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The conditions for the appearance of self-similar, strongly nonlinear regimes of one-dimensional 
acoustic turbulence are considered and the laws for the growth of the external turbulence scale 
and of energy attenuation are found. It is shown that, under certain conditions, a self-similar, 
strongly nonlinear dissipative structure of one-dimensional acoustic turbulence may be possible, 
irrespective of the magnitude of the initial Reynolds numbers and, in particular, even if the 
Reynolds number is less than unity. The results of numerical simulation are presented and the 
statistical characteristics of one-dimensional acoustic turbulence are determined. 

1. The appearance of ordered structures is possible in 
nonlinear media with dissipation (see, for example, Refs. 1 
and 2). These structures represent a succession of regions 
(domains) with regular behavior, alternating with randomly 
located zones of dissipation. In the present work, we consid- 
er the appearance and evolution of such structures using as 
the example the simplest equation of the theory of nonlinear 
waves-the Burgers equation3: 

where Y is the dissipation coefficient, u,(x) is a random func- 
tion if the initial field has a noise character. This equation 
also describes two fundamental effects, characteristic of any 
turbulence-the nonlinear transfer of energy over the spec- 
trum and damping of the energy in the region of small scales. 
It was for just this reason that it was proposed by Burgers as 
a model equation of hydrodynamic t~rbulence .~ .~  It was lat- 
er shown that the description of one-dimensional acoustic 
waves in a compressible liquid reduces to Eq. (1). As a conse- 
quence of this, the Burgers equation has found widespread 
application in nonlinear  acoustic^,^ in particular in the de- 
scription of intense acoustic noise-the so-called one-di- 
mensional acoustic turbulence (OAT). 

Since external forces are lacking in (I), the evolution of 
the field u(x,t ) is completely determined by the initial condi- 
tions, while, because of the dissipation of energy, the ampli- 
tude of the field will decrease, i.e., degeneration of the turbu- 
lence will take place. Let u, and I, be the characteristic 
amplitude and spatial scale of the initial field. Then the di- 
mensionless parameter Re, - u,l~v-the Reynolds num- 
ber-will characterize the relative influence of the nonlinear 
and dissipative effects on the evolution of the field. If Re,, 1, 
then the random field is known to evolve into an ordered 
dissipative structure, which represents a succession of saw- 
tooth pulses with equal slopes, separated by randomly dis- 
tributed shock fronts, in the vicinity of which energy dissipa- 
tion also  occur^.^.'.^ Under random initial conditions, the 
velocities of these discontinuities are also random, which 
leads to the effect of separated discontinuities and, conse- 
quently, to an increase in the characteristic scale of the field 
I (t  ). The velocity of the individual discontinuity is propor- 

tional to the integral of the initial field u,(x) in some interval 
of order I (t ). Therefore, the tempo of the evolution of the 
field, because of the confluence of the discontinuities, is de- 
termined by the behavior of the energy spectrum of the ini- 
tial field g,(k ) near k - l / l  (t  ) -+ 0. In particular, it has been 
shown (see, for example, Refs. 7 and 8) that the laws of in- 
crease in the scale and energy damping are different, depend- 
ing on whether the spectrum at zero wave number k = 0) is 
equal to or not equal to zero: 

- m 

Here 

-OD 

is the spectral density of the initial field. 
Along with the establishment of local self-simularity- 

the universal structure of the field in each of the domains-it 
can be expected that the statistical characteristics of the 
field-its probability distributions, correlation functions, 
spectra-will also be self-similar. It has been shown (Refs 7- 
10) that at D = 0 and Re,) 1, intermediate self-simularity" 
is realized for the field u(x,t ): all the statistical characteristics 
of the field are self-similar over some temporal interval 
t, < t < t,, where t, - I,/u is the characteristic time of for- 
mation of a sawtooth structure, while t, is the time of emer- 
gence into the linear regime. It has been shown for this case 
that, because of the effect of discontinuities, this time is ex- 
tremely large: t, -t, exp(Rei). The hypothesis that the field 
is self-similar at Re, -+ co has been used in Refs. 12 and 13 
for analysis of the laws of evolution at D = 0 and D #O. 
Here, however, an additional condition is required on the 
field spectrum, which is evident only at D #O, since 
g(o,t ) = g,(O) = const is an invariant of the Burgers equation. 

