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A phenomenological theory of collective modes in superfluid 3He-B, similar to the Leggett theory 
for spin dynamics, is developed. The theory can be applied to study the dynamics of collective 
modes in an inhomogeneous texture of the order parameter. In the presence of a magnetic field, 
the quantization axis of the angular momentum J that characterizes the modes varies in space in 
this texture. This results in a Van Hove-type texture-dependent singularity in the absorption 
spectrum of the ultrasound that excites the collective modes. Thus, in the texture produced by a 
magnetic field between parallel plates and observed with the aid of ultrasound, a collective mode 
with J = 2 should be split not into five modes, as it should in open geometry, but into ten. The 
additional splitting of the mode spectrum on account of the textures can be used to investigate 
vortex structures in a rotating superfluid liquid. 

1. INTRODUCTION 

Cooper pairing in liquid 3He leads to formation of a 
coherent superfluid state. One of the manifestations of the 
coherence of superfluid phases of 3He is the existence in 
them of various collective modes. In contrast to zero-sound 
modes in a normal Fermi liquid, these collective modes exist 
in the limit of arbitrary long wavelengths and reflect the 
appearance of long-range order. At least 14 collective modes 
were observed in superfluid 3He-B. They include four Gold- 
stone modes, viz., sound and three spin-wave modes. By now 
these modes have been thoroughly studied; experiments 
with propagation of sound and of spin waves (NMR experi- 
ments) yield the basic information on the structure of the 
order parameter in superfluid 3He phases (see, e.g., the re- 
view') and on the various textures-spatially inhomogen- 
eous states of the order parameter (see, e.g., Refs. 2 and 3). 
Experimerrts with ultrasound revealed ultrasound-excited 
collective modes with gaps (see the latest papers4-6 and the 
references therein). In 3He-B these are the fivefold degener- 
ate squashing mode (SM), whose splitting has not yet been 
observed, and the real squashing mode (RSM), all five 
branches of which can be seen in a magnetic field. The exis- 
tence of other collective modes is also ind i~a ted .~  

The theory of collective modes with gaps was limited up 
to now to calculation of their spectrum and to their connec- 
tion with ultrasound in a spatially homogeneous liquid. In 
3He-B, whose isotropic equilibrium state is an eigenstate 
with J = 0, the modes are classified in accord with the value 
of the total angular momentum J (Ref. 7) (see Ref. 8 for the 
quantum numbers that characterize the modes in 3He-A ). 
The mode spectrum was calculated by many reasonable 
methods: in the formalism of the two-particle Green's func- 
t i ~ n , ~  by the method of matrix kinetic equation,'' by the 
method of functional integration over the Fermi fields," and 
others. 

All these methods are quite complicated for use in the 
study of the propagation of collective modes in an inhomo- 
geneous liquid. The latter, however, is essential, since the 

gap collective modes can serve as just a reliable source of 
texture information as the Goldstone modes, but in other 
frequency and wavelength bands. Thus, for example, it be- 
came clear recently1' that texture effects are responsible for 
the sixfold4 splitting of RSM with J = 2 observed in a mag- 
netic field rather than the expected fivefold splitting. The 
additional splitting of the central line with J, = 0 depends 
on the form of the texture, and this dependence can be used 
to identify the different textures, including those occurring 
in rotation of 3He-B on account of formation of quantized 
vortices. The latter were investigated up to now only by the 
NMR m e t h ~ d . ~  It becomes necessary therefore to develop a 
phenomenological theory that describes the dynamics of col- 
lective modes in the presence of a texture, similar to the mac- 
roscopic theory of spin dynamics developed by LeggettI3 (see 
also Refs. 14-16). The macroscopic theory should lead to all 
the qualitative results from the microtheory for a homogen- 
eous medium, leaving for the latter the calculation of the 
phenomenological parameters. 

