6 T / T < T / A .  
ory of Refs. 1-3, since the sound velocity, the density, and 

(1) 

also the coefficient of phonon reflection from the interface, Condition (1) can be used for a practical estimate of the suit- 

are all practically independent of the size of the energy gap. ability of Ref. 8. For example, at T = 0.2 K, i.e., T/A ~ 0 . 1 ,  

Allowance for the effect of the conduction  electron^^.^ on the the discontinuity ST  should be much less than 0.02 K. 

coefficient of phonon transmission through the interface Condition (1) can be written in the form of a constraint 

does not improve substantially the agreement between ex- on the flux I, (Ref. 8): 
- 

periment and theory. 
On the other hand, the assumption that the distribution 

functions of the excitations are at equilibrium all the way to 
the interface is generally speaking incorrect. Equilibrium 
distributions are established only when the distances from 
the interface exceed the characteristic relaxation lengths. In 
the immediate vicinity of the interface the excitation distri- 
bution functions are not at equilibrium and their forms de- 
pend on the relaxation mechanisms. In Ref. 8 was theoreti- 
cally considered the effect of slow excitation relaxations in a 

Herep, is the Fermi momentum, A the half-width of the 
energy gap, w the speed of sound, T the temperature, I,, the 
mean free path of the quasiparticles relative to collisions 
with impurities, and 1, the mean free path of the phonons 
having an energy higher than 24. Substitution in (2) the pa- 
rameters of the superconducting aluminum used in Ref. 9 
(w = 5.103m/sec,p, = 1.8.10-24 J.sec/m, A = 2.065 K, li, 
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= 1.7-10-5 m, I, = 5-1OP6m) weobtain a condition for the 
suitability of an analysis linear in I, in the form 

I I ,  1 <<5.102 (T/A)'1he-2A1T. (3) 
At sufficiently small T/A the condition (3) is met only for 
very small energy fluxes. For fluxes and temperature discon- 
tinuities measured in practice, the linear theory of Ref. 8 
does not hold. 

We consider in this paper the effect of the disequilibri- 
um of the distribution functions at the interface on the Ka- 
pitza discontinuity in the case of fairly large energy fluxes, 
when conditions (1) and (2) are not satisfied. Just as in Ref. 8, 
we shall assume that the energy is carried inside the super- 
conductor by quasiparticles, and the energy transport by 
phonons is negligibly small. 

The onset of the additional temperature discontinuity 
can be explained qualitatively as follows. Energy is trans- 
ported in a quasiparticle gas by two mechanisms: 1) a non- 
zero flux of quasiparticles, each of which carries a definite 
energy; 3) additional energy transport because particles 
moving in opposite directions carry unequal energies. Under 
conditions of usual heat conduction, the former contribution 
exceeds the latter substantially. In the case considered here, 
however, when the energy is carried out through the inter- 
face primarily by thermal phonons and the quasiparticle flux 
at the interface is zero, the principal role is played in the 
region of the interface by the second component, and the 
temperature corresponding to a given flux should change 
much more rapidly. The nonlinearity of the temperature as a 
function of coordinate is in fact the cause of the additional 
discontinuity. 

At TgA the largest relaxation length is the one in which 
an equilibrium particle number a sets in.' The fast scattering 
of the quasiparticles by low-frequency phonons establishes 
near the interface a quasiparticle distribution function 

=exp [ (v ( z )  - - E ~ ) / T ( Z ) I ,  (4) 
and the equilibrium values of Y and Tare established over a 
length a. To find ~ ( z )  and T(z) we use the energy-flux and 
particle-number conservation laws [Eqs. (9) and (19) of Ref. 
81 : 

where E~ = ( 6; + A ')'I2, gp = p2/2m - 7 , ~  is the chemi- 
cal potential of the normal metal, p and q the momenta of the 
quasiparticles and phonons, o the spin of the quasiparticles, 
o and i the phonon frequency and polarization, D = f v;.ri, 
the diffusion coefficient in the normal metal (we consider 
only the case when the quasiparticle pulse relaxation time 
rim is shorter than the remaining relaxation times), v, the 
Fermi velocity, and J,, "he operator of phonon scattering 
by the quasiparticles. 

Substituting (4) in (5) and (6) and introducing the nota- 
tion 

where N (0) = mp,/n% is the density of states on the Fermi 
surface in the normal metal, we get 

A derivative with respect to z will hereafter be designat- 
ed by a prime. 

We solve the problem in the following geometry: the z 
axis is directed from the superconductor into the dielectric, 
their interface corresponds to z = a > 0, and the origin is a 
point inside the superconductor, at which it can already be 
assumed that Y = 0, i.e., the usual heat conduction regime is 
realized. The uncertainty in the choice of this point will not 
affect the results. Since 

where I, is the energy flux, we can rewrite (8), introducing J, 
= I, /2DN (0), in the form 

(p-PO) ( A + T , )  +p(T-To)  =-J,z.  (10) 

The complete system of equations of the problem is 
p,"=aT'hp (pZ/T2-e-2A/T ) 7 (I1) 

( P - P , )  ( A + T o ) S p ( T - T o )  =-Jez ,  (12) 

p'(0) =-JeIA7 p l ( a )  =0,  T ( 0 )  =To, 

p ( 0 )  =po=Toe-AITo. 
(13) 

Equations (13) are boundary conditions due to the fact that 
p' is proportional to the quasiparticle flux at the given point; 
this flux is equal to zero at the interface and to the energy 
flux per quasiparticle in the interior of the superconductor. 