In the present work, the conditions for the appearance 
of the self-similar, strongly nonlinear regime of OAT are 
elucidated. This regime represents a series of sawtooth 
waves. We also find the laws for the growth of the external 
scale of turbulence and the damping of the energy. Here, for 
analysis of the OAT, we use both the exact solution of Eq. (1) 
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and a smooth qualitative model describing the evolution of 
the field u(x,t ) in the form of r, set of different, successively 
damped, weakly interacting, strongly nonlinear modes. It is 
shown that under certain conditions the establishment of a 
self-similar, strongly nonlinear dissipative structure of the 
OAT is possible regardless of the value of the initial Reyn- 
olds number, in particular, even if Re,( I. 

2. Before proceeding to the asymptotic analysis of the 
establishment of the self-similar structure of OAT, we shall 
discuss the basic qualitative differences of the damping of 
the periodic (initially harmonic) signal and the noise field. 
For this purpose, we write down Eq. (1) in spectral form: 

+- 
t ,  + ik j c(k-kr)e(k')dk'=-vk2c(k, t ) .  (4) 

d t 
-m 

If the signal initially has only a single spatial harmonic 
k, = 2?r/l,, then, as a result of the nonlinear self-action, gen- 
eration of higher spatial harmonics k = mk, (m = 2, 3, . . . ) 
occurs. However, at Re,< I, the strong dissipation does not 
permit the nonlinear effect to develop and the wave is 
damped exponentially with the linear decrement k iv. At 
Re,) 1, the wave passes successively through three stages.6 
In the first stage, t < t, -Z,/u,, nonlinear generation of har- 
monics takes place and the profile of the wave is steepened. 
At t > t, discontinuities are formed in the wave and the wave 
has the form of a succession of periodic sawtooth pulses with 
equal slopes u: = l/t and a discontinuity amplitude -I,/t 
independent of the initial amplitude. Because of the growth 
of the width of the shock front S -vt /I, the effective Reyn- 
olds number 

Re ( t )  -10/6- (t,lt) Reo 

decreases, while at t > t, z t ,  Re, the field emerges into a 
linear regime--the wave is transformed into a sinusoidal one 
and decays exponentially with linear decrement k iv. 

In the initial noise field with finite width of the spec- 
trum, the picture of the evolution of the field is qualitatively 
different. This is connected with the fact that the nonlinear 
generation of the various harmonics and the strong dissipa- 
tion of the fine-scale components lead to a relative increase 
in the large-scale components of the spectrum and, as a con- 
sequence, to a decrease in the relative role of linear dissipa- 
tion. It follows from (4) that the spectral density at zero fre- 
quency, g,(O,t) = g,(O), is an invariant of the Burgers 
equation. Therefore, if go(0)#O, then in proportion to the 
damping of the fine-scale components, the basic energy field 
will become concentrated in the large-scale components, for 
which, as is shown below, the effective Reynolds number 
increases with decrease in frequency. Consequently, such 
noise sooner or later reaches a strongly nonlinear regime of 
propagation. Ifg,(O) = 0, then, as is seen from (4), the behav- 
ior of the spectrum near the zero wave number will be deter- 
mined by the relation between the law of behavior ofg,(k ) as 
k -+ 0 and the effect of nonlinear generation of new large- 
scale components, which leads to the formation of a univer- 

sal law cc k as k + 0. However, even here the presence of 
large-scale components in the noise spectrum (which are 
present in the initial field or which appear as a result of non- 
linear effects) leads to a relative increase in the role of nonlin- 
ear effects in the evolution of the field. 

We assume that the initial noise spectrum has the form 

go(k )  =an2knbo ( k ) ,  O<bo ( k )  ( 0 0 .  ( 5 )  
Here b,(k ) is a sufficiently rapidly decreasing function as 
k -+ cc with characteristic scale k ,  - 1/1,, approaching a 
constant value ask  -+ 0. We shall investigate below how the 
asymptotic behavior of the field depends on the exponent n 
in (5). 

