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The amplitude for the scattering of light by an atom is derived as a function of the atomic angular 
momentum for frequencies in the intervals ma2go(ma and ma < wgm. The scattering of x rays 
by a crystal with a magnetic order is analyzed. For a helicoidal spin structure and circularly 
polarized x rays, the scattering cross section depends on not only the pitch but also the sign of the 
helix. 

INTRODUCTION 

The feasibility of using x radiation to determine the 
magnetic structure of collinear antiferromagnets has been 
discussed theoreti~ally'.~ and has in fact been demonstrated 
experimentally394 for substances with an incomplete d shell. 
In the present paper we derive an expression for the ampli- 
tude for x-ray scattering by an atom or ion as a function of 
the atomic angular momentum. We point out some new 
mechanisms for this scattering, which are no less effective 
than that proposed in Refs. 1 and 2. We analyze the scatter- 
ing by a magnetically ordered crystal in the particular case of 
an antiferromagnet with a helicoidal spin structure of the 
"simple helix" type. We show that the system of magnetic 
satellites around the Bragg reflections ("ancestors") em- 
bodies information about not only the pitch of the helix but 
also its sign in the case in which the x radiation is circularly 
polarized. 

Although the spin-dependent scattering amplitude is 
three or four orders of magnitude smaller than the ordinary 
isotropic amplitude (more on this below), it has been demon- 
strated experimentally that x radiation can be used to study 
magnetic structures. The feasibility of such experiments be- 
comes particularly clear when we consider the use of synch- 
rotron radiation, which is incomparably more intense than 
ordinary x radiation. Studies of magnetic structures with the 
help of synchrotron radiation may prove an important sup- 
plement to neutron-diffraction methods, which are an ex- 
tremely rich source of information about magnetic order in 
solids (see Ref. 5, for example). The high collimation of 
synchrotron radiation may be an important advantage over 
neutron diffraction in studies of the magnetic structure of 
samples of very small dimensions. The use of x radiation may 
also prove extremely convenient for studying substances 
which exhibit an anomalously high neutron absorption. One 
final and important advantage of synchrotron radiation is its 
natural elliptical polarization, whose sign depends on 
whether the radiation is extracted above or below the orbital 
plane of the radiating particles in the magnetic field. 

ASYMPTOTIC BEHAVIOR OF THE DYNAMIC 
POLARlZABlLlTY OF AN ATOM 

The amplitude for elastic scattering of light by an isolat- 
ed atom at the point R is given in the dipole approximation 
by the well-known expression6 

Here x = k' - k, where k and k' are the wave vectors of the 
incident and scattered photons, and e and e' are their unit 
polarization vectors. We are using a system of units with 
f i  = c = 1. The tensor a,@) is the dynamic polarizability of 
an atom in the state 10) : 

where the operator d represents the dipole moment, and 
a,, = E, - Eo, where Eo and En are the energies of the 
ground and excited states. If the state 10) of the atom has a 
total angular momentum J, the polarizability tensor can be 
written 

a i k ( O )  =6ikaa (0) + ~ E Q I ~ I C C V  ( ' a )  + Q i k a i  ( a ) ,  

Q i k = J i J k f  J k J i - 2 6 , J  ( J +  1) /3. 
(3) 

The scalar polarizability a,(w), the vector polarizability 
a,(w), and the tensor polarizability a,(w) have the following 
properties since the tensor a, (w) is Hermitian: 

The vector and tensor terms in (3) clearly embody informa- 
tion on the orientation of the total angular momentum of the 
atom. 

We are interested in the scattering of x rays, whose fre- 
quencies satsify w,Ry = ma2/2, where m is the mass of an 
electron, and a = e2 = 11'137. We seek the asymptotic be- 
havior of the polarizability in the limit w . The leading 
term in the expansion of the tensor aik (w) in powers of l /o  is 
well known, 

and it determines the scalar polarizability a,(@). Here Z ' is 
the number of outer electrons, for which the characteristic 
frequencies are much smaller than w; this number satisfies 
Z '<Z, where Z is the atomic number. 

At first glance it would appear that a vector polarizabil- 
ity could arise only in the next order in l/o: 
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where 2 is the Hamiltonian of the atom, and r is the radius 
vector of the electron. The summation here is over all the 
atomic electrons. Ezpression ( 6 )  becomes nonzero only when 
we incorporate in H the spin-orbit interaction, thereby de- 
termining the asymptotic behavior of the vector polarizabili- 
ty of the atom. We will show, however, that this contribution 
to a , ( w + ~ )  is not the dominant one. In order to take the 
relativistic corrections into account systematically we need 
to redefine the dipole-moment operator in expression (2). 

