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With breaking of an interatomic bond in a solid as an example, the problem is considered of 
breaking, by a sudden external action, of paired atomic bonds in a medium that can be represented 
as a common-temperature ensemble of paired bonds. The probability of bond breaking as a 
function of the binding energy and of the sudden external force is obtained for different initial- 
temperature regions. The conditions under which the results are valid are discussed and com- 
pared with familiar solutions of a similar problem with adiabatic external action. Possible appli- 
cations of the theory to various physical processes in solids, condensed media, and gases acted 
upon by external forces are considered. Particular attention is paid to field-emission evaporation 
of solids and to the theory of disintegration of solids by thermal fluctuations. 

$1. INTRODUCTION sidered, including the treatment of the elementary act of dis- 

Many systems can be approximately described as en- integration in a "lid. 

sembles of paired bonds with common temperature. The 
problem of the response of such systems to external action 
frequently reduces thus to that of the breaking of a paired 
bond. Some results for the paired potential were obtained in 
this formulation, to various degrees of approximation, in the 
theory of field-emission evaporation from surfaces of solids.' 
Development of the corresponding theory of the elementary 
act of disintegration of solids was also attempted.' The same 
formulation is, in final analysis, the basis of an analysis of 
atom and ion mobility, of diffusion (see, e.g., Ref. 3), and of 
similar phenomena induced in condensed bodies by an exter- 
nal field. Chemical reactions, dissociation, ionization and 
their like in media under external action are also within the 
scope of this model. All the results obtained so far pertain, 
however, to the limiting case of an external action that is 
adiabatic in the sense that wr,) 1, where w is the characteris- 
tic frequency of the limited motion in the paired potential 
and T,, is the time of application of the external action to the 
system. The best known case is the thermally activated bond 
breaking in a medium having a temperature T, and is de- 
scribed by a modified Arrhenius equation for the probability 
of such a process: 

P=exp[- (U,-Fa) IT] (1) 
(the symbols are explained in $2 and in Fig. 1). 

This paper deals with the inverse limiting case wr,,(l, 
corresponding to sudden action on the system. Results for 
the limiting case w ~ , )  1 are cited only to establish clear-cut 
demarcation lines for the applicability of the model as a 
whole. Possible applications of the theory developed are con- 

FIG. 1 .  Paired-bond potential vs relative distance x in the absence of an 
external action and in a field V = - F, . 

52. INITIAL MODEL AND SCOPE OF ITS VALIDITY 

The usual form of the paired (real or pseudo-) potential 
U that ensures an equilibrium distance a between the basic 
elements of the system (see, e.g., Ref. 4) is shown in Fig. 1. 
The limited (finite) motion at E < U,, comprises oscillations 
about an equilibrium position x  = a. Regarding the system 
as an ensemble of different paired bonds, as in the Einstein 
model,4 we assign a common frequency cc, to all the quanta of 
these oscillations. The distribution of each bond over the 
excitation levels En as a subsystem relative to the entire en- 
semble of bonds with temperature T is determined by the 
Gibbs statistics: 

P,=Z-' exp ( -E , lT)  (2) 

(Z is the partition function). In view of the rapid convergence 
of the ensuing sums, we can assume for En the harmonic 
approximation 

E,=ho (n+'/ , )  . (3) 

We regard the external field as uniform within the cho- 
sen microvolume: 

V (x) --Fx. (4) 

In a paired-bond potential U perturbed by a field V (see 
Fig. 1) the excitation levels corresponding directly to unlim- 
ited motion are En > E m .  In addition, the levels En <Em 
become quasistationary and permit breaking of the bond. In 
a dense medium, of course, as the distance from the equilibri- 
um position x ,  increases the actual form of the paired-bond 
potential becomes highly sensitive to interactions with sur- 
rounding structure elements (to be specific, this will hereaf- 
ter be referred to as atoms). The potential becomes depen- 
dent not only on the distance x, between the atoms of the 
bond, but also on the distance from these atoms to their near- 
est neighbors. There can therefore be no talk of a paired 
potential in this region (the dashed curves in the figure). It is 
important, however, that the paired potential be a good ap- 
proximation in the vicinity of x ,  also at x>xm, since a no- 
ticeable contribution [see, e.g., Eq. (A3a)I to the tunneling 
probability is made by levels located noticeably below E m ,  
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whereas for above-barrier transitions this is immaterial to 
within exponentially small effects (above-barrier reflection). 

