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We obtain a criterion for the instability of self-similar regimes of the supersonic collapse of 
Langmuir waves. We show that all self-similar regimes which at this moment are known satisfy 
this criterion. We discuss possible manifestations of the instability in numerical calculations. We 
consider the problems of the effect of a magnetic field and of electron non-linearities on Langmuir 
collapse dynamics. 

5 1. INTRODUCTION Using Eq. (2) we can estimate the characteristic time y-' of 

In the ten years after Langmuir collapse was predicted' the deepening of the caviton. When there is no compensation 

a large number of papers has been published devoted to the of the Pressure of the high-frequency field by the gas-kinetic 

conditions for the occurrence, the dynamics, and the conse- plasma pressure we have + Wand 
quences of this phenomenon. Invariably the main attention 
has been paid to the problem of self-similar collapse regimes 
as they seem to be important and at the same time the most 
accessible to investigations. Study of this problem yielded a 
number ofimportant results, in particular, a theorem that an 
infinite number of bound states exist in a self-similar cavi- 
ton.! Recently the existence of self-similar regimes was con- 
firmed by their direct computation in the cases of centrally 
symmetric scalar collapse and of Langmuir collapse of 
strongly oblate caviton (Ref. 3)." Nonetheless, the level of 
understanding attained up to the present moment on col- 
lapse dynamics is not fully satisfactory, primarily due to the 
lack of clarity of the problem of the instability and of the 
possibility of the establishment of self-similar regimes. It is 
the aim of the present paper to study this and some other 
unclear problems of the collapse dynamics. 

As the deepening of the caviton is accompanied by its com- 
pression and by a growth of the energy density W of the 
waves trapped in it, y-' is also the time for W to double: 

Wt-y W .  ( 5 )  

Using (4) and (5) one easily finds the law for the growth of the 
energy density of the waves in the caviton as one approaches 
the time t, when a singularity is formed: 

Wm ( k t )  -2. (6) 

One must emphasize that this result is obtained from rather 
rough considerations without assuming a self-similar evolu- 
tion of the caviton. Just as rough is the conclusion about the 
"adiabaticity" of the collapse, i.e., about the satisfying of the 
condition 

5 2. NECESSARY INFORMATION ABOUT COLLAPSE @BY (hva4<<1). (7) 

The equations describing the collapse of Langmuir When the size a of the caviton decreases this condition is 

waves have, in dimensionless variables, the following form:' satisfied better and better since the energy density of the 
waves in the caviton (when there are no external sources) 
cannot grow faster than aP3: 

V (id/dt+A-n) Vq=O, (1) 
T/V& W ,  (a,/a) 3. (8) 

d2n/dt2-A (n-t  W) =07 W-- I Vq12. (2) It is relevant to remind ourselves here that the quantity Wis 
Here e, is the temporal envelope of the high-frequency elec- bounded from below by the condition W? a P 2  for mudula- 
tric potential, and the perturbation ofthe ion density. tional instability which is necessary for the development of 

stead of (I), (2) one often studies the simpler set of equations: the If the more stringent limitation 

d2nldt2-A (n+ W) =0, .WE I E 12, (2') 

usually called the "scalar model." 
Equation (1) [or (l')] allows us to establish a connection 

between the characteristic time w - ' of the change in phase of 
the electric field envelope, the depth n and the spatial scale a 
of the collapsing caviton: 

is satisfied, which enables us to neglect in Eq. (2) the term An,  
the collapse is called "supersonic." 

To find the time-dependence of the size of the caviton 
one normally uses the assumption that the total energy of the 
waves trapped in it is constant. In that case the equal sign 
holds in (8) so that 

Wma-', (10) 

and as one approaches the time t, the condition (9) for super- 
sonic compression is satisfied with an ever greater margin. 
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FIG. 1. Dependence of the modulational instability growth rate on the 
wave number of the perturbations when one is well above threshold 
(W)U-~). In the region k%a-' the simple formula y, ,--( W - k ')"' is 
valid. 