We first consider the case of small initial value of the 
Reynolds number (Re, - u,l,,/v( 1). Then we neglect the 
nonlinear effects from the initial state and obtain the follow- 
ing expression from (I)  for the spectral density: 

(u (xf p ,  t )  u ( x ,  t )  )ew dp=g, ( k )  e-Zvk't. (6) 2n - m 

Because of the damping of the fine-scale components of the 
spectrum at t > Z:/v the behavior of the field will be deter- 
mined only by the form of the large-scale power portion of 
the initial spectrum (5). Here the increase in the characteris- 
tic spatial scale of the field I( t  ) and the energy damping 
a'(t ) = (u2(x,t )) as a result of the coordination of the fine 
scales are determined by the laws 

1 ( t )  - ( v t )  ''2, a2 ( t )  =anZ ( ~ t ) - ~ " + ' ) ' ~  (7) 

while the actual value of the Reynolds number changes as 

Re ( t )  =o( t )  I ( t )  /v= (a,/v) ( v t )  (1-n)'4. (8) 
The qualitative difference of the spectra with exponents 

n < 1 and n > 1 follows immediately from (8). If the initial 
spectrum increases sufficiently slowly in the region of large 
scales (n > I), then the effective Reynolds number decreases 
with passage of time and, consequently, the nonlinear state 
of development of the OAT can be realized only if the initial 
Reynolds number is large. If now n < 1, then, because of the 
greater damping of the fine-scale components, the relative 
role of the large-scale components increases, and the effec- 
tive Reynolds number also increases. Consequently, even at 
Re,( I, the wave emerges here into the nonlinear regime of 
propagation. 

3. We now consider the other limiting case Re,) 1, and 
we shall show that the resultant nonlinear structure is stable 
at n < 1, i.e., it never departs from the linear regime. As is 
well known, the exact solution of the Burgers equation has 
the f ~ r m ' ~ , ' ~ :  

Here So( y) is known as the action of the initial field.'.12 As 
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Y - 0, a contribution to the integral (9) is made onl) in the 
vicinity of the point where S (x,y,t ) takes on a minimal value, 
which allows us to write the solution of the Burgers equation 
in the form5.12: 

where u(x,t ) is the coordinate of the absolute minimum of 
S(x,y,t). At t)t, the function y(x,t) is a discontinuous, 
piecewise constant function ofx, while the field u(x,t ) trans- 
forms into a series of sawtooth pulses with the same slope 
u; = l/t.'ss As an estimate for the external scale of turbu- 
lence I (t ) -  (x - yl, we can take the condition that the pa- 
rabola in (10) and the value of the initial action are of the 
same order, i.e., 

[ds ( l ( t ) )  I"-12/t, ds(p)=< (So(~+p)-So(x)  ) ' ) ,  (12) 

where d, ( p)  is the structure function of the initial action. Its 
behavior is different at n < 1 and at n > 1. If n > 1, then the 
dispersion of the initial action is limited and 
d , (p  -. W )  = 2of, if n < 1, then the structure function in- 
creases according to the power law d, ( p ) z a ;  pl-". Corre- 
spondingly, we have from (12) for the external scale of the 
OAT in these cases, 

n>l 
1 ( t )  = { :;z1:;(3+n), n < ~ *  

(13) 

At finite viscosity (v#O) the width of the shock front 
(the internal scale of turbulence) 8- vt / I  (t ) will increase. 
However, because of the effect of the discontinuities, the ex- 
ternal scale 1 (t )-the characteristic distance between discon- 
tinuities- will also increase. For the effective Reynolds 
number Re (t ) = I (t )/S(t ), which is equal to the ratio of the 
external scale to the internal, we have here 

Thus, if n < 1, then the effective Reynolds number increases 
even in the nonlinear state, i.e., the regime of strongly non- 
linear sawtooth waves turns out to be structurally stable and 
never departs from the linear damping regime. For the case 
n>2, the most rigorous estimate show that the Reynolds 
number decreases but, because of the effect of the discontin- 
uities, this increase is logarithmically slow. 