The operator representing the interaction of an electron 
with an electromagnetic field contains both terms which are 
linear in the field and terms which are quadratic. When the 
relativistic corrections are taken into account, these terms 
become 

Here [.,.I+ specifies the anticommutator; A, E, and H are 
respectively the vector potential and the electric and mag- 
netic fields; 

the operator p represents the electron momentum; and the a 
are the Pauli matrices. When the relativistic corrections are 
taken into account, we can use the transformation 

which holds for o(ma, to reduce the expression for the elec- 
tric dipole amplitude for scattering to the form in (I) ,  (2), 
where the dipole-moment operator should now be under- 
stood as 

Substituting (1 1) into (2), we find, in the leading approxima- 
tion in l/o,  

where S is the total spin of the atom. From (12) and (3) we 
find an expression for the vector polarizability: 

whereg = 1 + (J-S)/J(J  + 1) is the Land6 factor. 
It is not difficult to see that, just as the asymptotic be- 

havior in (5) for the scalar polarizability can be found direct- 
ly from the first term in expression (a), without transforma- 
tion (lo), the asymptotic behavior in (13) corresponds to the 
second term in (8). 

We now seek the asymptotic behavior of the tensor po- 
larizability of the atom, pursuing the expansion of tensor (2) 
in powers of l/w: 

Z'a a 
aik(a+m) =--s~~+-C ( [ [ K r i l ,  [d, [ i , r k 1 1 1 ) 9  

mo2 o4 
( 14) 

h 

where H = p2/2m + U is the one-electron Hamiltonian. 
Trivial manipulations lead to the following expression for 
the second term in (14): 

The scalar part of this expression, which reduces to a small 
correction and to the first term in (14), is of no interest here. 
For electrons with an orbital angular momentum 1 #O we 
can ignore ( A  U ) in comparison with ( U ' / r ) ,  and for the 
irreducible part of (1 5) we find 

Hence the tensor polarizability of a heavy atom with one 
outer electron (I #O) is 

where j is the total angular momentum of the electron. The 
tensor polarizability of a heavy atom with several outer elec- 
trons is found by evaluating the sum over all equivalent elec- 
trons of the incomplete shell (or over all equivalent holes) in 
(16). We are interested primarily in the ions Tb3+, Dy3+, 
.Ho3+, and Er3+, for which the f shell is more than half- 
filled. In the ground state we have J = L + Sin  this case, and 
the total spin S is, as usual, maximized by virtue of Hund's 
rule. The asymptotic expression for the tensor polarizability 
reduces to the following form for these ions: 

where the coefficient 77 is defined by the relation 

Analysis of the fine structure of rare earth ions and various 
numerical calculations (see Ref. 7, for example) reveal 
7- 10. In the frequency interval ma2<w(ma, which is 
studied in Sections 2 and 3, the condition a, <a, holds. 

The asymptotic behavior w P 4  of the tensor polarizabili- 
ty was pointed out previously by Manakov and Ovsyanni- 
kov.' 

CONTRIBUTION OF HIGHER-ORDER MULTIPOLES TO THE 
ASYMPTOTIC BEHAVIOR OF THE SCATTERING AMPLITUDE 

Since we are considering the relativistic correction to 
the electric dipole scattering amplitude, it is quite natural to 
examine the amplitudes of higher multipolarities, which 
arise in the same order in the relativistic small parameter. In 
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particular, there is the magnetic scattering discussed in Refs. 
2 and 3. It is not difficult to see, however, that the amplitude 
for electric quadrupole scattering is on the same order of 
magnitude, as are the interference amplitudes (E 1, M 2), (E 1, 
E 3), and (M 1, E 2). A multipole expansion up to E 3 and M 2, 
inclusively, corresponds to a transformation of Hamiltonian 
(7) to the form 

e 
- i  - (rk)  (Ha) - 

2m 

The last two terms in (20) contain, in addition to the ampli- 
tude M 2, yet another relativistic contribution to the electric 
dipole interaction: 

We of course do not need the relativistic corrections to the 
amplitudes of high multipolarities. Substituting (20) into the 
familiar expression for the light scattering amplitude, 

we can derive amplitudes corresponding to the contribuiions 
of the various multipolarities. The radiatioz operator H ; is 
related to the photon absorption operator H ,  by 

8,'(e1*, w, k') =Bi (e ,  - 0 ,  4 ) .  

