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By using numerical methods we carried out the solution of the integral equation which describes a 
nonradiative excitation energy transfer within the framework of the hopping mechanism. We 
used various models for the excitation outflow in a disordered collection of donors with and 
without inclusion of the crystal lattice geometry, and we considered various values of the param- 
eters which characterize the theory. We conducted an analysis of the results. We revealed the 
main characteristics which arise in the kinetics of the hopping luminescence extinction when the 
crystal structure is taken into account. 

One of the problems which arise when investigating 
processes of nonradiative energy transfer in a collection of 
interacting particles is the determination of microscopic do- 
nor-donor (CDD) and donor-acceptor (CDA ) interaction pa- 
rameters which reflect the processes of ion-ion interactions 
at a microscopic level. Investigations, having this aim, of the 
decay curves of the donor excited state after the sample has 
been excited by a short light pulse is as a rule limited by the 
characteristic time intervals, including the limit as t-+CO. 
Generally speaking, this complicates extraction of the infor- 
mation about various stages of the process of nonradiative 
energy transfer. ' These stages could significantly superim- 
pose onto each other so that experimental decay curves re- 
flect a superposition of different processes rather than their 
individual manifestations which are described by various 
theoretical models. The time hierarchy needed in these con- 
ditions by the theory to describe the experimental results is 
often not clear beforehand. The most adequate, even though 
cumbersome, approach to the solution of this problem is to 
analyze, within the framework of an appropriate model of 
the extinction, the experimental decay kinetics over the 
whole investigated time scale, rather than to use only its 
characteristic intervals. A necessary step in this direction is 
to account for the geometry of the crystal lattice, that is, to 
change from integral formulas to their analogs that account 
for the crystal structure. 

It was shown in Refs. 2 and 3 that the kinetics of the 
hopping migration-accelerated energy transfer for samples 
excited by short light pulses is described by the integral 
equation 

t )  = N ( ) R t -  N O - t t - t  t .  ( I )  
0 

Here N (t ) is the number of excitations which are not lost by 
the time t, the function R ( t  ) describes kinetics of the excita- 
tion outflow (escape) to unexcited donors, and the quantity 
No(t )characterizes the kinetics of the static excitation extinc- 
tion. Since, as mentioned above, breaking up of the decay 
processes into characteristic stages can turn out to be diffi- 
cult in certain cases, it is of some interest to describe the 
decay process in a unified way as the result of the solution of 
Eq. (1). 

For low acceptor concentrations and for the dipole-di- 
pole interaction which will be considered below the quantity 
No(t ) is usually written in an integral form:4 

NO (t) =exp (-y.ttl*), r,=4/in*1anA~~k,, (2) 

where y, is the microscopic parameter of the static disor- 
dered decay (n, is the acceptor concentration). From the 
viewpoint of accounting for the crystal structure it is clear 
that the following exact expression for No(t), valid for all 
acceptor concentrations, should be ~ s e d : ~ . ~  

where the sum extends over all sites of the acceptor sublat- 
tice, y = n, /NA is the relative concentration of the accep- 
tors (N, is the concentration of the acceptor sites), 
WDA = CDA /r6, and r is the distance between the interacting 
particles. 

A choice of the outflow function R (t ) is not unique. In 
the early works2.' an equivalent regular lattice of donors 
with some average spacing was considered. In this case the 
outflow kinetics was exponential: 

R (t) =exp   TO), ' c~= (8/21~3CDDnD2)-i, (4) 

where r0 is the most probable time for the donor-donor 
transfer2.' and n, is the donor concentration. An account 
for the return of an excitation to its initial center during a 
random walk over the lattice somewhat increased the total 
time that an excitation would spend at the initially excited 
center.'-'' 

In Ref. 3 an integral expression of the form (1) was ob- 
tained with the function R (t )accounting for the dispersion of 
the probabilities for the excitation extinction in the disor- 
dered donor subsystem. Using Ref. 11 we have3 for R (t ) 

Ih R (t) = exp (-y 't") y, "/SqK~DCDD. ( 5 )  

The "structure" analog of (5) has clearly the forms.6 

where the sum is over all sites of the donor sublattice, 
x = n,  /N, is the relative donor concentration (ND is the 
concentration of the donor sites), and W,, = CDD /r6. 
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An account of the reversibility of the excitation flow in 
ordered as well as disordered donor systems was made in 
Refs. 12-15. In particular, a model was investigated in 
which an excitation is "distributed" between two donors- 
the initially excited one and the nearest unexcited one. Such 
a "partial" account of the return is fully justifiable at small 
concentrations of donors when the probability of finding a 
donor having two or more nearest neighbors is small. In this 
case the outflow function has the form 

According to Ref. 2, accounting for the reversibility of the 
excitation loss reduces to substituting in Eq. (1) the appropri- 
ate outflow function R (t ). 

