
Isotherms and isobars for the crystal-liquid transition in a two-dimensional 
monolayer 

V. V. Avilov and E. S. Nikomarov 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR, Moscow 
(Submitted 13 December 1983; resubmitted 15 March 1984) 
Zh. Eksp. Teor. Fiz. 87,570-580 (August 1984) 

An attempt is made to explain the many experimental anomalies observed in first-order "crystal- 
liquid" transitions in monolayers of surface-active materials, including hysteresis, slope of iso- 
therms in the stratification region, and so on. It is suggested that the freezing of the liquid 
monolayer is accompanied by the emergence of a structure in the form of a solid ring around the 
liquid spot. The surface pressure, i.e., the pressure on the boundary of the monolayer, is then 
determined not only by the conditions of equilibrium between the liquid and the solid phases, but 
also by elastic stresses that appear in the solid ring. These stresses can be determined in the axially 
symmetric case when the entire monolayer and the liquid phase take the form of concentric rings. 
The isotherms (isobars) for compression (cooling) and subsequent expansion (heating) of the mon- 
olayer are determined. It is found that existing experimental data can be interpreted by assuming 
that the plastic threshold of the monolayer is low and plastic strains appear when it is compressed. 
Their irreversibility is responsible for the observed well-defined hysteresis. 

INTRODUCTION 

The experimental isotherms of surface pressure against 
area for a monolayer of surface-active material (SAM) in the 
neighborhood of the crystal-liquid phase transition.exhibits 
a behavior that is not in accordance with generally accepted 
ideas about phase transitions.'.' Whilst calorimetric mea- 
surements show that there is a discontinuity in enthalpy and 
a relatively high latent heat of the transition at the transition 
point, compression isotherms obtained for a monolayer of 
this kind do not have a segment corresponding to constant 
pressure, but they do show a "knee." Thus, calorimetric data 
and compression isotherms indicate the presence of first- 
order and second-order transitions, respectively. Monolayer 
expansion isotherms exhibit appreciable hysteresis, which 
again indicates the presence of first-order transitions. Area 
against temperature isobars also exhibit hysteresis: two dif- 
ferent transition temperatures are observed at constant pres- 
sure when the monolayer is heated and cooled, respectively 
(see Fig. 1). 

Attempts have been made to explain these phenomena 
by introducing artificial assumptions about transitions of in- 
termediate (one and a half) order,3 independent cooperative 
units,2 and so on. The suggestion that experimental results 
were distorted by impurities present in the monolayer and in 
water have not been confirmed. The authors of Ref. 2 carried 
out repeated purification of water and the SAM. Although, 
initially, impurities did, in fact, have an effect on the mono- 
layer isotherms, purification beyond a certain point had no 
effect on the final results. Moreover, results reported by dif- 
ferent authors, using different equipment, are found to be in 
agreement even though the composition and influence of im- 
purities could hardly be the same. 

X-ray scattering data show that, in the more dense low- 
temperature phase, monolayers of many SAMs such as li- 
pids, fatty acids, and their derivatives form a regular trian- 
gular lattice without long-range order. The nature of the 

Bragg peaks indicates that the monolayer takes the form of a 
two-dimensional crystal on a smooth substrate in which, 
again, there is no long-range order. The hysteresis attending 
the phase transitions also indicates that there is a crystal 
phase in which the shear modulus differs from zero. 

The aim of the present work was to explain the shape of 
isotherms and isobars of SAM monolayers on the basis of the 
assumption that hysteresis and other anomalies are due to 
the appearance of elastic stresses in the crystal phase. The 
crystal phase is not then in a state of equilibrium from the 
standpoint of conventional thermodynamics, but the corre- 
sponding relaxation (recrystallization) time is much longer 
than the time of the experiment. This approach was success- 
fully used many years ago by Gibbs4 to describe the melting 
of a three-dimensional crystal. The appearance of elastic 
stresses is due to the different densities of the liquid and solid 
phases and to nonzero shear modulus, at least in one of the 
phases.5.6 So far, experimental data have been obtained both 