Phenomenological equations for the order parameter, 
which can describe the propagation of gap collective modes 
in the presence of textures, are derived in Secs. 2 and 3 of the 
present article. These are generalizations of the Leggett 
equations13-l6 that describe the entire spin-wave dynamics 
in the presence of a magnetic field and of textures. There is 
one important difference between the equations for gap 
modes and the Leggett equations. Leggett's equations de- 
scribe the dynamics of hydrodynamic variables and of soft 
Goldstone modes of the order parameter, and can be used at 
wavelengths exceeding the coherence length (Asc ) and at 
frequencies that are low compared with the gap A in the 
spectrum of the Fermi excitations (w<A ). Non-Goldstone 
modes, on the contrary, have a frequency comparable with 
A; thus, in the weak coupling approximation the RSM fre- 
quency as A-co is equal to w, = (8/5) ' ' '~ (Refs. 7, 9-1 1). 
Therefore the region of applicability of the phenomenologi- 
cal equations for the order parameter, which describe the 
propagation of gap collective modes, is limited by other in- 
equalities: As{ and Iw - wol<A. In all other respects the 
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equations are similar and are derived from the same commu- 
tation relations as given for pair operators in Leggett's pa- 
per.13 In both cases, the structure of the equations is deter- 
mined by the symmetry of the "vacuum" phase of the 
superfluid phase of 3He, i.e., by the type ofbroken symmetry 
(in 3He-B it is the spin-orbit symmetry which is broken, and 
this leads to a nontrivial influence of the texture on the col- 
lective modes). 

In Sec. 4 we consider the effect of the magnetic field on 
the mode spectrum, and in Sec. 5 we show how the joint 
influence of the magnetic field and of the texture leads to 
additional mode splitting. We determine the texture charac- 
teristics that can be studied with the aid of collective modes 
and point out the advantage of this method of studying the 
texture over NMR. In Sec. 6 we show how to study vortex 
states of 3He-B in a rotating vessel with the aid of collective 
modes, and in the Conclusion we discuss the possibility of 
studying textures with the aid of collective modes in 3He-A. 

2. SYMMETRY OF GROUND STATE AND DYNAMIC 
VARIABLES FOR COLLECTIVE MODES IN =He-B 

The classification of collective modes in superfluid 3He 
is determined by the symmetry of the vaccum, which is the 
equilibrium homogeneous state of the liquid. The vacuum in 
3He-B is characterized by the following symmetry elements. 
First is continuous symmetry, specified by the generator 

n n 
where L and S are respectively the generators of the orbital 
and spin rotations, and Rai is an orthogonal 3 X 3 matrix 
that characterizes the given degenerate state of the vacuum. 
The degeneracy is connected with the leeway in the choice of 
the orientation of the spin coordinate frame relative to the 
orbital frame neglecting the weak spin-orbit (so-called di- 
pole) interaction. The appearance in 3He-B of the connection 
(2.1) between the spin and orbital rotations, which is dictated 
by the state of the vacuum, means breaking of the spin-orbit 
symmetry in 3He-B. In addition, there are two discrete vacu- 
um symmetry elemznts: symmetry with resRect to theJime 
reversaj operation T, and combined parity PC,,, = PUd,, 
where Pis the operation of spatial inversion r-+ - r, and U,, 
is a gauge transformation with a phase parameter equal to T/ 
2. 

This symmetry determines uniquely the form of the am- 
plitude of the Cooper pairing, on the Fermi surface, of parti- 
cles with opposite momenta: 

In the equilibrium state this amplitude should satisfy the 
vacuum symmetry conditions: 

with the following actions of the symmetry-transformation 
operators5: 

PT,b ( P I  =T& ( -P) ,  TaP,=gaba-,b+, (2.4) 

g=io2, TTab ( p )  =g,,T,,,+ (p) gdb. 

Here a, are Pauli matrices. 
The general solution of Eqs. (2.3) is of the form 

Tabo ( P )  = (ozg)  .bfia,n,f ( p )  , n=plp, (2.5) 

where f (p) is a real function that depends only on the modu- 
lusp. It describes the pairing of Fermi particles with a com- 
mon spin S = 1 and with a relative angular momentum 
L = 1 of the pair particles. By virtue of its symmetry, T:, is a 
solution of the Gor'kov equations and effects an absolute 
minimum of the energy at certain parameters of the liquid. 