5 3. THE POSSIBILITY OF A SMALL-SCALE INSTABILITY 

A large excess of the energy density of the waves above 
the threshold for the modulational instability conceals any 
danger for the stability of the supersonic collapse regimes. 
The fact is that if condition (9) were satisfied in a stationary 
density well, not only perturbations with wavelengths 
k -'-a would be modulationally unstable, but also pertur- 
bations with appreciably smaller scales, down to 
k - ' - W -'I2ga. Of course, an evolving caviton differs from 
stationary one: the fast change of the main scale a may in 
principle suppress the small-scale instability. However, the 
fact that the growth rate of the instability of a stationary 
caviton is practically independent of the wavelength k - ' of 
the perturbation in the whole range a-' 5 k g  W ' I 2  (see Fig. 
1) suggests a possible survival of a small-scale instability 
when we change to an evolving caviton. The answer to the 
problem of the stability of an evolving caviton is clearly de- 
termined by the numbers involved and can only be obtained 
through a quantitative analysis. 

§ 4. BASIC EQUATIONS 

The well known estimates which for the convenience of 
the reader we collected in 92 show that at least in the rather 
late stages of the collapse the starting equations contain two 
small parameters-the ratio of the non-linear growth rate of 
the modulational instability y to the oscillation frequency w 
of the temporal envelope of the electric field in the caviton 
and the ratio of the sound speed to the collapse speed of the 
caviton: 

g = y / ~ -  W'i2a2cn ( t , - t )  'h ,  

The solution of the starting equations can be expanded inde- 
pendently in each of the parameters g and E but it is conven- 
ient to write the two expansions as a single one-in powers of 
(t, - t ) ' I 3 .  In the simplest case one must to obtain that ex- 
pansion put 

where pp and wp are slowly varying functions, and by 
successive approximations solve the equations 

If in ( 1  3 )  we change to new variables and introduce new func- 
tions by using the formulae 

T=ts-t, g=rT-ya, 

(PP (r ,  t )  =f-"% (%, T )  1 

n (r ,  t )  = T - ' l r z ~  (g,  t )  , up ( t )  =T-"3Qp ( T )  
we get the equations 

Here V indicates already differentiation with respect to 6, 

The solution of Eqs. (14) as arbitrary functions of the time 
can be written in the form 

To make the representation (15) unique one can arrange to 
leave in the coefficientsfJ) (1 ) only such a time dependence 
which cannot be expanded in a Taylor series in powers of 
t ' I 3 .  Substitution of the expansion (15) of the functions u,  1L,, 
Rp into (14) leads to the following equation chain: 

We assume in what follows that the eigenvalue R de- 
termined from the first of Eqs. (16) is non-degenerate. With- 
out loss of generality one can then assume the functions 
to be real; the functions u(jl and R b') turn out to be automati- 
cally real. As, on the other hand, the odd coefficients in the 
expansions (15) of the functions u and fiP necessarily are 
imaginary, these coefficients are identically equal to zero. 

The chain of equations which we have obtained enables 
us to look for the solution of the set (14) by successive ap- 
proximations. In particular, the closed set of equations of the 
zeroth approximation consists of Eqs. (16) supplemented by 
the condition that the equations of the first approximation 
can be solved. This condition has the form 
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and has the meaning of the conservation of number of waves 
trapped in the caviton. 

The change from the initial set of equations to (16), (17) 
enables us in a natural way to pose the problem of stability of 
the solutions which are (asymptotically as i+0) self-similar, 
since they correspond to stationary solutions of Eqs. (16), 
(17). If they are linearized against the background of some 
stationary state these equations contain the time explicitly 
only in the combination i (a/&) so that for them we have 
solutions in powers of 2: 
6u") (1, T )  =ukj' (3)Ta+c.c. , 6~2:" ( f )  =Q:~'P+ c.c., 

6qF' (E, f) = 4;; (E) fa + C.C. 
(19) 

The representation of the temporal envelope of the po- 
tential p in the form (12) which we use here refers to the case 
when only one of all possible adiabatically changing bound 
states in the caviton is populated. In the general case we must 
write on the right-hand side of (12) a sum over the numbersp 
of the states. The generalization of the zeroth approximation 
equations can also be reduced to a simple substitution 