FIG. 1. Isotherms and isobars obtained for monolayers of L-a-dipalmi- 
toyllecithin (from Ref. 2: a-surface pressure 17 as a function of the con- 
centration~ of molecules when a monolayer was compressed at constant 
temperature; &isobar of temperature versus area per molecule, recorded 
in two directions-with increasing and decreasing temperature, respec- 
tively. Surface pressure 30 dyn/cm. The curves recorded when the mono- 
layer was respectively heated and cooled were very different from one 
another and yielded different values for the transition temperature. 
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for monolayers of circular and for a cylinder-piston 
type systems. In this paper, we shall give a quantitative anal- 
ysis of the phase transition in the axially symmetric case 
alone: the monolayer will be assumed to be circular in shape 
and its radius will be a function of the external (two-dimen- 
sional) pressure IT,. This model will also provide a qualita- 
tive explanation of experimental data obtained with the usu- 
al rectangular Langmuir balance. The monolayer then has 
the shape of a rectangle and the external pressure is applied 
to one of its sides so that compression and expansion occur in 
only one direction. 

Our main hypothesis on which all subsequent discus- 
sion is based is as follows. We assume that crystallization 
begins on the boundary of the monolayer, and the crystalli- 
zation front subsequently moves from the boundary to the 
center of the monolayer. The solid phase then always takes 
the form of a ring surrounding the liquid phase. We assume 
that crvstallization occurs infinitely slowly (adiabatically), 
so that there are no instabilities due to the propagation of the 
crystallization front. These assumptions are based on the 
analogy with the three-dimensional situation where the 
boundary is the natural crystallization center. The walls of 
the container, made from teflon, can also facilitate the for- 
mation of solid-phase nuclei, since the van der Waals and 
hydrophobic interactions of the SAM molecules with teflon 
give rise to an increase in the local SAM density on the 
boundary of the monolayer. Moreover, in contrast to the 
gas-crystal situation in which the formation of the solid 
phase nuclei occurs all over the monolayer surface, the com- 
pression isotherms have a completely different shape:' the 
stratification region has a horizontal portion which acquires 
a constant slope when the monolayer density reaches a criti- 
cal value. This situation is also characterized by a large den- 
sity discontinuity accompanying the transition, and will not 
be examined here. 

Compression of the monolayer is accompanied not only 
by the crystallization of the liquid phase, but also by the 
deformation of the solid phase already present along the 
boundary of the monolayer. Since experiments have record- 
ed not the pressure on the phase separation boundary, but 
the radial stress in the solid phase on the boundary of the 
monolayer, this explains the increase in external pressure in 
the phase stratification region (see Figs. 1 and 2). The axially 
symmetric shape of the monolayer enables us to obtain the 
external pressure as a function of the monolayer radius in an 
analytic form. We have used the approximation of an elastic 
isotropic medium and have retained only terms that were 
linear in stress and strain. This approximation is valid if the 
relative discontinuity in the monolayer area in the course of 
transition is small and can subsequently be regarded as a 
small parameter. Since the phase diagram of the monolayer 
usually has a tricritical point, at which the discontinuity in 
area is zero, our results are valid at least in its neighborhood. 

We have found that plastic strain has to be taken into 
account to explain the experimental data. Moreover, analy- 
sis of experimental data has shown that, as a rule, these 
strains play a determining role. It was assumed in calcula- 
tion of plastic strains that the plastic threshold of the mono- 

FIG. 2. Theoretical dependence of surface pressure I7 on relative change 
in the area of the monolayer AS/S, on compression at constant tempera- 
ture (curve 1). Broken line shows the experimental isotherm for a mono- 
layer of egg lecithin at 30 'C. The parameters y and K for the monolayer 
used in constructing the theoretical graph of I7(AS/S0) were taken to be 
those for the egg lecithin monolayer at 30 "C, as reported in Ref. 2. The 
plastic threshold E was chosen so as to ensure that the two curves were 
identical for large values of I7 (the pressure is measured from H,). The 
graph also shows the theoretical dependence of I7 on AS/& during the 
stretching of the monolayer that was first compressed to a pressure I7, = 3 
dyn/cm (downward portion of curve 2). 