We examined the electric dipole amplitude (E 1, E 1) in the 
preceding section. The magnetic dipole amplitude (M 1, M 1) 
is 

j M i ,  M1=a2[n'~,e'*]i[nXe]h~,h(o), (22) 

where n = k/w and n' = k'/w. The dynamic magnetic sus- 
ceptibility tensor of the atom is 

The prime on the summation sign here means, as usual, that 
the ground state is eliminated from the number of intermedi- 
ate states [in expression (2) for a,(w), we do not have to be 
especially concerned about this point because of the selec- 
tion rules for E 1 transitions]. In the expansion of the tensor 
,yik (a) in powers of l/w, even the first term is nonzero. It can 
easily be put in the form 

where the state 10') can differ from 10) only in the projection 
M of the total angular momentum. The sum is over all M in 
the state 10'). From (24) we find 

where we would have (g - l)(g - 2) = L S / J 2  for the rare 
earth ions of interest here. Expression (25) describes the 
asymptotic behavior of the vector magnetic susceptibility. 
The corresponding contribution to the scattering amplitude 
is proportional to w: 

Since the magnetic moment operator couples only states 
with the same L and S but different J, the condition for the 
applicability of asymptotic expression (26) is unusually li- 
beral: The frequency w must be much higher than only the 
fine-structure interval. On the other hand, in accordance 
with the condition for the multipole expansion for the atoms, 
we assume w<ma in this section. In particular, this condi- 
tion al low~us to ignore the well-known diamagnetic contri- 
bution of H,  to the scattering amplitude. We will also make 
systematic use of the condition w&ma further on in the pres- 
ent section, restricting all the amplitudes to terms linear in 
the frequency. 

The asymptotic expression for the quadrupole ampli- 
tude (E 2, E 2) can also be found without difficulty: 

u 
f E 2 ~ E 2 ~ -  - mei41ehnjh. < [ [H,  rirj] ,  [ H, rhr81 ] ). (27) 

4 

The summation in this expressin is over all the electrons. 
After elementary manipulations we find from (27) 

a m  
j ~ ~ ~ ~ ~ = - i - - ( g - - 2 )  J{(nel') [ n ~ e ]  - (n'e) [nxe"]  

4m2 

The interference of the last two terms in (20) with the 
nonrelativistic E 1 amplitude gives us 

As for the interference amplitudes (E 2, M I) and (E 1, E 3), we 
note that it is not difficult to see that they are zero in our 
approximation. 

The total scattering amplitude for a photon with a fre- 
quency in the interval ma2<w<ma, which depends on the 
angular momentum of the atom or ion [the sum of expres- 
sions (12), (26), (28), and (29)], is 

f = i  (ao /4m2)  (bJ) , (30) 
where 
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b=4(g-1) [ef*el+ (g-I) (g-2) [[e'*xnf1 [e)(lnll 

- (g-2) {(net') [n'Xe] - (n'c) [I& e" ] 

+ (nn') [ef*xe] + (e'e) [n'xn] ) 

+2g{(nfe) [n' xel*]- (ne") [nxel). (31) 

The second term in (3 I), which corresponds to the magnetic 
amplitude f I s M  I ,  is usually numerically small in compari- 
son with the other terms. The angular-momenum-depen- 
dent amplitude (30) is a fraction -o /Z  'm of the usual scalar 
amplitude, which has a value 

according to ( 1 )  and (5). 

AMPLITUDE FOR SCATTERING BY AN ATOM IN THE CASE 
w > ma 

The case ma2(w(ma was discussed above, but fre- 
quencies in the interval ma < o ( m  are also of considerable 
interest. For this interval we cannot use the multipole expan- 
sion in the form in which it has been used previously, but the 
relativistic corrections are still small, so that we can use in- 
teraction operators (7) and (8). 

We substitute these expressions for 2, and s2 into (2 1). 
The total scattering amplitude can be written as the sum of 
five components: 

where x = k' - k, ii = x/x, i = r/r; the radial matrix ele- 
ments 

R, (x)  = (ma)-'(jt (xr) (dldr-2/r) >, 
St (x) =(ma) -'(jt (xr) lr) 

are dimensionless; j, (xr) are the spherical Bessel functions; 
Y,, are the spherical harmonics; 

a=[ [n'Xef*] [nxe]]-[e'xe] + (et*n) [qXe]- (en') [n'xe"]; 

and the summation is over t, T, and all the atomic electrons. 
In the interval ma(w(m we can obviously use the estimates 

so we will ignore the amplitude f, below. We might note that 
both of the amplitudes f and f, depend on the orientation of 
the total angular momentum of the atom (in addition to the 
term I"n f, for t = 0). The dependence on the polarization in 
f,, however, is trivial, fl cu (el*e) so that the amplitudef, even 
though small in magnitude, is of major interest for a study of 
magnetic structure. 