The probability of bond breaking in a medium of tem- 
perature Tby an external field Vcan be written according to 
the foregoing, taking (2) into account, in the form 

En p z 2 - 1  w n b ~ k  exp ( - -T-), 
n,k  

where w,, is the probability of the transition, under the ac- 
tion of V, from the level En to E, . The quantity Dk has the 
meaning of the probability of transition from a level Ek into 
the region of unlimited motion. Therefore D, = 0 for a sta- 
tionary level, Dk = 1 (neglecting above-barrier reflection) at 
E, >Ern,  and D, = Do, is the probability of tunneling from 
a quasistationary level E, < Em . 

In the case of adiabatic perturbation (wr,) 1) the prob- 
ability of changing the system state is exponentially small,' 
i.e., w,, =ank,  and Eq. (5) yields 

In the limit of sudden perturbations (wro( 1) this is not the 
case, and Eq. (5) remains in force. If, however, relaxation of 
the nonequilibrium distribution over the excitation levels is 
possible besides the transition to the unlimited-motion re- 
gion, Eq. (5) is valid either if the time from the instant of the 
action is 

t<%, (7) 
or if the stronger conditions wrR ) 1 and wDk rR ) 1 are met. 
These are tantamount to assuming that the system decays 
before it relaxes (7, is the characteristic relaxation time). 
Relaxation is possible, for example, as a result of interaction 
with the ensemble. In a solid, in particular, this is phonon- 
phonon interaction. 

For condensed media, the adiabaticity and suddenness 
conditions reduce, recognizing that 7,-a/u and w -us /a 
(us and u are the propagation velocities of the sound (or of 
the elastic wave) and of the action wave) to the stronger in- 
equalities u(us and u)us. In the first case the rate of appli- 
cation of the external action is much less than the speed of 
sound, and this case can be regarded as quasistatic. The sec- 
ond case is realized, conversely (if the action is mechanical) 
when the disintegration is of the shock-wave (explosive) 
type. 

53. PROBABILITY OF PAIRED-BOND BREAKING IN A 
MEDIUM 

We replace U by a model potential U = Mw2(x - a)'/2 
a t u < x < 2 a o r U =  Uo=MwZa2/2atx>2a,whereMisthe 
reduced mass of the bond atoms. When a field Vsuch as (4) is 
applied we have Em = E, - 2F,, and the corresponding 
quantum number is, taking (3) into account, 

k,= (U,-Fa) /fi~+E-~/,, (8) 

where 
E=FZ/2MAo3 (9) 

is a dimensionless parameter. At k < k ,  the probability D, 
is determined by the barrier factor D ,, of Ref. 5, which takes 
here the form 

where 

and an incorrect factor preceding the exponential in Ref. 5, 
as well as small corrections to the argument of the exponen- 
tial, has been omitted. 

The value of w,, can be approximated with sufficient 
accuracy by the probability of the sudden excitation of a 
harmonic oscillator by an external uniform field (see Ref. 6): 

where L, n(6) are generalized Laguerre polynomials and 
r (k ) is the gamma function. 

If the interaction is weak (64 1, limit of usual perturba- 
tion theory), the probability that the oscillator does not 
change the initial excitation level is 

wnn=e-'[Ln ( E )  i2-1 . 
Formally, just as for adiabatic excitation, we get again (6) .  
Physically, however, such a case is not always realized. 
Sam11 elastic loads, for example, cannot propagate in a solid 
faster than the elastic waves, i.e., the condition u)us is not 
satisfied. 

If, however, {)I (as is known from Ref. 5), w,, is ex- 
ponentially small and the probability of altering the oscilla- 
tor-excitation level is overwhelmingly large. In the model 
assumed this circumstance accounts fully for the features of 
the system response to a fast external action. 