It is of interest to compare the results of the solution of 
Eq. (1) for different functions No(t ) and R (t ) (without subdi- 
viding the decay curve into characteristic intervals7) and to 
quantitatively assess the influence of the crystal structure 
characteristics on the donor excitation decay kinetics for 
various combinations ofNo(t ) and R (t ). With this aim, Eq. (1) 
was numerically solved with a computer for the following 
combinations of the functions No(t ) and R (t ): 

Therefore, with the use of the exact equation (3) for the 
static energy-transfer function, the cases (8), (9), and (10) 
have different outflow functions R (t ): exponential in the 
equivalent donor lattice model (8); one that accounts for the 
disorder of the donors (9); and one that accounts for the par- 
tial return of the excitations in the disordered donor system 
(10). In the case (1 1) the Forster expression (2) is used for the 
static transfer function N,(t ) and exponential outflow func- 
tion is used for R (t ). 

Precisely the last case as the simplest one is usually em- 
ployed for the analysis of the experimental data in investiga- 
tions of the asymptotics of the decay curves. We compare 
below the results of calculations for this case with the results 
obtained with account of the crystal structure. We remark 
that Eq. (1) with the condition (1 1) was solved in Ref. 16 by 
numerical methods. 

Besides this, time evolutions of the donor-excited-state 
populations were calculated with the use of a relationship 
obtained in Ref. 17 within the framework of the approach of 
Ref. 18: 

where the sum is over the sites of the donor sublattice while 

N(t)=eXp ( -j W(t')  dt' ) 
and n(ri ,t ) are determined in accordance with Ref. 18. 

We remark that a drawback of the developed approach 
is that accounting for the crystal structure can make it diffi- 
cult to obtain in a general form some of the results, particu- 
larly the dependence of the rate of extinction on the particle 
density. However, this is necessary in order to formulate the 
conditions of applicability and correct description of the ex- 
perimental results within the framework of analytical model 
relationships which assume a possibility of isolating various 
stages from the general experimental excited-state decay 
curves. 

It is clear from Refs. 2,3,7, and 15 that the above men- 
tioned dependences remain when going over from the expo- 
nential outflow to a nonexponential one. Nevertheless, as we 
shall show below, disregard of the structure of a real crystal 
can lead to quantitative as well as qualitative disagreements 
between the theory and a real situation. 

We have also calculated the decay curves of the excited 
donor states using the results of Ref. 18. In this reference the 
kinetics of the luminescence extinction was determined over 
the entire time scale within the framework of the hopping 
mechanism for the extinction. They considered the case 
n, R 1 < 1, where R ,  is the effective-extinction-sphere radi- 
us, and they assumed r, = 0 (r, is the minimal donor-accep- 
tor distance). The corresponding expressions had the form 

II ( t )  ='/$n%zA (CDAzo) '' { ' / z c D  [ ( t lzo)  "'1 + (tlzo) Ql [ (t/zo) lh]  

+ (tlnz,) " exp ( - t / zo)  ) , (1 3) 

where 

We conducted calculations for a simple cubic lattice accord- 
ing to (1) in the cases (8), (9), and (lo), as well as according to 
(12), assuming that donors and acceptors can be situated at 
the same sites. As the dimensionless time we chose the quan- 
tity 

z = t / ~ [ ,  ~~- '=Coa /~ i ' .  

When using (1 1) and (13) the dimensionless time was chosen 
equal to T = t /r, because in this case it is assumed that r ,  = 0 
and the time T, looses its meaning. 