1 V $ ~ I ~ ~ ~  l V $ P I 2  

P  

on the right-hand side of the second of Eqs. (16). The inter- 
ference terms in the pressure of the high-frequency waves 
which we omitted in the zeroth approximation lead to the 
appearance of a fast oscillating correction, which is small of 
the order of the adiabaticity parameter, to the slowly chang- 
ing density perturbation. This correction, in turn, gives a 
non-linear shift of the eigenfrequencies and, moreover, gen- 
erates small corrections to the potential p which oscillate 
with frequencies which differ from the eigenfrequencies. The 
new terms in p lead to the appearance of new interference 
terms, and so on. All corrections mentioned can be ex- 
pressed in terms of the slowly changing functions u, Jt, , LIP 
for which one can ultimately obtain a chain of equations 
similar to (16), (17). The most important difference from the 
equations considered above of the single-mode regime con- 
sists in that resonances which inevitably arise in sufficiently 
high orders of perturbation theory lead to a weak (but no 
longer exponential) change in the occupation numbers of the 
bound states. This difference has no importance for what 
follows and only the rather rough structural properties of 
Eqs. (16), (17) which are equally characteristic for the equa- 
tions of single-mode regimes are important. 

5 5. SYMMETRY PROPERTIES OF THE BASIC 
EQUATIONS 

Equations ( 1  3) are invariant under space-time shifts and 
spatial rotations; the chain of Eqs. (16), (17) allows time 
stretching: 

and the zeroth approximation Eqs. (16), (18) possess yet an- 
other symmetry under coordinate stretching: 

An infinitesimally small spatial shift r-+r + S generates 
the transformation 

i.e., three growing eigenmodes (19) with a = - 2/3. 
The infinitesimal time shift i-2 + S generates the 

transformation 

u ( j )  (g) + u ( j )  

i.e., a growing eigenmode (19) with a = - 1. 
Spatial rotations change one stationary solution of the 

chain of Eqs. (16), (17) into another and this generate three 
indifferently stable eigenmodes2) (a = 0). 

As we noted above, the symmetry (20) allows us to look 
for solutions of Eqs. (16), (17) linearized with respect to the 
background of some stationary state in the form (19). 

The additional symmetry (21) of the zeroth approxima- 
tion equations lead, as will become clear in what follows, to a 
specific degeneracy of their solutions: it turns out that each 
stationary solution of the chain of Eqs. (16), (17) corre- 
sponds, generally speaking, to a one-parameter family of sta- 
tionary solutions of the zeroth approximation equations. 
The reason why not all stationary solutions of Eqs. (16), (17) 
can be used as the zeroth approximation for constructing a 
stationary solution of the chain (16), (17) is that the expan- 
sion in the vicinity of the point & = 0 of the solution of the set 
( 1  6), ( 1  7) contains, generally speaking, non-integer powers of 
& while the solution of the set (16), (17) which is regular at 
zero can not contain them as in the opposite case due to the 
term A d J  - 2,  in the second of Eqs. ( 1  7) for sufficiently large j 
in the expansions of the functions u ( ~ ) ,  $F1 necessarily nega- 
tive powers of 6 would appear. A similar difference occurs 
also between the linearized sets of Eqs. (16), (17) and (16), 
(18): for the first of them the eigenvalue spectrum a turns out 
to be discrete while for the second one it is, in general, con- 
tinuous. The expansions in the vicinity of the point { = 0 of 
the eigenfunctions of the continuous spectrum of the linear- 
ized set of Eqs. (16), (18) contain non-integer powers of6 due 
to which it is impossible to establish for those zeroth-approx- 
imation functions a correspondence with any eigenfunctions 
of the exact problem which would be close to them: the cor- 
rections of the subsequent approximations turn out to be not 
small in the range 