Taking (8)-(10) into account we have from (6) in the 
adiabatic case 
P=P,+P, 

where 
n,=( Uo/Ao-iI,>>>l 

and the first and second terms describe respectively a tunnel- 
ing and a thermal-fluctuation (above-barrier) transition." 

If the action is sudden, it follows from (5) that 

where n and k number the levels of the unperturbed and 
perturbed potential wells, respectively, and wkn is defined in 
(1 1 ) .  For the sake of clarity we change the order of summa- 
tion in (14) representing P, and P,, in the form 
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P + describes then a transition from lower levels n to levels 
with higher numbers k, and it is from the latter that the 
transition into the unlimited motion takes place. Coversely, 
P, corresponds to a transition of the system by "shake- 
down" to the lower levels k from which it goes into the re- 
gion x)x, .  

The results of the calculation of (12), (15) and (16) are 
given in the Appendix. Here we proceed directly to their 
interpretation. 

94. "LIFETIME" OF A BOND 

To simplify the final expressions, we can regard as satis- 
fied the stronger inequality 

Ao/2<<Fa<2U0, (17) 

for otherwise the potential barrier is close to vanishing at 
Fa - U,,, and the bond breaking will not be diathermal. The 
condition in the left-hand side of (17) cuts off in turn only the 
extremely weak loads, with energy on the order of that of the 
zero-point oscillations. In the upshot we get from (Al), (A3), 
(A6), and (17) in the adiabatic case, at an estimated bond- 
breaking probability per unit time r-' as wP 

'- ' -a exp [- (Uo-Fa)/T] , T>T*, (18) 

P - w 2  exp [-2/3(Uo-Fa)/T,] ,  T<T,. (20) 

We have introduced here the notation 

0,='/203~'~ ( T I T )  %, oz=o (1-T/T,) -1, 

T.=@Fa/4 [Uo (Uo-Fa) ] ", T'=Fa (@/Uo)  '12, 
(21) 

where O =h. 
Expression (18) and the first term in (19) agree with the 

known classical result (1). At T >  T * the increment from the 
quantum-mechanical tunneling enters additively into the 
pre-exponential factor and is small. It becomes noticeable 
with decreasing temperature; this is why both terms are re- 
tained in (19) for the general case. When the temperature is 
much lower than T *, however, the second term predomi- 
nates, i.e., only the tunneling is effective. The argument of 
the exponential is then a function different from that in (1 8). 
Finally, at very low temperatures ( T <  T *) only below-bar- 
rier transitions ar really meaningful. The argument of the 
exponential in (20) differs therefore radically from that in 
(18) and is independent of temperature. We emphasize that 
the quantities T *  and T*, which demarcate the regions 
where (18) and (20) are valid, are functions of fa, U,, and w. 

We proceed now to the case of sudden action. From 
(A8) and (A9) we have, allowing for (8)-(10) and (17), 

Under the additional condition expression (22) is trans- 
formed into [see (A lo)] 

a,+-'-out exp [- (Uo-Fa)/T] . (24) 
In the temperature range T * g T g  T * we have similarly [see 
(A1211 

At [see (A13)] T.p - ' (O/T)<TgT*p (O/T),  

Uo-Fa 1 T.' 

If the condition D O  is also satisfied, expression (26) goes 
over [see (A14)] into 

Uo-Fa 
T ~ + - ' - o ~ ~  exp (27) 

which is valid at T, g Tg  T *. 
The following notation is used in (22)-(27): 

together with the definition 

rp ( x )  =x-' ln ( l + x ) ,  

and S,, and St, are written out in full in (A8), (A8a), and 
(A12). 

At low temperatures T g O  we must use the sum of (A1 1) 
and (A15), where 6 = (1/4)(T*/O)3. This case, obviously, 
calls for a more detailed investigation. 