The collective modes in 3He-B, including also the spin 
waves considered by Leggett, are oscillations of the ampli- 
tude Tab about its equilibrium value Tjl,, coupled with the 
oscillations of the particle distribution function: 

nab (p) = (apa+apb). (2-6) 

Oscillations against the background of the vacuum (2.5) are 
characterized by quantum numbers that are determined by 
the symmetry of the vacuum. These are the total angular 
momentum J, which takes on arbitrary integer values, and 
the parities Tand PC,,, with values + 1. To find the dynam- 
ic variables for which we shall construct the equations that 
describe the dynamics of collective modes with a given set of 
quantum numbers J, T, and PC,,,, we must separate the 
appropriate components from the amplitude Tab (p) and the 
distribution function nab (p). These components must satisfy 
the equations 

f2T,=J(J+1) Tab, J2nab=J(J+1) nab, 

PconioTab=Pc,mtbTub. peornbl2nb=Peombnobt 

TTab=TT,b, Tnab=- Tn,b. P7) 
Since, as we shall see below, Tab and no, are canonical conju- 
gates in the corresponding Hamilton equations, their com- 
ponents in this mode should have different time parity T. 

We shall be interested hereafter only in the dynamics of 
experimentally observable collective modes with gaps: SM 
and RMS. The dynamics of the remaining modes with other 
quantum numbers is developed in similar fashion. 

The SM has the quantum numbers J = 2, T = - 1, and 
PC,,, = + 1. The solution of Eqs. (2.7) with these quantum 
numbers yields the following components of the pairing am- 
plitude and of the distribution function, which oscillate in 
this mode: 

T ,  ( p )  m i  (go.) ,,b { (niRah+4Rui-2/16UniR.i) (2.8) 

Here Qik @), uik @), and fi, @) are real zero-trace symmetric 
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matrices that depend only on the modulusp of the momen- 
tum. This dependence is inessential, since the oscillations 
take place only near the Fermi surface. We shall therefore 
consider as the dynamic variables integrals of Q, u, and 8 
with respect to the momenta, in analogy with the procedure 
used for spin waves. l 3  Thus, the dynamic variables that de- 
scribe the SM are Qik , v, and 8, are expressed in the follow- 
ing manner in terms of the distribution function and the 
pairing amplitude: 

2 
=1m { (go.), ( n ~ i , f  nIRai- 5 L.n,Ral ) L (P) }. 

P 

P 

We note that v, describes the amplitude of pairing into a 
state with S = 1, L = 1, and J = 2, whereas the correspond- 
ing state for 8, has S = 1, L = 3 and J  = 2; Q,, is the qua- 
drupole moment of the distribution function of the particles 
in the liquid. 

Similarly, an RSM with quantum numbers J =  2, 
T = + 1 and PC,,, = + 1 is described by real zero-trace 
symmetric matrices Mik , uik, and ii, expressed in terms of 
the distribution function and the pairing amplitude as fol- 
lows: 

We note that unlike the variable Q, in the SM, the 
variable Mi, in the RSM reflects a change in the particle- 
spin distribution in the wave. Therefore, whereas an SM is 
intensely excited by ultrasound, an RSM should be excited 
by an rf magnetic field, i.e., in NMR experiments, and is 
substantially less connected with ultrasound (see, e.g., Ref. 
4). We note also that all the variables of (2.9) and (2.10) van- 
ish at equilibrium, when the only nonzero quantities are 
those Tab and nab components that correspond to the quan- 
tum numbers J =  0, T =  + 1, and PC,,, = + 1. One of 
these components is the order parameter at equilibrium: 

P 

where g, is the first harmonic in the pairing interaction po- 
tential 

and the gap A in the excitation spectrum is expressed in 
terms of the function f @) from (2.5) as follows: 

P 

The second component is the particle density 

3. POISSON BRACKETS AND DYNAMIC EQUATIONS FOR 
COLLECTIVE MODES 

We proceed now to construct dynamic equations for the 
variables obtained. It is most convenient to derive these 
equations in the Hamiltonian formalism. Using the known 
commutation properties, written out in Ref. 13, for the oper- 
ators Tab (p) and nab (p) in second quantization, it is easy to 
obtain the Poisson brackets (PB) between the dynamic varia- 
bles. Since we are interested in linear dynamics, we retain in 
the right-hand parts of the brackets only the equilibrium 
values of the operators, i.e., the variables (2.11) and (2.13). 
Calculation of the commutators yields the following PB for 
the variables (2.9) and (2.10): 

The remaining PB are zero. Since the variables 8, and ii, 
commute with all the variables, they are integrals of the mo- 
tion and if they are zero at the initial instant, they remain so 
also at succeeding instants. We shall therefore disregard 
these variables. 