One can, however, replace the zeroth approximation eigen- 
functions by analytical functions (which do not contain frac- 
tional powers of 6 ) which are close to them such that the 
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corrections from the higher approximations remain small 
everywhere while the violation of the equations for the ze- 
roth approximation eigenfunctions is inappreciable. This 
violation produces a weak temporal dependence of the eigen- 
functions which are smooth at the origin which compensates 
it. One can thus arrange a correspondence between the 
eigenmodes of the continuous spectrum of the linearized set 
(16), (1 8)  and the solutions of the exact linear problem which 
remain close to them for a long time-the "quasi-modes." It 
is clear that the quasi-modes are the closer to the eigenmodes 
of the zeroth approximation the smaller is the main non- 
analytical term of the expansion of the latter as {-to. In view 
of the fact that the collapse time is finite and also that the 
cavitons can be destroyed by sufficiently large perturba- 
tions, the growing quasi-modes are practically as much a 
threat to the realizability of supersonic self-similar regimes 
as the true eigenmodes with Re a < 0 .  The eigenmodes given 
at the start of this section with a = - 2/3  and a = - 1 
corresponding to shifts in position and time of the emergence 
of the singularity are, of course, not dangerous in this re- 
spect. However, the existence of only one eigenmode or qua- 
si-mode, different from them, with Re a < 0 would mean a 
real instability. 

5 6. INSTABILITY CRITERION FOR SELF-SIMILAR REGIMES 
OF A "SCALAR" COLLAPSE 

In the scalar collapse model the linearized zeroth ap- 
proximation set of equations has the following form 

P 

  ere La is an operator obtained from i by replacing t (a / a t  ) 
by a; the upper index "0" indicating the zeroth approxima- 
tion has been dropped for simplicity. Before we start with a 
study of the spectrum of the eigenvalues a of the set (24) to 
(26) in the general case it is useful to consider a simpler prob- 
lem-that of the stability of a centrally symmetric caviton 
with a single occupied level under perturbations which do 
not destroy the symmetry. In this simplest particular case 
Eqs. (25), (26) are a set of linear ordinary fourth-order differ- 
ential equations. Considering the term R U E  (we drop for 
simplicity the index "p") on the right-hand side of Eq. (25) as 
a driving force one can write the general solution of the set 
(25), (26) in the form of a sum of a particular solution and 
four linearly independent solutions of the homogeneous set. 
The particular solution can, clearly, be chosen to be regular 
at the point 6 = 0. The asymptotic behavior of the solutions 
of the homogeneous set as c-0 are as follows: 

E a ~ E - ' ,  uamE-'; (27) 

Ea-+const, zz,+const; (28) 

EamEc+2, uamEC, 

c = ~ / ,  [a-'/2-'/& ( i / p t 2 E e Z )  "'1 , E,=E (0). (29) 

Depending on the value of Re a the number of asymptotic 

solutions as c.0 can change from one to three. If 

only the asymptotic form (28) is regular, and the general 
solution which is regular at the origin contains three free 
parameters: Ea (0) ,Ra , and a. After reckoning solutions dif- 
fering from one another solely by multiplication by a con- 
stant to be identical there remain two free parameters. One 
must choose thevalues of these two parameters such that the 
solution be regular as{-+ m and, moreover, satisfy condition 
(24). 

The linearly independent asymptotic forms of the solu- 
tions of the homogeneous system as 5 - t ~  have the form 

[u, is determined from Eq. (26)l; 

[E, is determined from Eq. (25)l. 
In the range (30) of a values one of these asymptotic 

forms (Eoc e c )  is irregular. Hence the two parameters on 
which the solution which is regular at the origin depend 
must satisfy two equations and the spectrum of the eigenval- 
ues a must thus be discrete. 

If 

there appears at the origin a second regular asymptotic form 
and, as before, there remains at infinity only one irregular 
one. This means that the eigenvalues a fill the whole band 
(33). If 

the band (33) intersects the half-plane Re a < 0.  Hence, (34) 
is a sufficient condition for instability. 