layer, E, is independent of pressure. Plastic deformation 
arises when the sum of the squares of the components of the 
deviator of the stress tensor reaches 2 ~ ~ .  It is assumed that, 
when plastic strain occurs, this sum is constant and equal to 
2 ~ ~ .  This means that the solid monolayer begins to flow 
when a pressure E is applied along one axis and a tensile 
stress - E along another. Further increase in the shear stress 
results in flow (similar to that of a liquid) until the shear 
stresses fall to E. 

Section 1 exploits this approach to calculate compres- 
sion isotherms and cooling isobars for a monolayer in the 
phase stratification region. Figure 2 shows that experimen- 
tal and theoretical (curve 1) compression isotherms for a par- 
ticular case (the data are taken from Ref. 2). 

The same model is used in Sec. 2 to examine hysteresis 
under compression and expansion of a monolayer in the 
phase stratification region. The origin of this can be traced to 
irreversible plastic strain that appears on compression and 
extension of the monolayer. The work expended on plastic 
deformation is equal to the area of the hysteresis loop on the 
pressure-area plane. 

It is important to note that only dense monolayer 
phases (solid and liquid) can be looked upon as two-dimen- 
sional systems. Despite the negligible solubility, the number 
of SAM molecules in the bath of the Langmuir balance can 
be greater by an order of magnitude than in the monolayer 
itself. However, it has now been shown' that the dense phase 
contains a barrier formed by the self-consistent field of the 
monolayer molecules, which prevents the exchange of dis- 
solved molecules between the monolayer and the tenuous 
gas, so that the number of molecules in the monolayer may 
be looked upon as constant. 

5 1. FREEZING OF A LIQUID MONOLAYER 

Consider the freezing of a liquid monolayer at constant 
temperature T, and let us determine the shape of the iso- 
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therms in the phase stratification region. We shall assume 
that the monolayer is in the form of a circle and that the 
freezing of the liquid monolayer begins on its boundary, i.e., 
on the walls of the container. The onset of the phase transi- 
tion as the pressure increases on the pressure area plane cor- 
responds to a surface pressure 17, = n, ( T ) ,  which is equal to 
the equilibrium pressure in homogeneous phases at tempera- 
ture T. Let S, and S, be the monolayer areas per molecule in 
the uniform solid and liquid phase at 17 = 17,, respectively. 
As already noted, the relative area discontinuity 
y = (S, - S,)/S, may be looked upon as small, which en- 
ables us to use the linear theory of elasticity. The main pa- 
rameters that are measured in practice are the surface pres- 
sure 17, applied to the monolayer from outside and the 
monolayer area per molecules S. Let the radius of the mono- 
layer for 17, = 17, (when it is still in the liquid phase) be 
denoted by R,. The monolayer radius for a given running 
value of 17, will be denoted by L, which is also the external 
radius of the solid phase. The inner radius of the solid phase 
will be denoted by R; the region r < R will remain liquid. For 
simplicity, pressures will be measured from 17,, i.e., we shall 
suppose that ITc = 0. Our aim is to determine the shape of 
the functions L (17,) and R (17,). 

In the axially symmetric case, the two-dimensional 
stress tensor is determined by the two functions17 (r) and ~ ( r ) :  

o, (r) = - I I  ( r )  Gh+z.(r) (bur--2nink). (1) 
The first term describes the hydrostatic pressure and the 
second the pure shear stress. The quantity a,, = - 17 - T 

must be continuous across separation boundaries. To obtain 
a further boundary condition, we must consider the freezing 
of the successive particles of the liquid phase. The resulting 
solid-phase particle must have the minimum possible ther- 
modynamic potential under the given conditions. Since elas- 
tic stresses appear in the expression for the thermodynamic 
potential in the form of a positive-definite quadratic form, 
the resulting solid phase does not contain them, i.e., 
r(R ) = 0,17(R ) = 0. Amoredetailedquantitativederivation 
of this condition is given in Sec. 2. 