4. We now show rigorously that in the case n < 1, the 
establishment of a strongly nonlinear regime actually takes 
place, and also that this regime is self-similar. If the initial 
spectrum of the field is determined by the expression (5), 
then at n < 1, the structure function is represented in the 
form 

d6 (p) = ( [ S o  ( x f  p )  -So ( x )  jZ)=an2a(p) pi-". (15) 
Here a ( p ~ 1 , )  = const, and'for definiteness we set a(W) = 1. 
For analysis of the field, we use the exact solution of the 
Burgers equation (9), (10). We introduce new variables in (9) 
and (10): 

x=El ( t ) ,  y=ql ( t ) .  (16) 

Introducing the effective Reynolds number as 
Re (t) = I 2(t )/vt, we can rewrite the solution of (9) and (10) in 
the form 

t  
( q - 2 ) 2  +SO(?, t ) .  so (q, t )  = -So(ql ( t ) )  S ( E , r 9 t ) = ~  

l"t) 
(18) 

The function s (v,t) in (1 8) possesses the following structure 
function: 

d",(o, t ) = ( [ S o ( q + ~ ,  t)-So(q,  t )  I2)=(t2/L4)d*(@1) (19) 
= (t2a,,2/l"n) a (p l )  p"-"). 

Substituting I ( t )  from (13) here at n < I, we have 
(t 'a;/1 + ) = 1, in (19) while the effective Reynolds num- 
ber increases with increase in t according to the law (14). At 
Re(t )) 1 the contribution to the integral (17) is made only by 
the point where the functions ({,v,t )reaches a minimum and 
the solution is rewritten in the form 

where v(6,t ) is the coordinate of the absolute minimum of 
s ({,v,t ). At t > t, , the function v(6,t ) is piecewise constant 
and consequently the field ii(g,t ) represents a series of saw- 
tooth pulses in the variables 6 with a shock-front width that 
decreases as l/Re(t ). On going to u(x,t ), the width of the 
shock fronts will increase; however, their relative width [in 
comparison with the external scale I (t )] decreases, which al- 
lows us to speak of a strongly nonlinear regime of evolution 
of the wave. It follows from (19) that at p > 1,/1 (t )( 1 the 
structure function sO(v,t ) has the form 

%s (0 ,  t )  =p"-"', (21) 

i.e., it does not depend on the time and does not possess 
spatial scales. This means that at I (t ),lo and Re(t )) 1, the 
statistical characteristics of u(x,t ) will be determined by the 
function v(6,t ), the statistical properties of which, in turn, do 
not change with passage of time. Consequently, all the statis- 
tical characteristics of the field u(x,t ), in accord with (20), 
become self-similar and are determined by a single scale- 
the external scale ofthe OAT, I (t ), which increases according 
to the law (13) because of the effect of the discontinuities. 

It is seen from (20) that the correlation function and the 
energy spectrum of the turbulence in the self-similar stage 
can be represented in the form 

1 +- z3 
g (k, t )  = - B ( p ,  t )  rihp dp= - ( y2)g(k l  ( t )  ) , (23) 

2n t2 

The dimensionless functions R (z) (R (0) = I), g(k ), and the 
constant b 2 )  entering into (22) and (23) all depend only on 
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the exponent n in the growth law of the spectrum near the 
zero wave numbers (5). The specific form of these functions 
can be found, for example, by statistical treatment of the 
numerical model of the dimensionless field u({ ) = { - ~ ( 6  ) 
(20). A number of properties of these functions can be estab- 
lished by using certain general properties of the OAT. First, 
we note that in the realization of the field u(x,t ) there are 
discontinuities in the self-similar state. Their appearance 
leads to a universal, shortwave asymptote of the energy spec- 
trum of the field7-9,'2g(k ) = An k -2. Consequently, with ac- 
curacy to within a numerical factor An that depends on the 
exponent n of the initial spectrum (5), the energy spectrum of 
the OAT, regardless of the fine structure of the initial spec- 
trum, will have the universal asymptote g(k ) -k -2(k) 1). 