The whole discussion given above can easily be trans- 
ferred to the case of perturbations which violate the symme- 
try of the caviton. The angular dependence of such perturba- 
tions are given by spherical harmonics. For the I th harmonic 
Eqs. (27),  (28) take the form 

while Eqs. (29) to (34) are unchanged. 
The results obtained remain valid also for cavitons 

which do not have a symmetry. This is already clear from the 
fact that when one changes from a symmetrical to an asym- 
metrical caviton there occurs merely an intermingling of the 
various spherical harmonics in the angular dependence of 
the eigenfunctions, but the number of asymptotic forms 
which are regular at the origin and irregular at infinity is not 
changed. The word "number" needs here an explanation: as 
there is a countable set of different asymptotic forms we 
must, strictly speaking, consider a finite-dimensional ap- 
proximation of the starting equations (e.g., discard all har- 
monics with I >  N ) ,  and afterwards take the limit as N-+ m .  

Finally, one can also generalize the results to the case 
where several levels are occupied in the caviton. In that case 
the quantity E f in the final formulae (33), (34) must be un- 
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derstood as follows: 

5 7. INSTABILITY CRITERION FOR SELF-SIMILAR REGIMES 
OF LANGMUIR COLLAPSE 

The study of the linearized zeroth approximation Eqs. 
(161, (18) 

a j  d3E Ep V $pa=O, (36) 

is in many ways similar to the one described above and can 
therefore immediately be pursued in the general case. To 
reduce the calculations it is useful to note that for a given 
regular function u, Eqs. (36), (37) would be the same as the 
first-order equations of the stationary perturbation theory of 
the Schrodinger equation (with an appropriately chosen Ha- 
miltonian). The regular functions would clearly be de- 
termined uniquely, i.e., the number of free parameters in the 
general solution of Eq. (37) would be equal to the total num- 
ber of regularity conditions and of conditions3' (36). As all 
solutions of linear equations which are proportional to one 
another are equivalent, for a given regular linear connection 
of the perturbation of the "potential" u, with the functions 
$pa one lacks just one parameter to satisfy the regularity 
conditions and the conditions (36). If the linear connection 
imposed upon Eq. (38) is, indeed, strictly specified one can 
use as the missing parameter only a and the spectrum of the 
eigenvalues a is discrete. If, however, the connection (38) 
leads in the general solution to the appearance of even one 
additional free parameter, different from a, one can choose 
the quantity a arbitrarily. The problem of the presence or 
absence of additional parameters may be solved by studying 
the specific (i.e., not peculiar to Eqs. (36), (37) with a given 
function u,) asymptotic forms of the set of Eqs. (36) to (38). 
As f-+a the additional asymptotic forms produced by the 
connection (38) are given by Eqs. (32) and in the range 
Re a < 4/3 all are regular without exception. To liberate the 
parameter a in the range Re a < 4/3 it is thus sufficient that 
there occur at least one specific asymptotic form which is 
regular at the origin. One can find the asymptotic forms of 
the solutions of the set (37), (38) as 6-0 from the simplified 
set of equations: 

Aopa=V~-zEp (0) ~pasA$pa, 

which is obtained by retaining in (37), (38) the most singular 
terms. Equations (39) have solutions in powers of f similar to 
(29): 

*p , -E ,c+3 ,  &=.ZC. (40) 

As the action of the operator La on the power function 
reduces to multiplying it by a number 

one can easily eliminate perturbations of the charge density 
up, from Eqs. (39) and the latter reduce to the equation for 
the density perturbation u, : 

The symmetric second-order differential operator which oc- 
curs on the right-hand side of Eq. (42) can be diagonalized by 
an appropriate choice of the coordinate system (e,,e,,e,): 

If the quantity L :, - 1/4 (which one can easily show must 
be real) is larger than all quantities 2Eg (B = 1,2,3): 

15~2--~/~>2 max Ep2=2 max (E, (0) n) ', 
6 ~ n l = i  E (44) 

by a suitable stretching of coordinates one can reduce Eq. 
(42) to a Laplace equation. A solution exists for integer c and 
can easily be found. However, the equations for the func- 
tions $pa turn in this case to be insoluble. Indeed, in order 
that the equation 

P 

can be solved one needs the orthogonality of the angular part 
of the function u, a to the harmonic with index I = c + 2 
and this condition is clearly not satisfied. 