Analysis of P, leads to the conclusion that (22) is small 
compared with (23) in practically all real cases. Thus, the 
frequency r; ' of bond breaking via t,hermally activated 
above-barrier transitions is determined by (23) which, even 
when rewritten in the form 

differs substantially (both in the argument of the exponential 
and in the factor preceding the latter) from (1) and (28). In 
addition, contrary to ( I )  and (18), w,, is [see (28)] a function 
ofFa and T. A transformation to an exponential such as in (1) 
is formally possible [see (24)] only at extremely high tem- 
peratures. Account must be taken here, however, also of the 
additive contribution of (22). As a result, in contrast to (1) 
and (18), we obtain a pre-exponential factor [the term 
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(1 + S,, ) in (22)] that depends on the external force Fand on 
the initial temperature T, and os~illates (!) at Fa(UoO /T. 

The situation is similar also for above-barrier transi- 
tions, whose number per unit time is determined by (26), i.e., 

The expression for T, -' might contain an exponential of the 
same form as in the adiabatic case [see (19)] at D O .  It is then 
again necessary to take into account as a comparable term, 
besides expression (25) [or (30)] that goes over into (27), the 
expression (25) which introduces its own oscillating pre-ex- 
ponential factor (1 + S,, ). Physically, however, such a situa- 
tion is not realized in practice even in extreme cases, for on 
the one hand the condition TW contradicts the condition 
T( T *e, (O /T)  [see (25) and (26)], sinceit callsfor T 2 T *,and 
on the other hand the quantity T; ' introduces at T 2 T * only 
a negligibly small correction to the pre-exponential factor in 
the expression for T; '. 

55. DISCUSSION OF RESULTS AND OF THEIR POSSIBLE 
APPLICATIONS 

Thus, in real cases the lifetime r of the bond is deter- 
mined in the case of a sudden action by above-barrier transi- 
tions [Eq. (23) or (30)] in the temperature range T 2  T * or by 
tunnel transitions [Eq. (26) or (3 I)] at temperatures 

At very low temperatures we have the sum of (A l l )  and 
(A15), which is not investigated here in detail. 

It can be seen that the transitions are activated not only 
by the initial temperatures, but also by the sudden "shake 
up" of the system. The decisive role is played here by the 
excitation of the system from lower to higher levels. On the 
whole the results do not reduce to Eq. (I) ,  and the pre-expo- 
nential factors (as well as T * and T *) are functions of the 
external acting force. An exponential dependence of T-' in 
the form (1) or (18) can occur only if very high temperatures 
DOarerealized. The value of T-' is then determined by the 
sum of (22) and (24), with an entirely different pre-exponen- 
tial factor that gives rise at Fa( UoO /T  to oscillations of r-' 
as a function of the parameter Fa/@) 1. 

By virtue of the condition (7), Eqs. (23), (30) and (26), 
(3 1) describe times t < rR elapsed from the start of the action 
on the system. Therefore, on the one hand, the condition 
firR )1 must hold if the contribution made to the bond 
breaking by the processes described by these equations is to 
be noticeable. On the other hand, the equations that will 
hold during later instants of time t > rR will be (18)-(20), 
obtained in the adiabatic limit, except that T must be taken 
to mean not the initial temperature prior to the action, but 
the temperature established by relaxation in the perturbed 
system at the instant t - r R .  The calculation of this tempera- 
ture calls for a separate study. It follows, however, that when 
the values of T obtained from Eqs. (23), (3), (26), and (31) 
exceed T, substantially a wrong impression may be gained 
that Eqs. (18), (19) and (20) of the adiabatic limiting case are 

valid also at ro 5 w-I. These very expressions may be found 
to hold at wr0( 1 also for an action that is weak in the sense 
64 1, if this case is compatible with the physical character of 
the acting forces (see 93). 

The possible applications of the described model are 
many- to solids, liquids, diatomic-molecule gases, etc., i.e., 
to any system that can be represented as an ensemble of 
paired states with a common temperature. The Appendix 
contains therefore for Eqs. (12) and (14) all the asymptotic 
forms that may be needed in actual cases. 

Let us apply, for example, the results to field-emission 
evaporation. Then Uo is replaced by the activation energy 
Q, ( F )  for field evaporation of a surface atom in the form of 
an n-fold charged ion to which an electric field of intensity 2 
isapplied [Q, (F)  includes in the case of a metal the additional 
lowering of the potential by the image forces], and Fa is re- 
placed by n,?a. The quantity T-' stands then for the rate of 
field evaporation, and Eqs. (18)-(20) lead to the known ex- 
pressions of the problem of field-emission evaporation.' 
Equations (23) and (26), on the contrary, give the rate of 
evaporation for a rapidly applied field 3 with a rise time 
rO(fi-'. We treat similarly atom diffusion stimulated by ex- 
ternal action, as well as ionic conduction in solids or in con- 
densed media. 