In the region of large scales, as follows from (4), the 
nonlinearity and the dissipation cannot change the form of 
the spectrum at n < 1. Therefore, at n < 1, the dimensionless 
spectrumg(k ) has the same asymptotic behavior of the spec- 
trum as k + 0 as the initial spectrum: g(k ) = pn K" . We note 
that by substituting this relation in (23) we obtain an equa- 
tion for the external scale of turbulence I (t ), whose solution 
naturally leads to the previously obtained law of growth of 
the external scale of OAT (13). 

5. The presence of a single characteristic scale in the 
field u(x,t ) at the discontinuity stage allows us to construct a 
simple qualitative model of the evolution of the turbulence 
with n < 1. For this purpose, we replace the continuous spec- 
trumgo(k ) by a discrete set of modes-the spatial harmonics 
with wave numbers k, and amplitudes A ,  : 

n+')'a - m ( n + 1 ) / 2  Fcm=kos-", Arn=a,ko( E (24) 

We choose the amplitudes of the harmonics from the 
condition that the mean spectral density of the harmonics in 
the interval A ,  = k, + , - k, be identical with the noise 
spectral densityd =go(km)A,. We set &>I, so that the 
harmonics are sufficiently spread out over the spatial spec- 
trum. The energy of an individual mode is conserved at 
t < t, , where t, is the characteristic time of development of 
the nonlinearity of the mth mode: 

tm= i / k m ~ m G  (a ,ko (n+3) /2E-m(n+3) / z )  - i .  (25) 
At t > t , ,  the mode transforms into a series of sawtooth 
pulses with characteristic period I, - l/k, and its energy 
decays in jumps. For the energy of the mode, we write out the 
following approximate expression: 

E ( t )  = { t-=tm, 
l/km=t2, t>trn. 

The energy decay of an individual mode is connected 
with the transfer of its energy upward in the spectrum. How- 
ever, in the case of a finite width of the spectrum of the mode, 
part of the energy is carried into the long wavelength region 
of the spectrum, while the intensity of the new components is 
proportional to k '. Consequently, if thespectrumg,(k )in the 
long wavelength region is sufficiently intense 
(go(k ) - kn , n < 1), then the newly appearing components 
have a smaller intensity than g,(k ). The transfer of energy 
into the long wavelength region can be neglected here and we 
can assume that the amplitudes of the large-scale modes do 

not change, without beginning their nonlinear decay. The 
interaction of the modes naturally affects the laws of mode 
transformation. However, at E >  1, when the individual 
modes are widely distributed over the spectrum, this interac- 
tion can be neglected if we limit ourselves to the considera- 
tion of the energy characteristics only. Actually, in corre- 
spondence with (2), the fine-scale modes have practically no 
effect on the large scale. The large scale modes lead only to 
local transfer of the higher modes as a whole, i.e., to their 
spatial m ~ d u l a t i o n . ~ ~ ' ~ ~ "  This allows us to assume that at the 
instant of time t, the energy of the wave E (t ) is the sum of the 
energies of the modes that have not yet begun to be damped, 
and the energy of the modes that are represented in the saw- 
tooth wave is approximately equal to 

Here m. (t ) is the boundary number of the mode, which be- 
gins to be damped at the time t. This number is equal to the 
solution of the equation t, = t (25). It follows from this 
equation that at time t the characteristic period of the m, th 
mode is equal to 

1,. ( t )  = I / k , , = ~ ~ . / k , =  ( a n t )  (28) 

which coincides with the result obtained from an exact solu- 
tion of the Burgers equation. For the energy of the wave (27), 
this scale turns out to be the largest energy-containing scale, 
since modes with m < m. are already damped, while the 
modes with m > m. possess less energy. Consequently, we 
have [from (28)] the result that the energy of the field is 
damped approximately as 

E ( t )  % 1 , . 2 / t ~ t - ~ ( n + i ) / ( n + 3 )  (29) 

The field u(x,t) here has the form of a series of sawtooth 
pulses with characteristic period I (t ) (IS), against the back- 
ground of which there exists a ripple of discontinuities with 
smaller periods and with energies much less than the energy 
of the fundamental mode. As the wave propagates, the ener- 
gy-containing mode develops a longer and longer period. 