In Fig. la the results of the numerical solution of (1) 
with the conditions (8), (9), and (10) are given. As can be 
easily shown in general, in the initial intervals of the excited 
donor state decay curves ( t g ~ , )  the extinction rates are the 
same in all three cases (8), (9), and (10) and equal'.' 

(the sum is over the sites of the acceptor sublattice). Immedi- 
ately afterwards, the curves diverge significantly because the 
donor excited state populations differ in various models by a 
quantity of order 50% already to first order. 

We remark that the maximal extinction rate, which is 
realized for short times ( t g ~ , )  and at the kinetic stage,* when 
obtained by using the expression (3) for N,(t ) with y = x/2 in 
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FIG. 1. Time evolutions of the donor excited state populations 
calculated: (a) according to the formulas (1 )  and (8) (curves 1 and 
l'), (1 )  and (9) (curves 2 and 27, (1 )  and (10) (curves 3 and 3'), 

lo-' where z = CD,, /CDD = 0.2, y = 0.02, x = 0.1 (curves 1-3), and 
x = 0.05 (curves 1'-3'); (b) according to the formulas ( I )  and (8) 
(curve 1), ( 1 )  and (9) (curve 2), (1 )  and (10) (curve 3), wherez = 0.2, 
y = 0.2, and x = 0.033. 

3 

70-' 
N N 

the Burshtein integral equation for self-extinction of impuri- 
ties,= is two times smaller than the one obtained from (14). 

With an increase in the acceptor concentration y (a de- 
crease of donor concentration x) the obtained decay curves 
converge due to an increase in the static extinction contribu- 
tion and a decrease in the migration-accelerated one (Fig. 
lb), i.e., a more distinct separation of one of the extinction 
stages takes place, namely that of the static decay stage. 

We used the exact static energy transfer function (3) 
when solving the integral equation ( I )  with allowance for the 
crystal lattice geometry. Clearly, the results of the solutions 
should, generally speaking, depend on the lattice type and on 
the properties of the function (3). As it was shown in Ref. 19, 
for a given function (with log t as the independent variable) it 
is possible that "oscillations," i.e., sign reversals of the sec- 
ond derivative, take place in contrast to the integral analog 
in (2). The plots given in Ref. 19 can create the impression 
that the population No(t ) oscillates. Nevertheless, it can be 
easily shown that the second derivative of the function (3) 
with respect to time (rather than with respect to log t ) is al- 
ways positive. That is, no such oscillations occur in the usual 
time scale and the indicated effect is purely a scale effect. We 
remark that the extinction rate calculated for the disordered 
donors according to (9) is higher than for the equivalent re- 
gular lattice, although it would seem that the highest migra- 
tion extinction rate should correspond to the ordered distri- 
bution of the donors.20 

If the disordered donors whose concentration is n, are 
to be placed on the sites of a simple cubic lattice with the 
period n; the rate of the excitation outflow z 8.4CDD n i  
would be even smaller than T; I .  Correspondingly, the mi- 
gration extinction rate would be also smaller than if the ex- 
pressions (5) and (6)  were used for the outflow function of the 
real, disordered distribution of the initial donors. This may 
be due to neglect of the correlations in donor as well as ac- 
ceptor surroundings of various donors. This is particularly 
important for donors at small distances from each other be- 
cause fast excitation transfer between them does not lead to a 
real transport of excitations through the donor subsystem 
and it practically does not modulate the rate at which the 
excited state decays. It can be seen from Fig. l a  that a partial 
account of the returnI2-l5 reduces the decay rate owing to 
the reduction in the rate of the real displacement of excita- 
tions through the donor subsystem. In this case (see Fig. la) 
there is a crossing of the decay curves calculated for the equi- 
valent regular donor lattice (8) and for the disordered distri- 
bution of donors accounting for the return (10) (curves 1 and 

3, respectively; curves 1' and 3' intersect at the later time 
than the times shown in the figure). This circumstance is 
clearly related to the fact that the returns start to play a 
significant role only at relatively large times. 

It is also necessary to remark on a certain inconsistency 
of the approach, due to inclusion of the return in the final 
equation obtained by assuming the process to be uncorrelat- 
ed. Apparently, direct inclusion of the return of the excita- 
tions in thederivation of the basic equation would be more 
correct. This is an independent problem which is not solved 
at present. 