We have thus ten pairs of canonically conjugate varia- 
bles: five pairs of Q and u, which give five SM branches, and 
five pairs of M and u,  which give five RSM branches. 

As also in spin dynamics, the PB (3.1) and (3.2) are easily 
generalized to include the case of coordinate-dependent var- 
iables: 

{Qij(rl), ( ~ 2 ) )  ='(A/gi) (6im6jn+6,n6jm-2/36ij6mn) 6 ( r i - 4 ,  

(3.3) 

{Mij (rd, urnn b ) }  = (Algi) (6im6jn+6in6jm-'/36ij6mn) 6 (ri-r2). 

(3.4) 
The equations of motion are now easily obtained if the form 
of the Hamiltonian in known. Since we are interested in the 
linear equations that describe the wave propagation, it suf- 
fices to retain in the energy the terms quadratic in Q, M, v, 
and u. The qu%drztic enezgy expression invariant to trans- 
formations of J, T, and PC,,, takes the following general 
form: 

where 

and H,, describes the interaction between the modes: 
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Huu=BuuikQik+PuUikMik. (3.7) 

This interaction is absent in the weak-interaction limit, for in 
this approximation there is symmetry between the quasipar- 
ticles and hcoles near the Fermi surface. Owing to this sym- 
metry, the Toperation breaks up into two independent oper- 
ations, viz. complex conjugation and replacement of t by 
- t .  Each of the symmetries forbids separately the appear- 

ance of terms of the type (3.7) in the energy. The interaction 
(3.7) is thus weak to the extent that A /E ,  is small, and we 
shall neglect it. 

The Liouville equations x = (H, X ] yield in this case 
the wave equations for the collective modes: 
~ i k = - ~ 0 u 2 ~ i k + ~ i u 2 V 2 ~ i k  

+c2u2 ( V i V l ~ k l - V k V l ~ i l - ~ / S 6 i k v m V n ~ m n )  , (3.8) 

where 

The spectrum of the waves w(q) depends on the projec- 
tion of the angular momentum J, on the wave propagation 
direction. Expanding u, over states with different J, ,  we 
obtain the RSM spectrum (the SM spectrum is similar in 
form). The variable for the collective mode with J, = 0 and 
the spectrum of this RSM are given by 

o = ~ o u 2 +  ( c ~ ~ ~ + ~ / ~ c ~ ~ ~ )  qi, (3.12) 

where 2,9, and 2 are the unit vectors of the Cartesian coordi- 
nate frame. The modes with lJ, I = 1 are described by two 
independent variables: 

u ~ ~ = u , ' ( T ~ ~ ~ + z ~ & ~ )  +uyi ( g i 2 k f  oh&), (3.13) 

and the doubly degenerate spectrum is of the form 

a:z,*t=a0u2+ ( c ~ ~ ~ + c ~ ~ ~ )  q2. (3.14) 

Finally, two modes with I J, I = 2 are described by two varia- 
bles: 

and their spectrum is 

~ f ~ = * ~ = ~ ~ ~ ~ + ~ i ~ ~ q ~ .  

4. COLLECTIVE MODES IN A MAGNETIC FIELD 

RSM Zeeman splitting in a magnetic in which it is linear 
was calculated in Ref. 17 and experimentally observed in 
Ref. 18. Here we obtain this splitting in the phenomenologi- 
cal theory. 