It follows from (10) that if 

we have ( p- p,)/ po( 1. It is this which makes the transfor- 
mation from Y and T to the variablep advantageous, namely, 
p can be regarded as practically independent of z whereas Y 

and T change significantly. 
Using (8), we rewrite (1 1) in the form 

The second term on the left in (15) can be neglected com- 
pared with the right-hand side if 

at T t T o ,  

(16) 
e rp  ( 2 A  (T-To)  TTO ) at T>T., 

where R = (T~/2e2A/To/2aA 2)1'2 is the same characteristic 
length as in Ref. 8. 

1) Consider the case T <  To (i.e., I, > 0). Condition (16) 
is then satisfied if 
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(J,h/poTo) 2-=C1. (17) 

The nondimensional form of ( 1  5)  is 

2A ,, 
-E;2= E To 

'la ex* [$ (1 - f ) ] - r-*fa, 
where { = T/To and Z = z/A. The boundary conditions ob- 
tained from ( 1  3) for ( 1  8) are 

E: (0) = 0, (19)  

S t  (a) = - JEh/poTo. (20)  
We then obtain from ( 1  8)  

2 )  At T> To ( I ,  < 0 )  the condition (16)  can be shown to 
be satisfied in the entire range (14). We have then in lieu of 
(21)  

At 6 4 2 4  /To expressions (21)  and (22) are transformed into 

3) At T< To (I ,  > 0 ) ,  in the region where S> 1 ,  the sec- 
ond term on the right in (15)  can be neglected compared with 
the first. The analysis can then be carried out in a region 
where (17) is violated, i.e., J,A /poTo 2 1 .  Equation ( 1  1 )  then 
becomes 

p"=ap3/T%. (24) 
If (14) is satisfied we have p=: p,,  and using (10) we can 
rewrite (24) in the form 

2 6  - - To i;*= p" (25) 

whence, allowing for the boundary conditions (19) and (20), 
we get 

From the condition that the solutions (23)  and (26) be joined 
in the region 1<6<2A /To, we get C = - 1 .  Ultimately, 

We note that (27) is a particular case of (21) in this range. 
It follows from (25) that the distance from the interface, 

a, at which the usual heat-conduction energy-transport re- 
gime sets in, is of the order of A ( 24  /To)'12. We can then 
rewrite (27) in the form 

J,a/poTo=2 [ (T,/T ( a )  ) '"-11 ". 

FIG. 1. Curve l-dependence of the normalized additional temperature 
discontinuity S on the normalized energy flux I (see the text): A-inflec- 
tion point of curve; curve 2-temperature "rise" over the length A vs the 
energy flux in the case of ordinary heat conduction. 

The condition (14)  becomes 

(TOIT ( a )  ) "'KAITo, 

and is satisfied at practically all temperatures. 
Figure 1 shows a plot (curve 1 )  of the normalized tem- 

perature discontinuity 

6=(2A/To) [T ( a )  -To] /To 

vs the normalized energy flux: 

J,h 2A Z,h 2A3 
--=--= 
poTo T o  %.To T.I -I '  

where 

x,=2DN (0) e-AfT*A2/To 

is the electronic heat conduction. From the plot and from 
(23) it can be seen that the nonlinear deviations become sig- 
nificant at 6 =: 1 ,  i.e., at 

I T(a)-ToIITo=To12A<<1, 

whereas for the usual Kapitza discontinuity the nonlinearity 
manifests itself only for a noticeable change of temperature 

Figure 1 shows also a plot (curve 2)  of the temperature 
"rise" over the length A vs the flux I ,  in the case of ordinary 
heat conduction: 

2A ( T  ( h )  -To) heat - Z,h 2A =--- 
To To %.To To 

The "rise," comparable with the discontinuity, builds up 

FIG. 2. Additional Kapitza discontinuity vs temperature at low energy 
fluxes (linear case), with (solid line) and without (dashed) allowance for the 
phonon heat transport; 6," is the usual Kapitza discontinuity. 
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over a length 
I ( A / T , )  '%A. 

Curve 1 of Fig. 1 shows how allowance for the nonlin- 
earity influences the dependence of the discontinuity on the 
temperature To for a given I,. With decreasing To, the value 
of 

I Z , I A  2 ~ s  -- 
xeTo ToS 

increases. At IE < 0, i.e., when heat flows from the dielectric 
into the superconductor, S is smaller than that predicted by 
the linear t h e ~ r y . ~  It is larger at I, > 0. 

The theory developed is not valid at small To, since en- 
ergy transport by phonons becomes substantial. Modifying 
the linear analysis8 by adding to the energy-flux conserva- 
tion law [Eq. (9) of Ref. 81 the term (x ,, T ')' corresponding 
to the phonon energy flux (xph is the phonon heat conductiv- 
ity), we obtain the following expression: 

(2: ;;)-' T (a)  -TO=-ZcAph (xs+xph) -' - + - 

where A,, is the characteristic length over which the tem- 
perature changes: 

A plot of (28) is shown in Fig. 2, where the dashed curve 
shows the dependence of T(a)-To on To at xph = 0 (Ref. 8). 
When account is taken of the phonon transport, the linear 
analysis is valid up to large values of the flux II, I, as follows 
from condition (1). 
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