Consider a monolayer under external pressure IIe > 0 
such that all the strains are puely elastic. When the external 
pressure increases by the small amount d&, the solid-phase 
particles receive radial displacements du(r) and a certain 
number dn of the molecules transfer from the liquid to the 
solid phase. The area of the liquid spot changes by the 
amount 

Szdn=-2nRdR. 

The same dn molecules occupy the area S,dn in the solid 
state. The condition of continuity across the solid-liquid in- 
terface enables us to relate dn to the displacement du(r) of the 
solid phase at r = R: 

2nRdu(R) = (S,-S,) dn. 

Eliminating dn, we obtain du(R ) = - ydR. 
We must now determine the elastic stresses in the solid 

phase. The equation da,,/dx, = 0 imposes the following 
condition on 17 and T: 

Instead of the displacements du(r), we now have the incre- 
mentsda, (r, R ) in the stress tensor. In linear theory of elasti- 
city, these increments do not depend on stresses already 
present in the solid (this is the Colonetti theorem). It follows 
that d17 (r, R ) and dr(r, R ) are related to du by Hooke's law 
and obey Eq. (2). To find the boundary conditions for d17and 
dr ,  we write the complete stress tensor aik as a function of r 
and R. We then find that a,(R, R )=O since the pressure in 
the liquid phase is constant and equal to 17,, whereas T(R, 
R ) = 0 in accordance with the preceding discussion. Hence, 

since, according to (2), 
ao,,/ar (R ,  R )  =2r (R ,  R )  /R=O. 

Using the second boundary condition 

do,,(L, R )  =--an, 

we obtain 
dII(r, R )  =dII./ (1-R2/L2),  

dr ( r ,  R )  =-dlJ,(R/r) 2 ( I -RZ/Lz ) ,  

du(r, R )  =-'/zdII, [UK+ ( R / r )  ' / p ]  R/ (1-RZ/LZ)  , (4) 

where K is the bulk modulus of the solid phase and p is its 
shear modulus. We have already shown that 

so that 

Integration of (4) with respect to R between rand R yields 

u (r ,  R )  =r [yKfK-' In (Rlr) +'/2y (K'IK-I) ( I - R Z / r 2 ) ] .  (5) 

The two measured quantities are then given by 

IIe=-o,, (Ro)  =2yKfln(R0/R)  -yKr( l -R2/Ro2)  , 

These two equations determine the dependence ofSon I7, in 
parametric form. If we suppose that 1-R /R, is small, we 
may write 

IIe=2yKf (1-R/Ro) ' ,  S=SZ [I-27 (lTe/2yK')'h] . 
The first equation in (5) shows that, as I7, increases (and R 
decreases), the shear stresses will also increase, reaching 
their maximum on the outer boundary of the monolayer. 
However, the modulus of the quantity r(r) cannot exceed E- 

the plastic threshold for the monolayer. This means that (5) 
and (6) are valid for 17, <E2/2yk I .  

As an example, let us consider the data reported in Ref. 
2 on egg lecithin monolayers: At T =  303 K, we have 
y = 0.18, S, = 5 1 A2, K = 330 dyn/cm. The quantities E and 
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p were not measured, butp can be estimated from the shear 
modulus obtained by Nelson and ~ a l ~ e r i n ~  for a two-dimen- 
sional crystal with a triangular lattice on a smooth substrate 
at the melting point. The transition examined by Nelson and 
Halperin was due to the breaking of dislocation pairs and the 
appearance in the crystal of single free dislocations. It is 
readily seen that the value of the shear modulus of the crystal 
at the melting point is then the minimum possible at a given 
temperature. For low shear moduli, the bonding energy of 
the dislocation pair will also be lower and its decay will be 
thermodynamically convenient. Since the SAM molecules 
have a large number of conformations, this result is only an 
order of magnitude estimate, yielding p - 100 dyn/cm for 
the egg lecithin monolayer. The quantity E can be estimated 
by comparing our calculations with experimental data (see 
below) for the concluding stage of monolayer compression, 
when the fraction of the liquid phase is small and the shape of 
the boundary has no significance. We have found that E is 
small: E = 1.1 dyn/cm. Substituting numerical values, we 
find that the pure elastic compression of the monolayer oc- 
curs only for 17, < 0.1 dyn/cm. Currently available experi- 
mental precision means that this region is not accessible to 
experimental investigation. 