The main effect of the magnetic field is not the appear- 
ance of additional magnetic energy in the Hamiltonian (3.5), 
for this would lead only to effects quadratic in the field, but 
the change of the Poisson brackets. In fact, the liquid ac- 
quires in the magnetic field one other nonzero equilibrium 
property, besides the order parameter (2.11) and the density 
(2.13), viz., the spin density of the liquid 

wherex is the magnetic susceptibility and y is the gyromag- 
netic ratio. Therefore some of the PB, previously zero at 
equilibrium, acquire on account of S nonzero equilibrium 
magnetic values. For the SM and RSM these are 

We note that by virtue of the zero-spin character of the vari- 
able Q [Eq. (2.9)] the PB of the Q components with one an- 
other remain zero even in the presence of a magnetic field. 
As a result the SM reacts more weakly to a magnetic field 
than the RSM. 

The energy (3.5) remains the same as before, since we 
neglect here the effects quadratic in the field, although they 
can be easily taken into account if the quadratic Zeeman 
effect must be considered.19 The influence of the magnetic 
field is thus characterized by the vector Bi = Rai Ha, i.e., by 
a field rotated by the matrix Rai. 

We consider first an RSM in a uniform effective field H, 
i.e., both the external field H and the order parameter are 
homogeneous. We assume for simplicity that the splitting in 
the magnetic field is larger than the splitting due to finite q, 
considered in the preceding section. This corresponds to the 
typical experimental situation in fields H > 100 G.4 We re- 
gard therefore the gradient terms in the energy as a perturba- 
tion. We separate directly the components Mi, 2nd uik cor- 
responding to different projections of J, on H. They are 
given by Eqs. (3.1 I), (3.13), and (3.15) for u, and by similar 
formulas for Mi,. For these variables we have the following 
PB obtained from (4.2) and (3.2): 

5 X {M,', Mq2) = - - H, 
54 7 

and the Hamiltonian 
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The Hamiltonian (4.7) and the PB (4.3) lead, for the 
canonically conjugate variables M O and u0 with projection 
J, = 0, to the following RSM spectrum: 

o:z-o=oouZ+ ( c ~ ~ ~ + ' / ~ c ~ ~ ~ )  q2+cZu2 (qf;)  2 .  (4.10) 

For future convenience we have introduced here the unit 
vector 

h = g / ~ ,  Hi=RaiHa, (4.1 1) 

which specifies the quantization axis in the magnetic field, 
such that q, = (q-h)'. 

The Hamiltonian (4.8) with PB (4.4) leads to the follow- 
ing system of equations for the four dynamic variables of two 
RSM with I J, I = 1: 

. 2A u,'= - 4 
M,'+ -S[2au+2biuq2+b2, (q,'+q,2) I u,', 

xugi 3 

5 S kt=--- M,'- - A [2au+2bluq2+bzu (qU2+q?) 1 u,'. 
54 Xu gi 

Assuming that the splitting due to the field exceeds the split- 
ting due to the finite q, these equations lead to the spectrum 

.. OP = ~ l = 0 0 u 2 + ~ t u Z q 2 + ' / Z ~ 2 u z [ q 2 +  (qh lZ1  +2oouJZguyH7 (4.13) 

where 

is the Landi factor for the Zeeman splitting. The PB between 
the Qcomponents in a SM are zero, therefore theg-factor for 
an SM differs from (4.14) in that there is no first term, and is 
equal tog, = 4aux/3Y. Since the second term of the SM g 
factor is less than the first in the weak-coupling limit, SM 
splitting in a magnetic field is substantially less than that of 
RSM. This is why SM splitting has not yet been observed. 

In analogy with the derivation of (4.13), the spectrum of 
an RSM with IJ, I = 2 is derived from a system of four equa- 
tions and turns out to be 

of  ~ ~ = o o u 2 + ~ ~ u ' q 2 + ~ 2 u 2 f  q2- ( q h )  ' 1  + 2 o o U 1 , g u r ~ .  (4.15) 

The condition for the applicability of the expressions (4. lo), 
(4.13), and (4.15) obtained for the RSM spectrum is given by 
the inequalities 

We point out that the spectrum of all five RSM is deter- 
mined in this approximation by only four parameters: w,, , 
c,, , c,, , and g, , which can be obtained from experiment. 