For the amplitude fl in (38) we must calculate the sum of 
one-electron matrix elements over the outer shell for t #O: 

where m is thez projection of the orbital angular momentum 
of the electron. In this expression, t is obviously of even par- 
ity and bounded (t(21). It is convenient to transform from 
sum (43) to an operator averaged over a state with a given 
total angular momentum (but not a given orientation) of the 
atom. In terms of transformation properties, this operator . 

must be an irreducible tensor of rank t (see Ref. 9, for exam- 
ple) constructed from the total-angular-momentum opera- 
tors. We choose it in the form 

<OlpAfln>(nlpAIO) Here {A, e B, j , is the irreducible product of rank b of two 
an.-o operators of rank a. The sum (43) and (38) must be replaced 

(OlpAln>(nlpA'IO> by the expression + 
a,o+m 

(37) 
( ~ ~ ) - " ' A ~ ~ ~ T , ~ ( J ) ,  (45) 

Expressions (33)-(37) take the following form for the interval where, in the case of LS coupling, the coefficient 
ma <w(m: 

a (JliTt(L) 111) z (lm 1 Yto(r) 1 lm) 
fi=- -(el'e) z4n ( - i ) ' y tZ ' (2 )  (jt(xr) )(ytr(;) ), (38) 

m ArLr = (4n) '" ------------ 
(JI(Tt(J) IIJ)(LML I Tto(L) I LML) (46) 

f=fz+fs+f~ M,= z m  

= - i E z  mZ 4n(-i)'yt;(x) <j t (xr)> ( (a  :) ytT&)) ,  
can be calculated. It is not difficult to see that the A :,, are 

(39) independent of the orientation of J ;  all the information on 

h=-i$-[[ef*x e l x ] X  4n(-i)'Yn*(x) [R,(x) (Y,.(r)r> 
this orientation is embodied in T,,(J). If we treat J a a classi- 
cal vector directed along the unit vector j ,  we can write9 
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T,, ( J )  =If  4nt! ] " ~ , . ( i ) .  [ (? t+l )  !! 

In a completely analogous way we can transform the 
amplitude$ The sum 

in (39) can be replaced by the following equivalent operator 
after it is broken up into irreducible parts, and Hund's rule is 
applied (the spin of the atom is maximized): 

Here the coefficient" 

does not depend on the orientation of J ,  and the C z ,  are 
the Clebsch-Gordan coefficients. 

BRAGG SCATTERING BY A MAGNETIC STRUCTURE 

At this point we turn from the amplitude for scattering 
by an individual atom or ion to the amplitude for scattering 
by a crystal with a definite magnetic structure, e.g., a "sim- 
ple helix" helicoidal structure, for which we have 

J (R,,) =J [mi cos (gR,,)  +m2 sin (gR,,)I , (51) 

where m, and m, are orthogonal unit vectors, m = m, X m,,g 
is the wave vector of the helix (g-m) > 0 for a right-handed 
helix), the index n specifies the unit cell, and s specifies the 
ions in it. We can transform from the atomic amplitudes (30), 
(32), (38), and (39) to the amplitudes for scattering by a crys- 
tal by summing over all the ions with a weight exp( - ixR,,). 
In the case w(ma we find 

Z'a 
F,= tl exp ( - i x ~ . . )  =- -(et'e) N.C S (q) S , . .  (52) m 

where q is a reciprocal-lattice vector, N ,  is the number of 
unit cells which contribute to the Bragg reflection with a 
momentum transfer q +- rg, and 

For a crystal with a hexagonal close packed lattice (the lat- 
tice of the rare earth metals of interest here), the structure 
factor is 

where the vector p connects two ions in the cell of the hcp 
structure. 