Further increase in the pressure 17, > ~' /2yK ' ensures 
that a plastic strain zone with an inner radius R ' appears 
near the outer edge of the solid phase. For r<R ' the formulas 
given by (5) and obtained for elastic stresses and displace- 
ments are valid. The condition lr(r)l = E should be satisfied 
at r = R ' and hence 

In the plastic deformation zone, we have Eq. (2) as before, 
but the theory of elasticity is not valid. We shall use the 
condition /TI=&, i.e., r= - E as the second equation for 17 
and 7. Solving Eq. (2) subject to a,(R,) = - 17,, we then 
obtain for r>R ' 

]II (r) - 2 ~  ln (r/Ro) +He+&. 

The pressure ZZ (r) should be continuous at r = R ' therefore 

The dimensionless plastic deformation parameter E / ~ K  ' is 
small (it is of the order of 0.1) and the retention of terms of 
the order of E' within the framework of the linear theory of 
elasticity would take us outside attainable precision. In view 
of this, we find from (7) that 

In the absence of stresses, the areas of the ring 
R ' < r < R, should be r (R - R ") (1 - y). Because of defor- 
mation, this area is equal to r[L ' - R '' - 2R 'u(R ')I. The 
variation in the area is described by 

Ro 

n [L2-R.'+yRo2-yRr2-2R'u(Rf) ] =- 2nK-'II(r) r dr  
R' 

Solving this for L ', we obtain 

L2=Ro2 (1-7) +RO2 [y exp (--WE) --H,IK] . (9) 
The dependence of the area S on the applied pressure 17, is 

S=S2[1-y+,y exp(-]IIJ,e) -II,/K]. (10) 

Figure 2 (curve 1) shows a graph of this function together 
with the experimental curve (taken from Ref. 2). Figure 1 
shows the measured function S (17,) for different tempera- 
tures. Since the experiments were performed on rectangular 
monolayers, quantitative comparison is possible only for 
exp (ZZ,/E), 1 when the liquid phase is well away from the 
monolayer boundary and the shape of the boundary is imma- 
terial. It is also important to note that compression of the 
monolayer is not all-sided and occurs in only one direction. 
The theoretical function S (17,) was constructed for T = 303 
K. 

Let us now examine the freezing of the monolayer at 
constant pressure 17, = 17,. When the monolayer tempera- 
ture is reduced to T - ST, the pressure corresponding to 
equilibrium between homogeneous liquid and solid phases 
changes in accordance with the Clausius-Clapeyron equa- 
tion by the amount 

GII=-?c6T/yS2T, 

where x is the heat of transition per molecule. We thus arrive 
at a problem that has already been solved, in which the exter- 
nal pressure exceeds the pressure of equlibrium between ho- 
mogeneous phases in the monolayer by a given amount. 
Consequently, the equation for the monolayer cooling isobar 
is obtained from (10) by substituting 817 for 11,. 

5 2. HYSTERESIS DURING COMPRESSION AND EXPANSION 
OF A MONOLAYER 

Consider a monolayer compressed to the pressure 
17, > 0 (the pressure is measured from 4) and let us begin to 
stretch slowly, gradually reducing the pressure. The mono- 
layer temperature is constant and equal to T. 

Plastic deformations described in Sec. 1 occur when the 
monolayer is compressed. They are irreversible and the heat 
expended in producing them is dissipated into heat. Because 
of plastic deformations, the monolayer relaxes partially to a 
new radius L (17,) so that to stretch it to its initial radius R,, 
we must supply energy to produce the reverse deformation. 
Hence, compression and stretching of the monolayer to the 
same area corresponds to different stresses inside the mono- 
layer and different values of the liquid-phase radius. The 
area of the hysteresis loop on the (He, S ) plane is equal to the 
energy expended in plastic deformation of the monolayer 
and dissipated into heat. 