In the range of values of the parameters a and c comple- 
mentary to (44): 

La;-'l4<2 max (E, (0) n) ', 
101=1 C (45) 

one needs for the existence of a regular asymptotic form (40) 
the inequality 

The sufficiency of the condition (46) is proved by the follow- 
ing example of a solution of the Eqs. (39): 

ua= (En) ', Qpa=Ap (En) c+3, 

The deduced presence of a whole band of eigenvalues a re- 
mains thus valid also for Langmuir waves. 

Defining the quantity E a by the relation 

ES2 - max (E, (0) n) ', 
Inj=l z 

one can retain Eqs. (33), (34) for this band for the instability 
criterion. 

One should note that both in the scalar and in the Lang- 
muir case there are among the unstable perturbations neces- 
sarily small-scale ones. They correspond to eigenvalues a 
with IImalsl  and are calculated explicitly by the WKB 
method. We have already mentioned in $3 why small-scale 
perturbations may be unstable. The absence of instabilities 
in the region of very large wavenumbers k 2 W ' I 2 - ?  - ' in 
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the figure given in $3 is connected with the stabilizing effect 
of the term An in Eq. (2) which is dropped when we go over to 
the supersonic limit. This term is relatively small for pertur- 
bations with k( w 'I2 - f -', i.e, 

Condition (49) guarantees simultaneously the narrowness of 
the region 5- 5 i 'I3 1 Ima 1 in which the zeroth approximation 
eigenmodes must be made smooth in order to get the quasi- 
modes of the exact problem. 

fj 8. THE CONDITIONS FOR THE EXISTENCE OF SELF- 
SIMILAR SOLUTIONS 

It is also convenient to start the discussion of this prob- 
lem with the simplest case-the centrally symmetric scalar 
collapse of a caviton with a single occupied level. In that case 
the self-similar solutions are determined from the equations 

Because of the symmetry (21) the eigenfrequency 0 is here 
not a parameter to be determined but a given positive quanti- 
ty which can without loss of generality be assumed to equal 
unity. The general form of the solution of Eqs. (50) which is 
regular at the origin for small values of < is the following: 

The summation is over all integer non-negative values of r 
and q, while c is in general an 'irrational positive number. 
Substituting ( 5  1 )  into (50) leads to the following chain of re- 
currence relations: 

7 0 

One sees easily that together with E  ,,, all coefficients E,,, , 
u , ,  for which r is odd vanish. When q = 0 one obtains from 
(52) a closed set of equations for the quantities E , ,  and u , ,  . 
[We assumed earlier that this just corresponds to the general 
solution of Eqs. (50) which is regular at the origin.] This set 
has been studied in rather much detail up to the present time. 
The main results are contained in Ref. 3 and consist of the 
following. All quantities E , ,  , u , ,  can be expressed in terms 
of E , ,  E (0)-E, . In particular, 

For an arbitrary value of Es the solution which is regular at 
the origin has in some point 5- = ls a singularity of the form 

Only when 

does the solution turn out to be bounded on the whole of the 
real axis. The condition (54) determines the discrete (count- 
able) set of values E,.  By virtue of Eq. (53) and the obvious 
requirement u(0) < 0 (one can also check that this is neces- 
sary by formal means) all solutions satisfy the inequality 

A more detailed analysis, given in the same paper3 shows 
that for the solution which is the nth in order of growth of ES 
the quantity E  f is confined to the interval 

For given values of E,,, , u , ,  one obtains from (52) a 
closed set of equations for the quantities E , ,  , u , ,  . In the 
coordinate representation this set of equations is the same as 
the Eqs. (50) linearized against the background of the solu- 
tion which is analytical at the origin. Using the results of $6 
we can obtain the answer without calculations. The condi- 
tion that the equations for the quantities E,,, and u,,, have a 
non-trivial solution reduces to Eq. (29) with a = 0:  

For such c one of these quantities, e.g., u , ,  can be chosen 
arbitrarily, i.e., there occurs a free parameter in the solution. 
Higher-order terms in q are proportional to the qth power of 
u , ,  as one can see easily from Eqs. (52); the quantities u , ,  
are non-zero for r>2(q - 1 )  and E , ,  for r>2q. One can thus 
"hook on" to the solution of Eqs. (50) which is analytical at 
the origin a non-analytical addition with arbitrary weight 
u,,, . The condition that this addition is regular at the origin 
(c > 0 )  is the same as the necessary condition ( 5 5 )  for the exis- 
tence of self-similar solutions and is thus satisfied automati- 
cally. 