Figure 2 shows the results of the solutions of Eq. (1) with 
the conditions (8) and (1 I), that is, with and without inclu- 
sion of the crystal lattice geometry. The relative time t /T, is 
the abscissa. The degree of discrepancy of these results de- 
pends on the ratio T,/T,. It amounts to ~ 6 0 %  for T,/ 

T~ = 0.5 (x = 0.1, y = 0.05) and to z 100% for T,/T, = 1 
(x = 0.15, y = 0.075) within the dynamical range of the do- 
nor excited state population variation, which comprises two 
orders of magnitude. 

As demonstrated in Ref. 2, for sufficiently large concen- 
trations of donors, when the transition into the kinetic limit 
regime takes place, the use of the expression (2) for No(t ) in 
equation (1) is not valid. In order to obtain from equation (1) 
the kinetic regime limit it is necessary to replace the function 
No(t ). With the help of Refs. 2 and 18 it is easy to show that 
generally even when No(t ) is replaced with the expression (3) 
in the limit T~/T,+O (which corresponds to the approach to 
the kinetic limit regime) the rate of the stationary migration 
extinction approaches the initial rate W,,, (14). That is, a 
crossover to the extinction within the regime of rapid excita- 
tion energy migration through the donor subsystem auto- 
matically takes place in this case. 

FIG. 2. Equations ( I )  and (8) lead to the curves 1 and 1' for the values of 
~ ~ 0 . 2 ,  y = 0 . 0 5 , x = 0 . 1  andz=0.2, y=0 .75 ,x=0 .15 ,  respectively. 
Equations ( I )  and ( 1  1 )  lead to the curve 2. 
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FIG. 3. Time evolutions of the donor excited state popula- 
tions calculated according to the formulas (1) and (8) 
(curves with an unprimed number) or (12) (curves with a 
primed number), and for z = 0.2 TJT, = 4 ( C U N ~ S  1 and 
l'), TJT, = 1 (curves 2 and 2'). TJT, = 0.5 ( c u ~ e s  3 and 
37, and TJT, = 0.2 (curves 4 and 4'). In (a) y = 0.02, while 
in (b) y = 0.05. 

Since Eq. (1) is valid for all values of the parameter2 'Yu. K. Voron'ko, T. G. Mamedov, V. V. Osiko et al., Zh. Eksp. Teor. 

q= ( 7 J ) l h ,  A='"l,~3na2CD.4, Fiz. 71,478 (1976) [Sov. Phys. JETP 44,251 (1976)l. 
'A. I. Burshtein, Zh. Eksp. Teor. Fiz. 62, 1695 (1972); 84, 2001 (1983) 

while the approach presented in Ref. 18 is based on an ex- [Sov. P ~ Y s .  JETP. 35,882 (1972); 57, 1165 (198311. 
pansion in the small parameter 3, is for 3B. E. Vugmeister, Fiz. Tverd. Tela 18,819 (1976) [Sov. Phys. Solid State 

18,469 (1976)l; Phys. Stat. Sol. (b) 76, 161 (1976). 
704 < I, it was of interest to make precise the limits of appli- 4Th. FGrster, Ann. Phys. 2, 55 (1948); Z. Naturf. 4 ~ ,  321 (1949). 
cability of the results obtained within the framework of such 
an approach. In Figs. 3a and b we show calculations of the 
evolutions of the donor excited state populations for 
y = 0.02 (a) and 0.05 (b) and for various values of rO/rl (Rw / 
R,, correspondingly). Clearly, within the dynamical range 
for the change in the donor excited state population, which 
covers two orders of magnitude, the calculated values of the 
population are in agreement within -lo%, as is usual in 
experiments at q 5 0.7 which corresponds to Ref. 18. 

We should remark in conclusion that our numerical so- 
lution of Eq. (1) with account taken of the crystal structure 
allows us to obtain a number of principal results and to de- 
termine the microscopic interaction parameters without 
sometimes unjustifiable division of the donor excited state 
decay process into characteristic stages. At the same time, it 
is obvious that this approach is cumbersome, in contrast to 
the presently accepted methods for the analysis of the 
asymptotics. Of course, the choice of one or another method 
of the analysis of experimental data is determined by the 
specifics of the investigated objects and by the concrete ex- 
perimental problem. 
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