Let us now take the state of the monolayer for 17, = 17, 
as the undeformed state, so that the stretching of the mono- 
layer may be looked upon as a consequence of an externally 
applied negative pressure 17 = 17, - 4, where 17, is the 
current external pressure. Since we are neglecting the depen- 
dence of elastic moduli on stress and the terms that are qua- 
dratic in strains, the presence of stresses and strains at 17, 
= 17, has no effect on the response of the system to the exter- 

nal agency (Colonetti's theorem). In calculations of the 
change in monolayer area, they can be neglected when the 
equations of the theory of elasticity are written down, and 
they appear only in the initial conditions for these equations. 

Let us examine in detail the conditions on the boundary 
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between the liquid and solid phases. In equilibrium, the 
change in the thermodynamic potentials of the two phases 
during the transition of one particle from the liquid to the 
solid phase and back again must be zero. In this situation the 
quantity 4f + 17's plays the role of the thermodynamic po- 
tential in calculations per molecule, where f is the free energy 
per molecule and 17' is the liquid phase pressure. The free 
energy f includes the shear stress energy (in the solid phase). 

Shear stresses vanish when one particle undergoes a 
transition from the solid to the liquid phase. As a result, the 
change in the thermodynamic potential on melting turns out 
to be 

Acplz=vi (nc) --rpz (11,) 
4-8, [- (IIt)2/2Ki +-c2 (R)  /2Kt-  -yII'+ ( I I t )  2 /2Kz ] ,  

(11) 
wherelir (R ) a n d ~ ( R  )are, respectively, the pressureandshear 
stress in the solid phase on the boundary with the liquid, and 
we are using the boundary condition 17 ' = 17 (R ) + r(R ); p2 
and p, are the chemical potentials of the homogeneous liq- 
uid and solid phases, respectively. At the same time, Ap,, is 
the change in the thermodynamic potential when the liquid 
freezes with a given lir (R ) and T(R ). Hence, it is clear that the 
formation of the solid phase with T # 0 is thermodynamically 
inconvenient. 

When the liquid freezes, shear stresses in the newly fro- 
zen layer are initially zero. Consequently, the change in the 
thermodynamic potential on freezing is 

Aqzi-z ( K )  -~cpt (nc) +St [ynt+ (n') 2 / 2 K ~ - ( ~ t ) 2 / 2 K z l r  

where K, and K2 are the bulk moduli of the solid and liquid 
phases. 

From the condition Ap,, = Ap,, = 0, and since p, (lire) 
= ~~(17 , )  at temperature T, we find that T(R ) = 0, lir (R ) = 0 

on the boundary between the solid and liquid phases under 
the conditions of equilibrium. Hence, if, as a result of some 
process, the stress T on the phase separation boundary is not 
zero, this will be followed by freezing or recrystallization of 
the solid ring in which T will smoothly fall to zero. The 
stresses and strains in this ring are described by the equa- 
tions (5) of Sec. l .  

The problem reduces to the determination of the 
stretching of the monolayer under the action of the negative 
external pressure Z7, = 17, - 17,. The true stress tensor will 
then be equal to the sum of the stress tensor that arises on 
stretching and the stress tensor prior to stretching. New 
plastic deformation will arise if the resultant shear stress 
parameter r(r) reaches E. Let the running radius of the liquid 
phase bep (we have introduced a different symbol in order to 
avoid confusion in the formulas of Sec. 1). The radius of the 
liquid monolayer for II, = II, will, as before, be represented 
by R,. We recall once again that the state of the monolayer 
for 17, = lir, is taken to be undeformed, i.e., all the stresses 
and strains to be calculated are increments on existing stress- 
es and strains. All the quantities referring to the monolayer 
state at 17, =no will therefore be labeled with the super- 
script (0) and quantities referring to the stretching of the 
monolayer will be indicated by the superscript (1). 