In the case w > ma the dependence of the atomic ampli- 
tudes on the orientation of J involves only the tensor T,(J). 
If we direct the z axis along the vector m, we find, using (47) 
and (5 I), 

where 

for even t + 7 (t  #O) and B,, = 0 for odd values. The ampli- 
tude for scattering by a crystal with a simple helix magnetic 
structure can be written 

a o  
FA=-i - ( - i )  'S (q) Nv(jf ( r r )  ) P A ; L ~ @ ~ ~  

m 

where Y ; ( k )  is a vector spherical h a r m ~ n i c . ~  
Since the indices t, T (t, I T /  ~ 2 1 )  in (57) and (58) take on 

only even values, while the indices r, v (r, / v /  (21 + 1) take on 
odd values (see the discussion above), the amplitudes F, and 
F, do not interfere in crystals whose magnetic structures are 
incommensurable with their crystal structures (in which the 
q's are not multiples of g).2' There is no interference of the 
amplitudes F, and F, in this case. In (57) and (58), however, 
the terms with identical r  or v, but with differences in other 
indices, can interfere with each other. The terms with 
171 = t = 21 in (57) and with (vl = r = 21 + 1 in (58) do not 
interfere with any other terms. 

In (57) there is an isotropic term 

q 

which contains a sum over all the electrons of the ion. In the 
case xr( 1, this term is the same as the amplitude F,. Ampli- 
tude (59) at w > m a  or amplitude (52) at w(ma determines 
ordinary Bragg scattering with a momentum transfer x = q 
(Bragg reflections). In the region w(ma, the Bragg reflec- 
tions acquire a pair of satellites (x = q + g) with relative in- 
tensities 

(aVZ') '<< 1F2)2/[Fi(2< ( ~ / 2 ' ) ~ .  

If, on the other hand, w > ma, amplitudes (57) and (58) give 
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rise to satellites around the Bragg reflections up to the 
21 + 1)st order (we recall that for rare earth ions we have 
I = 3). The intensity of the satellites of even order is deter- 
mined by the square of amplitude (57), while that of the satel- 
lites of odd order is determined by the square of amplitude 
(58). In particular, this result means that the polarization 
dependence of the intensity of the even satellites is trivial, 
and there is a relative suppression of the odd satellites: 

INTENSITY OF THE (21 + 1)st PAIR OF SATELLITES 

As an example we seek the intensity ofthe (21 + 1)st pair 
of the satellites which appear around a Bragg reflection upon 
scattering from a simple helix magnetic structure. 

Taking into account the discussion in the preceding sec- 
tion, we see that the scattering cross section is determined by 
the square of amplitude (58) with I = 3: 

where we have used C ik;,'sk + = C k - k l - 1  + - = 1. Also us- 
ing (56) and 

we find 

Finally, transforming to the Cartesian components of the 
vector a, and substituting in the values of A I:, , we find.the 
following result, which applies to the metals of interest here: 

The incident photons are conveneintly described by a polar- 
ization density matrix 

where 5,, 5,, and 5, are the Stokes parameters, and el and e, 
are orthogonal unit vectors ([ele2] = n). We are not interest- 
ed in the polarization of the scattered photons. Substituting 
(63) into (62) in the case nllm, we find 

where x = (n'en). It follows in particular from (64) that if the 
degree of circular polarization of the incident photons, g,, is 
comparable to unity then a change in the sign of the circular 
polarization or in the sign of the helix will result in a change 
in the intensity of a given satellite by an amount on the order 
of unity (a change in the sign of the helix corersponds to a 
change in the sign of g). Consequently, by making use of the 
circular polarization of synchrotron radiation one could de- 
termine the sign of the magnetic helix in a single-domain 
sample or the ratio of volumes occupied by domains of dif- 
ferent signs. 

The intensity of the (21 + 1)st pair of satellites is conve- 
niently compared with the intensity of the (21 )th pair, for 
which we find the following result for the polarization-inde- 
pendent part from (57) with (56), in the case n((m: 

Here 

in accordance with the estimate above. 
We thank G. N. Kulipanov for constant interest and 

useful discussions; we also thank A. N. Skrinskii for useful 
discussions. 

Note added in proof (2 July 1984). The dependence of 
the forward scattering amplitude on the photon helicity R in 
the interval ma2&o(ma can easily be derived by setting 
n' = n and e' = e in (30) and (3 1): 

This dependence gives rise to an optical activity of ferromag- 
nets in this frequency range. Although the effect reaches a 
magnitude of lo-' to 1 rad/cm, it would be extremely diffi- 
cult to observe because of the strong x-ray absorption. 
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''It can be shown that we have AyL,#O only at r = t f 1 in the case 
J = L + S .  

"This assertion does not apply to a "ferromagnetic helix" structure, for 
which the sums r + v and t + 7 may also be odd. 
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