5. EFFECT OF TEXTURES ON COLLECTIVE MODES 

The textures in 3He-B, which are inhomogeneous states 
of the degeneracy parameter R a i ,  are the result of competi- 
tion between different orienting actions exerted on Rai by 
the walls, the magnetic field, the superfluid flow, and the 
quantized vortices produced in a rotating vessel (see, e.g., 
Ref. 3). In addition, owing to the nontrivial topological 
structure of the degeneracy space, there are metastable tex- 
tures that have topological charge and long lifetime due to 
the preservation of this charge." We point out among them 
the Maki solitons21 observed in NMR spectra, solitons with 
a behavior similar to that of domain walls. The characteristic 
dimensions of typical structures in 3He-B are large be- 
cause of the high isotropy of this liquid. They are determined 
by the characteristic magnetic length f, , which is inversely 
proportional to the magnetic field. In fields H- 100 G this 
length, at low pressures and far from T,, reaches several 
millimeters. In those Maki solitons whose topological 
charge is connected with the dipole interaction," the dimen- 
sion of the texture is of the order of the dipole length 
f D  - 10W3 cm. Finally, in objects whose topological charge 
is determined by the condensation energy, such as quantized 
vortices, the dimension of the texture is of the order of the 
coherence length - cm. 

The textures in 3He-B were investigated up to now in 
NMR experiments. We shall here that experiments with ul- 
trasound that excites collective modes can also yield infor- 
mation on textures. 

The field of the degeneracy parameter Rai (r) in a tex- 
ture exerts two types of effects on the dynamics of the collec- 
tive modes. First, even in a uniform magnetic field H, the 
texture Rai makes the quantization axis h [see (4.1 I)] inho- 
mogeneous in space. As a result the RSM spectrum (4. lo), 
(4.13), and (4.15) depends on the coordinates via h(r). Second, 
texture produces in the Hamiltonian terms of the dynamic 
variable u, that are linear in the gradients. A possible term, 
e.g., is 

where the tensor associated with the texture 

plays the role of a non-Abelian gauge field for the collective 
mode. 

We consider here broad textures with dimension gH or 
f D  substantially larger than the wavelength of an RSM ex- 
cited by ultrasound (the wave vector q of the RSM-exciting 
ultrasound is obtained by comparing the ultrasound fre- 
quency w = cq (c is the speed of sound) with the RSM fre- 
quency, i.e., q-A /c- lo4-lo6 cm-I sf; 'sf; I ) .  In these 
textures, the first mechanism changes the frequency of the 
collective mode by a measurable value ciq2/wo, whereas the 
second changes it by the much smaller value c:q/wotH or c: 
q/wofD. The second effect becomes inportant if an RSM is 
excited in NMR experiments by an rf magnetic field of large 
wavelength. 

The dependence of the RSM spectrum on the coordi- 
nates leads to the following important consequence. Since 
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the wavelength is much smaller than the texture dimension it 
can be assumed that ultrasound excites in a given point of the 
texture a collective mode independently of the remaining 
sections of the texture. The ultrasound absorption intensity 
is therefore proportional to the density of states, i.e., to the 
relative volume of the texture acted upon by the given fre- 
quenc y : 

The main contribution to this spectral density is made by 
those texture sections in which the spectrum is stationary, 
i.e., Vw = 0. To frequencies equal to the value of the spec- 
trum at the stationary points there corresponds a singularity 
in the absorption spectrum. We can thereby determine the 
topology of stationary points, lines, or surfaces in a texture, 
and hence the form of the texture. Particularly strongly pro- 
nounced in the absorption spectrum is the singularity in the 
case of a planar texture, e.g., in a Maki soliton or in a liquid 
placed between parallel plates. In this case Vw can vanish on 
the entire plane, corresponding to infinite P(o) at the fre- 
quency at which the spectrum is stationary. This means ap- 
pearance of a line in the ultrasound-absorption spectrum. 

We consider just such a case, which is typical for experi- 
ments with ultrasound propagating between parallel plates. 
We shall show that in this geometry the five RSM corre- 
spond not to one ultrasound-absorption line each, as should 
be the case in an unbounded liquid, but to two lines each if 
the anglep between the magnetic field and the normal to the 
plates differs from zero. The texture between parallel plates 
in a magnetic field is determined by the competition between 
the magnetic and surface energies FM and F, (see Ref. 2): 

where s is the normal to the plates (the x axis), and the unit 
vector n specifies the rotation angle defined by the orthogo- 
nal matrix 

Rmi (n ,  O o )  =tiai+ (1-cos 8,) (nani-6,;) +eaiLnL sin €4,. (5.5) 
The rotation angle is fixed by the spin-orbit interaction: 
cos 8, = - 1/4. 