A gradual increase in the radius of the liquid phase will 
occur as 17, is reduced. Melting can be divided into three 
segments, d2scribed in general by different equations. The 
elastic stress zone present at 17, = IT, melts on the first seg- 
ment. The plastic deformation zone remains unaltered dur- 
ing this process and there is no recrystallization of the solid 
ring mentioned above. The resulting deformation is purely 
elastic. The plastic deformation zone melts on the second 
segment, but the resulting additional deformation remains 
purely elastic. The width of the recrystallized ring gradually 
increases from zero during this process. New plastic defor- 
mation appears in the solid phase on the third segment. 

In the first approximation in &/yK ', the first and second 
segments of melting can be examined together, since melting 
can then be neglected. In fact, it is readily shown that the 
change in the radius of the liquid phase and in the width of 
the recrystallized ring is, in both cases, of the order of R ( O ) E /  

yK ', and can be neglected. The problem reduces to the deter- 
mination of the stretching of the ring with given inner and 
outer radii. The change in the area of the monolayer per 
molecule is 

AS=& (n0-U,)  [e-nof* (Kt ) - ' /  (l-e-n~'" + l / K , ]  . (12) 

This formula is valid for 

no-IIe<2e [1-exp(-II , /&)] ,  

and the first segment of melting ends at 

IIo-lT,=e [1-exp ( - T I , / , E ) ] .  

Let us now consider the third segment of melting when 
new plastic deformations arise as the monolayer is stretched. 
The plastic deformation zone occupies the region r  <p', 
since shear stresses now increase from the boundary toward 
the monolayer center. It is surrounded by the recrystallized 
ring in which the shear stresses fall to zero in accordance 
with (5). The displacement vector u")(r) is determined only 
for r >pi, i.e., in the elastic strain zone, where 

rk - n(1)6ik+2pbr-2(6ik-2ninR),  
u(') ( r )  =-IT"'r/2K+b/r, 

as is usual for planar problems in the theory of elasticity. In 
the plastic deformation zone, r <p', we can readily show that 

H i )  ( )  - 4  In ( p )  T( ' )  ( r )  =2&. 

It follows from (5) that a ,  -&'/yK ', ~ ( r )  - r&/K ' on the outer 
boundary of the recrystallized ring, i.e., these quantities can 
be neglected. This leads to the following three boundary con- 
ditions for stresses and displacements on the inner and outer 
boundaries of the solid phase: 

o>~" (Ro)  =-II,, 0,':' (p) +o,':' ( p )  =0, 6p'"f 6p(O)=O, 

(13) 
where Sp(0) and Sp(') are the changes, respectively, for III, 
= IlI, and for the running value of 17, in the radius of the 

circle containing particles with r  < p  for ITe = 17, (i.e., in the 
liquid state). The equation for Sp(') can be written in the 
same way as for SR, in the derivation of (9) in Sec 1: 

0' 

Z n [ p g u ( t )  (pf)  - p 6 p ( 1 ) ] = - ~ - 1  J n") ( r )  2nr  dr. 
P 
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An analogous equation can be written down for Sp(0) if we 
use the results of Sec. 1. The result is that the equations given 
by (1 3) reduce to two equations: 

n"'-ITi=2& exp [- (n" ' f  &+2&) / 2 ~ ]  plR0, 

(11'"-IT,) /Kf+y  exp (-ITo/e) -y,p2/2RO2=0. 

The change in the monolayer area per molecule is 

AS'"=S, [~zL"'  (Ro) lRo] . 
Let us represent I7, - h"') by y, so that the dependence of 
AS(') on I7, is given in the following parametric form: 

The minimum of IZ, occurs for the value of y given by 

yo='/,& [l-v+ ( i + G y + ~ ~ ) ' ~ ] ,  v = y K ' ~ - ' e - ~ J '  (15) 

The minimum value of17, is negative. When 17, < nebo) ,  the 
liquid and solid phases cannot coexist in the monolayer and 
still remain at rest. From the point of view of the theory of 
elasticity, this corresponds to the disintegration of the solid- 
phase ring under large stretching loads. After this, the mon- 
olayer assumes complete equilibrium under the given 17,, 
i.e., it assumes the homogeneous liquid state. 