One can also easily write down expansions similar to 
(5 1) for the non-stationary solutions which differ from the 
stationary ones by an addition which is non-analytical at the 
origin with a weight u , ,  which depends on a power of the 
time. An estimate of the coefficients of the non-stationary 
expansions shows that the instability considered in $6 goes 
over into the non-linear stage when u,,, - 1, i.e., when the 
shape of the caviton has been deformed considerably. 

One must in the case of an asymmetric caviton replace 
in Eqs. (50) the radial parts of the Laplacians by the complete 
A operators. The expansions (51) remain valid, except that 
the coefficients are no longer numbers but functions of the 
angles or, what amounts to the same, of the unit vector 
n = f/f. Finally one must add in Eqs. (52) the angular part of 
the Laplace operator to each of the factors (r  + cq + 3) 
(r  + cq + 2). This fact leads to the result that the coefficient 
E l , ,  no longer necessarily vanishes, since the equation 
AgE ,,, = 0 has the non-trivial solution: 

where A= I V E  I = , is a vector which is independent of f. 
The appearance of a term which is linear in 6 in the expan- 
sions (51) alters Eq. (53) somewhat: 

However, this change does not affect at all the condition for 
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the existence of the self-similar solutions (55) and thus does 
not affect the results obtained above. 

When there are several occupied bound states in the 
caviton there also do not occur significant changes: the rela- 
tion (53') and all consequences following from it remain valid 
if we define E, and A by Eqs. (35) and 

P 

All conclusions remain valid also in the case of the Langmuir 
collapse of a strongly flattened caviton as along its short axis 
the self-similar solutions satisfy the same equations as in the 
scalar model and then also condition (55). However, one can 
apparently not extend condition (55) to the general case of 
Langmuir collapse. The qualitative explanation of this lack 
of correspondence consists in the fact that as r 4  the field E 
in the first of Eqs. ( 1 ' )  of the scalar model is the analog not of 
the vector field Vrp but of the charge density Arp in Eq. ( 1 ) ;  on 
the other hand, in the second equation [see (2)  and (271 the 
scalar and the vector fields enter on a par. As the values of 
the vector field and of the charge density at the origin are not 
connected by a simple algebraic relation, there is in the 
Langmuir case no formula similar to (53') and the exclusion 
of the existence of self-similar solutions which do not satisfy 
condition (55) which is connected with it is removed. 

5 9. DISCUSSION OF NUMERICAL RESULTS 

Condition (55) for the existence of self-similar regimes 
of the scalar collapse is the same as the instability criterion 
(34); many, though possibly not all, self-similar regimes of 
Langmuir wave collapse also satisfy this criterion so that it is 
natural to pose the problem of the appearance of the predict- 
ed instability in numerical calculations. Up to the present 
time the centrally symmetric scalar collapse of a caviton 
with a single occupied level has been calculated with great 
detail. In that case the self-similar regimes correspond to the 
following values of the field at the center of the caviton E, 
and the growth index a, of the least stable  perturbation^:^' 

. . .  I . . . . . . . .  

By virtue of (56) the quantities a,, satisfy the inequalities 

The numerical solution of the non-stationary centrally sym- 
metric equations of the scalar model4 has shown that after 
some time the first of the self-similar solutions (58) is estab- 
lished. This fact agrees qualitatively with the conclusion 
about the instability of the second and higher self-similar 
solutions. As regards the first solution its instability is very 
weak (a, = - 0.19) and was probably suppressed by the 
sound term An which in the calculations discussed here did 
not manage to become sufficiently small: 

For a more detailed discussion of this problem it would be 
useful to extend the calculation and also to repeat it without 

the term An giving analytical and non-analytical initial con- 
ditions at the center of the caviton. 