All the arguments remain formally in force for external 
action on gases of diatomic (two-component) molecules, i.e., 
for phenomena such as dissociation (decomposition) reac- 
tions, etc. We must only take T to mean the vibrational tem- 
perature of the molecules, r, its relaxation, and a the char- 
acteristic dimension of the molecules. 

We conclude by dwelling briefly on the application of 
the results to the theory of disintegration of solids by thermal 
fluctuations. Equation (18) is then analogous to the Zhur- 
kov's longevity criteri~n'.~ if we put Fa z a y ,  where a is the 
stretching stress and y is the activation volume. Equation 
(19) differs little from the result of Gilman and Tong,' which 
is more elaborate because of the use of an unjustifiably com- 
plicated model. The comparison given in Ref. 2 with the 
experimental data confirms also the validity of Eq. (19). On 
the other hand, the disparity between the high-temperature 
experimental data and Zhurkov's criterion is strong enough 
to merit a special investigation. From among our present 
results, the only useful one in this respect is the expression 
for the temperature T *(ay, U,) that demarcates the regions 
of validity of Eqs. (18) and (19). 

Matters are much more complicated when the loading 
is fast. This case is realized for a solid, as already mentioned, 
only at u)u , ,  i.e., only for action by shock waves. The ensu- 
ing stressed state, however, is the result of the action of the 
shock-wave front and the usually attendant relaxation wave. 
Consequently, Eqs. (23) and (26) cannot be compared with 
the experimental data, since it is necessary to solve first the 
dynamic problem. It remains to hope that the model, which 
is fully corroborated by experiment in the adiabatic-loading 
case, is universal. Hope is raised also by the report of an 
unexpected (by the authors) experimental confirmationg of 
the validity of Zhurkov's criterion (1 8) for disintegration of 
solids by short-duration impact. Within the scope of our 
present paper, this ties in with a postulated existence of an 
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exponential relation such as (18) but with a different (not 
initial) temperature at t > rR . 

Finally, from the viewpoint of a consistent strength the- 
ory, Eqs. (23) and (26) are only the sought bond-breaming 
microprobabilities in a kinetic equation that describes the 
statistical nature of disintegration. It is precisely from such 
an equation that a macroscopic disintegration criterion 
should be derived. 

The author thanks V. P. Krainov and V. M. Agrano- 
vich for a helpful discussion. 

APPENDIX 

For P, we have from ( 12) 
P,=e-lk. (All 

The expressions for Pt from (12) are different in different 
ranges of the parameters. At 

(1, (qk,)  -i<<a2<< I (A21 

the saddle-point method" yields 

where by virtue of (A2) 
qk,-qko=4/,a2>1, 

and the fact that the enhanced left-hand inequality in (A2) 
does not hold rigorously has little effect on the validity of 
(A3). If 

9/cqkma2< 1 (A41 

and (as can always be assumed) 
qk,,>l,  

the Laplace method1' leads to the different result 

~ , ~ [ l - ~ / ~ a ( q k ~ ) ' " ] - ~  exp [ - a ( q k m ) " l ,  (A61 

which is determined by the region Ak- l/q k, near k = 0. 
Under the condition a2 I3% 1 we have 

P t ~ Z / s r  ('/ ,)  e-qk/a''a. (-47) 

Here Pt is determined by values of k close to k,, but by 
virtue of a213) 1 we have P, ( P ,  , i.e., Pt is of no interest. 