When (14) and (15) are compared with experiment, it 
must be remembered that intensive formation of nuclei on 
dislocations and other crystal-lattice defects occurs for nega- 
tive I7,. These nuclei reduce the elastic moduli of the solid 
phase and its plastic threshold. 

The ideas developed in Sec. 1 can readily be used to 
obtain the temperature dependence of the area for a mono- 
layer cooled down to temperature To < T, and subsequently 
gradually heated: all that needs to be done is to replace ZZ, in 
(14)and(15)withx(Tc - T)/yS,T, andI7,withx(TC - To)/ 
YS* Tc . 

There is very little published experimental information 
on hysteresis in monolayers. The functions S(ne) reported 
in Ref. 10 for monomolecular layers of insoluble polymers 
are in quantitative agreement with our results. 

5 3. DISCUSSION 

To facilitate calculations, we have introduced a rela- 
tively stringent limitation on the structure of the freezing 
monolayer. The true structure may differ from that assumed 
in our axially symmetric model. It can be determined by 
observing under a microscope the Brownian motion of fine 
impurity particles deposited on the monolayer, or by follow- 
ing the distribution of radioactive traces added to the SAM. 
Both methods can be used to identify regions occupied by the 
liquid and solid phases, since the mobility of the Brownian 
particles in the solid is much smaller than in the liquid, and 
the density of the radioactive tracer is proportional to the 
local density of the monolayer. The structure of a monolayer 
consisting of several spots of liquid phase can lead to a 
change in the coefficients in (6) ,  (12), and (14), which give the 
monolayer area as a function of external pressure. This also 

applies to the change in the geometry of the experimental 
situation. 

The interphase tension energy was neglected in our cal- 
culations. The consequence of this was that, as indicated by 
(8) and (lo), an infinite pressure has to be applied to achieve 
complete freezing of the monolayer. It must, however, be 
remembered that inclusion of interphase tension in the case 
of a sufficiently small liquid spot will make it unstable with 
respect to a transition to the liquid phase. 

The results of Sec. 1 show that a frozen monolayer has a 
nonuniform distribution of elastic stresses over its area 
which remains even after all the liquid-phase spots have dis- 
appeared. This nonuniformity should be observable. 

We have not considered the melting of a uniform solid 
monolayer. Work on the melting of three-dimensional crys- 
t a l ~ ~ - ~  has shown that, to produce a liquid-phase nucleus, the 
crystal must be heated to a temperature T' > T o r  the pres- 
sure must be reduced to 17: <17,. This hysteresis is due to 
the loss of a certain amount of free energy that is incurred in 
forming the deformations surrounding the liquid-phase nu- 
cleus in the crystal. It would have been possible to develop a 
theory analogous to the three-dimensional treatment, but 
quantitative results are impossible to obtain because the for- 
mation of these nuclei is sensitive to the presence of impuri- 
ties, dislocations, and to the interaction between them. 

Before a quantitative comparison of our results with 
experimental data can be made, it will be necessary to give 
the monolayer a circular shape and to apply pressure to its 
entire perimeter. This problem was solved in Refs. 7 and 8. 
However, the method used there to measure the surface 
pressure (by measuring the velocity of capillary waves and 
using the Rayleigh formula) does not seem to be fully justi- 
fied. The Rayleigh formula was derived for waves on the 
surface of a uniform medium and may not be valid in the case 
of the monolayer water system. 

It may be possible to obtain a quantitative confirmation 
of the above results by investigating SAM films on the sur- 
face of an expanding sphere or even the usual soap bubbles. 
The quantities E andp can be measured directly by a slightly 
modified form of the Langmuir balance. However, such ex- 
periments have not as yet been performed. 

We are indebted to A. V. Byalko, A. A. Abramzon, and 
V. G. Levadnyi for valuable discussions and for a survey of 
experimental data on monolayers. 
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