6. The self-similarity of the field at the stage of devel- 
oped discontinuities allows us effectively to use numerical 
methods of investigation of the OAT. Actually, it is seen 
from (29) that the field u(x,t ) in this stage is expressed in 
terms of the dimensionless field k(f,t ), the statistical proper- 
ties of which do not depend on the time in the self-similar 
stage. Therefore, carrying out a statistical treatment of the 
results of the numerical experiment on the modeling of the 
field k(6,t ) = 6 - ~ ( 6 , t  ), where ~ ( 6 , t )  is the coordinate of the 
absolute minimum of the function s ( l , ~ , t  ) (18): 

S ( q ,  E )  = i / ~ ( q - E ) z + S ~ ( d 7  (30) 
we have succeeded in finding the form of the correlation 
function, the spectrum and other statistical characteristics 
of the OAT in the self-similar stage. This is possible because 
the dimensionless function S0(77) entering into (18) and (30) 
possesses the structure function (2 1) in the self-similar stage, 
and which is time-independent. Consequently, we can as- 
sume in (30) that is also time-independent. 

In the present work, the result is given of a numerical 
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FIG. 1. Typical form of realization of OAT. 

experiment in the case n = 0 ,  when the random function 
&(n) is a Wiener process with structure function 
d, ( p) = I pl. The modeling of (30) has been carried out with 
a step in 7 equal to A = 0.05. The Wiener process has been 
approximated in this case by the discrete series 

where $i are independent random numbers possessing a nor- 
mal distribution with a variance determined from the condi- 
tion of identity of the structure function of the discrete series 
and the Wiener process: 

< ~ ~ , , > = < $ ~ ~ > m = d ,  (p=mA) =mA. 

Thus, the procedure of estimating the dimensionless field 
u(6) = 6 - ~ ( l )  has ended in the construction of a random 
realization of the action S (7,f  ) (30) and the estimate of the 
absolute minimum of this series 7 = ~ ( 6  ). A typical shape of 
the realization is shown in Fig. 1. 

The statistical characteristics of the field have been de- 
termined as a result of the treatment of an ensemble consist- 
ing of N independent realizations. In the numerical experi- 
ment, the following characteristics of the OAT were found: 
the one-dimensional probability function and its first cumu- 
lants-tt, , the correlation function, and the laws of decay of 

FIG. 2. One-dimensional probability distribution of OAT (the Gaussian 
distribution possessing the same variance is given by the dashed curve). 

FIG. 3. Dimensionless correlation coefficient of OAT. 

the energy spectrum. The probability distribution (see Fig. 2) 
was determined by the averaging of 100,000 realizations 
consisting of a single point ii(6 = 0 )  = - 77. In the numerical 
experiment, the variance x2 = ( i i 2 )  = 0.699 entering as a di- 
mensionless parameter ( y2)  = ( i i 2 )  in (22) and (23), and the 
cumulant coefficients y,, = x , /~ ; ' ~ ,  that describe the de- 
crease of the departure of the distribution from Gaussian" 
were determined. In contrast to the case D = 0 ,  where the 
one-dimensional distribution is asymptotically Gau~s i an ,~  
the probability distribution W (u)  differs from Gaussian, al- 
beit not strongly. In particular, the excess coefficient, equal 
to y, = - 0.0149, shows that the distribution has a more 
typical vertex than the Gaussian distribution with the same 
dispersions. 

The dimensionless correlation coefficient 
R (z)  = (ii(z + 6 )ii(6 )) was determined numerically as a re- 
sult of double averaging: over the individual realizations ii(6 ) 
and over the ensemble of N = 10 000 realizations. The form 
of the correlation coefficient is shown in Fig. 3. As is seen, 
the correlation coefficient is nonanalytic near zero, which is 
directly connected with the presence of discontinuities in the 
realizations of the random field of the OAT. From the re- 
sults of the numerical experiment, it follows that near zero 
R (z) -- 1 - 0.871~1. This leads to the following power asymp- 
tote of the dimensionless energy spectrum of the turbulence: 
g(k)--0.419k -2. 

The authors are grateful to A. N. Malkahov for useful 
discussion of the research. 
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