For P, from (IS), using the two-dimensional Laplace 
method" and employing in (1 1) the asymptotic expansions 
of the generalized Laguerre and gamma functions," we ob- 
tain 

1 E '12 

xsin 4(kmE)lh - - [ n - 2  (-) ] eos 4 ( k & ) ' " ) ,  
rl km 

which is valid at qk, ) 1. For the oscillating term S,, in (A8) 
we have in the extreme cases 

S,+=O for $2 <<2'jTh, 

n 
Su! = - " [s in 4(kml)  "- - cos 4 (k,,,E) " 

q2+n2 q 

for q k: > 2 ~ ' " ,  

with S,, in the upper limiting case having a power-law 
smallness in terms of the parameter qk  p / 2 <  ' I 2 .  

The probability P,, is similar in character to (Al), since 
it also describes transitions from states k located below the 
potential barrier. Here, however, the states k are intermedi- 
ate and the transitions to them are from upper levels of the 
potential well. The incompleteness of the analogy is manifest 
by the appearance in (A8), in contrast to (A 1), of a substantial 
oscillating pre-exponential factor (at qk  p (2<  the oscil- 
lations are so rapid that they become integrally averaged). 

The probability P,, has no analog in the case of adiaba- 
tic action, since the intermediate state k is arrived at through 
"ejection" from lower states, including some below the bar- 
rier. The difference between the asymptotic form of P,, and 
(Al)  is therefore more substantial: 

where 

The conditions for the applicability of (A9) are 

The oscillating factor S,, in (A9) is practically always ex- 
ponentially small. 

A form with an exponential similar to that of (Al)  is 
possessed by P,, only under the additional condition q(1 
(high temperatures): 

Put-  (2nE) -'" ( I + S , + )  e-qkm, 

(A101 

which in contrast to (A8) has a different pre-exponential fac- 
tor and an exponentially small S,,  . 

In the limit of very low temperatures (q>l )  we have 

i.e., P, reduces to the probability of ejection by "shakeup" 
from the ground state n = 0 into states k>k, . 

For below-barrier transitions we have 
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rl n 
St+ = 7 [ s in  4 (Ek,) " - - eos 4 ( ~ k , )  * ] 

rl +n rl 

which is valid under the condition (A2), with ko the same as 
in (A3). Equation (A12) is similar to (A3), which reflects 
again the partial analogy with the adiabatic transition (tran- 
sitions from levels k < n). The difference lies in the presence 
of an oscillating factor in (A12). 

For tunnel transitions from levels k > n described by P, , 
there is no analogy, and at 

4i9km l n ( l + q )  <<a2$ ln-S( l+q)  <<I 

we have 

where 
4 41n2(1+q) 

Ro=km ----- l n2 ( l+  q ) ,  G=k, - 
9u2q3 27a2q3 * 

The difference between (A13) and (A3) is particularly 
substantial at 7 2 1 (low and moderate temperatures), when 
the level of the initial excitation of the system in accord with 
the Gibbs distribution is low and for tunneling with a notice- 
ably probable perturbation it is necessary to raise the system 
from lower to substantially higher levels. At high tempera- 
tures (74 1) the initial perturbation is large and the effective 
difference n-k is small, therefore (A 13) is reduced at ~4 1 to a 
form similar to (A3) and (A12): 

' (2E'h+nk.")]z, ' Sit =sin 4 (koE)'" exp  - ------ - - [ 9a2k0q2 2 

with ko+ko. Since the condition a2>4/97k, is then satis- 
fied for P, , , we have ko> 1 and the oscillating term in (A14) is 
exponentially small. 

In the case of very low temperatures (7)l) it follows 
from (1 6) that 

which corresponds to excitation of an oscillator from the 
ground state to a level k, followed by tunneling. 

"It can be seen from (12) that it is just P, which is sensitive to the form of 
the potential, and hence to the model assumed. The argument of the 
exponential, however, contains two competing terms, one increasing and 
the other decreasing with k. Therefore P, is determined by the contribu- 
tion of the levels in the vicinity of the optimal value k = k,. In the case of 
negligibly small P,, the number ko is noticeably smaller than k, [see, 
e.g., Eq. (A3a)l. Thus the real behavior of the potential at x - x ,  can 
introduce only an integrally small error. It is therefore required that the 
model potential approximate well the eigenfunctions and eigenvalues for 
relatively low-lying states at x-a,  and also be close to the real potential 
at x>x, . The chosen model potential satisfies these conditions. 
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