Since we are interested in the distribution of the quanti- 
zation axis in the texture, we express the energies (5.4) in 
terms of h, using (5.5): 

In fields H that are strong enough, when the distance I 
between the plates exceeds the magnetic length fH,  the 
quantization axis is parallel to the magnetic field in practi- 
cally the entire volume between the plates, and this ensures a 
minimum of the volume energy F,. In the surface regions 
near plates of size fH,  the vector h is rotated in such a way 
that it becomes aligned with the normal on the surface itself: 
h = +_ s, since this is ensured by the minimum of the surface 
energy F, (see Fig. 1, which shows the two textures of the 
field h that are possible in such a geometry). 

We consider now excitation of RSM in such a texture by 
ultrasound propagating between the plates such that qlls. 

FIG. 1.  Distribution of quantization axis h of the internal angular momen- 
tum Jof collective modes in two possible textures between parallel plates 
in a strong magnetic field parallel to the plates. In the upper part of the 
figure is shown the dependence of the frequency w of the spectrum of a 
collective mode with quantum numbers J = 2 and J, = 0 on the coordi- 
natex along the wave vector a. The distance between the stationary points 
of the function w(x) determinds the observable splittingdo ofthis mode in 
the texture. Its s~littinn in stronn fields does not deoend on the field and on 
the forms of texiures Land b. 

We choose for the sake of argument an RSM with J, = 0. Its 
i.e., on spectrum has an absolute maximum qllh [(see (4. lo)], ' 

the surfaces of the plates, and an absolute minimum at those 
points of the texture where the deflection of q away from h is 
a maximum. The latter is realized on a line midway between 
the plates (see Fig. l) ,  where hllH. Thus, the spectral density 

-1/2 . , 
becomes infinite at two frequencies equal to the RSM fre- 
quencies at x = 0 and at x = + 1 /2: 

The RSM with J, = 0 should therefore split into two lines 
with a distance between them 

We point out that the splitting does not depend on the mag- 
netic field if the latter is strong enough to satisfy the condi- 
tion f H  <I. In weak fields, when f H  XI, the vector h(0) is no 
longer parallel to H and depends on the texture. Figure 2 
shows the textures obtained from the textures of Fig. 1 when 
the field is weakened. It can be seen that the resultant split- 
tings are different: 

A~, ,=oz  (czu2/200u) [qh(O) 1'. (5.10) 

When the field tends to zero the magnetic length is f H  $1 and 
the texture with minimum energy becomes homogeneous, so 
that there is no splitting. 
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6. HOW TO USE COLLECTIVE MODES TO INVESTIGATE 
- - - - - - - - - - - - - TEXTURES IN ROTATING =He-B m;----;;m; Quantum vortices produced upon rotation change the 

t e ~ t u r e , ~  and from this change one can obtain the vortex 
parameters of the structure of the vortex core. Consider 3He- 

-Z/Z B contained between two plates and rotating about a n%rmal 
to the plate (the rotation angular-velocity direction is f2 (1s). 
Added to the orienting actions (5.4) and (5.6) of the magnetic 
field on the degeneracy parameter is the orienting action of 
the vortices, which is expressed in terms of dimensionless 
vortex parameter proportional to the density of the vorti- 
ces." The vortex action corresponds to a contribution to the 
free energy 

2 2 
Fv = 7 aL J ~ V ( B , R . ~ ~ ) Z =  - a m  J dv(hh)'. (6.1) 5 

FIG. 2. The same as in Fig. 1, but in a weak field. The splitting of the 
collective-mode spectrum by the stable texture shown in Fig. 2a decreases 
to zero with decreasing field. The metastable structure in Fig. 2b leads to 
the same splitting as in a strong field. The observed hysteresis in the split- 
ting is due to the metastable structure produced on going into the super- 
fluid state in the presence of a field. 

A similar splitting of an RSM with J, = 0 was actually 
observed in an experiment4 in a magnetic field perpendicular 
to the normals, i.e., at j3 = ~ / 2 .  I t  was seen that the splitting 
depended on the value of H in weak fields, but saturated at 
H k 500 G, i.e. precisely when cH < I ,  where 1 = 4 mm. In 
weak fields, when 6, < I ,  hysteresis is observed and is due to 
formation of the two different structures in Figs. 1 and 2. 
The seemingly unusual splitting of RSM with J, = 0 finds 
thus a simple explanation within the framework of texture 
effects. 

The remaining four RSM with other J, should be split 
by the texture in similar manner: 

No such splitting was observed so far. The reason is that 
RSM with J, # O  are much more weakly excited by ultra- 
sound than the mode with J, = 0, so that observation of the 
splitting of these modes is more difficult. 

We note that the texture splitting amplitude c:,/2w0, is 
connected with the RSM splitting, known from other experi- 
ments (see Ref. 4), in a zero magnetic field by the action of 
finite q [see (3.12), (3.14), and (3.16)]. Thus, for example, 
comparing (5.10) with (3.14) and (3.16) we get 

Thus, by measuring the left-hand side of (5.12) from two 
experiments (with and without a field), it is possible to deter- 
mine directly the angle between the ultrasound propagation 
and the order parameter midway between the plates. It must 
only be recognized that if a field is used it must satisfy the 
conditions for the applicability of the expressions obtained 
for this case, i.e., (4.16). 

If the distance 1 between the plates exceeds the magnetic 
length lH,  the splitting of the spectrum of an RSM with 
J, = 0 is given by (5. lo), where the direction of the quantiza- 
tion axis h(0) in the volume is now determined by the joint 
action of the magnetic field and the vortices. This direction is 
obtained by minimizing F, + F, with respect to h. As a 
result we arrive at the following connection between the 
RSM splitting and the vortex parameter A: 

Thus, the parameter A can be directly extracted from mea- 
surements of the spectrum of the collective RSM. This pa- 
rameter was previously measured in NMR  experiment^,^.^^ 
and its determination from the experimental data on the 
NMR-signal absorption line shape entails certain difficulties 
not encountered in experiments with ultrasound. The point 
is that in NMR experiments on textures the spin waves are 
excited by a uniform rf field. Therefore the levels excited in 
the spin waves are mainly the lower ones, which correspond 
to localized states in the potential produced by the textures. 
As a result, resonance peaks corresponding to excitation of 
spin waves localized on the texture are superimposed on the 
NMR-signal absorption line. To determine the parameter A 
from the experimental data it was necessary either to find the 
energy levels by solving the Schrodinger equation (in which 
case some of the parameters are not known with sufficient 
accuracy), or to neglect the effects of the resonance peaks 
and investigate the shift of the envelope of the line shape, a 
procedure of equally low accuracy. 

On the contrary, the wavelengths of collective modes 
excited by ultrasound are exceedingly small compared with 
the texture dimension, so that the quasiclassical approxima- 
tion (or the geometric-optics limit) is applicable here, and 
expression (5.3) used by us for the spectral density of the 
ultrasound absorption is valid with good accuracy. 

CONCLUSION 

In the texture of superfluid 3He-B the quantization axis 
of the internal angular momentum J that characterizes the 
collective modes Rai (r)H, varies in space. This leads to an 
observable spectrum splitting not governed by additional 
quantum numbers and determined by the topology of the set 
of the stationary points of the spectrum in the texture. This 
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permits new information on the textures in 3He-B to be ex- 
tracted. 

The textures can lead to a similar splitting of the mode 
spectrum also in 3He-A, and no magnetic field is needed for 
this purpose. In anisotropic 3He-A the quantization axis for 
the collective modes is the anisotropy vector 1. Its change in 
the texture should cause a texture-induced splitting of the 
spectrum. In contrast to the integral texture characteristics 
1, obtained from data on the damping of ultrasound, mea- 
surement of the splitting yields a local characteristic. This is 
particularly important for textures with dimension substan- 
tially larger than the dipole length lD, since such textures 
are difficult to observe in NMR experiments. 
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