In the case of an axially symmetric Langmuir wave col- 
lapse self-similar solutions are known only for a strongly 
flattened caviton (see footnote 1). In that model 

E,,2=2.506, a,,=-0.461; 

The assumption that the self-similar caviton is strongly flat- 
tened is based upon the results of a numerical solution of the 
axially symmetric Cauchy solution for Eqs. ( I ) ,  (2).'v6 The 
confirmation of self-similarity in Refs. 5,6 was carried out 
using time-dependences In(0,t ) 1 -3/4 and I Vrp(0,t ) I  - ' which 
must be linear when self-similarity is present. It turned out 
that these time-dependences are, indeed, nearly linear dur- 
ing some time interval, but this interval is too small to reach 
reliable conclusions: the size of the caviton managed to 
change during that time only by a factor 2  to 3, and over 
small sections it is well known that any function is nearly 
linear. If nevertheless we assume self-similarity and using 
the slope of the linear section of the curve of IVp(0,t ) ( - I  to 
calculate E, it turns out that E : z 6 .  This is close to the 
second of the values (60) but the shape of the solution along 
the axis of the caviton (see Fig. 5 in Ref. 6 )  differs appreciably 
from the corresponding self-similar solution (see Fig. l a  in 
Ref. 3). The difference may be explained by the fact that the 
strongly flattened caviton model is non-adiabatic, by the 
small time interval of the calculation, or by the instability of 
the self-similar collapse regimes discussed above. The nu- 
merical calculations performed so far of the dynamics of ax- 
ially symmetric Langmuir collapse are insufficient to reach 
unambiguous conclusions. Improvements of these calcula- 
tions, also in the scalar model, would also be useful: increas- 
ing their duration and varying within wider limits the initial 
values of the various parameters, in particular, the sound 
parameter E.  One should note that the authors of Ref. 6 men- 
tion numerical calculations performed in the limit E = 0,  but 
their results are not given. Meanwhile the results of such 
calculations might give important information about the sta- 
bility of self-similar collapse regimes even for a relatively 
small time of the calculation. Indeed, in the case E( 1 modu- 
lational perturbations with strongly differing spatial scales 
(see the figure in $3) are equally unstable so that it is apriori 
unclear what cavitons are formed from an initial state with 
wavelength k ; I .  If stable self-similar supersonic collapse 
regimes exist we may expect the appearance of cavitons of 
size k ,j- ' as the perturbations of that size occur in the initial 
state with a large weight. In the opposite case one may expect 
the occurrence of cavitons of smaller size which, collapsing, 
will in turn be split into smaller cavitons. Such an evolution 
must lead to a natural selection of the most unstable cavi- 
tons. The example of the centrally symmetric collapse shows 
that for them the index a, may be very small and the split- 
ting process strongly suppressed. Apparently the splitting of 
the cavitons has in the numerical experiments so far not been 
fixed sufficiently reliably. The formation of several cavitons 
of smaller size at the position of the initial caviton described 
in Ref. 7 occurred in the case of a rather strong magnetic 
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field. Besides, it was emphasized that such an effect occurs 
also when there is no magnetic field, but the results of the 
corresponding calculations were not given. It is difficult to 
understand without them whether the simultaneous forma- 
tion of several cavitons was observed or whether the wave 
energy was sufficient for a secondary collapse event. 

One must note that the splitting up of the cavitons is not 
the only possible variant of the collapse dynamics when 
there are no stable self-similar solutions of the usual form. 
Another possibility consists in the existence of stable (not 
necessarily self-similar) collapse, regimes in which the cavi- 
ton has two spatial scales which differ in their time depen- 
dence. One can easily extend the list of alternatives. In view 
of the complexity of the problem more refined numerical 
calculations are necessary for the clarification of the true 
nature of the collapse dynamics. 

5 10. THE ROLE OF ELECTRONIC NON-LINEARITIES IN THE 
COLLAPSE DYNAMICS 

If we assume the existence of stable supersonic collapse 
regimes one must expect, as we noted already above, that if 
the energy density of the Langmuir turbulence is high 
enough cavitons will occur in which the wave energy density 
will from the start strongly exceed the threshold for the mo- 
dulational in~tability:~' 

Wo>noT (rD/ao) '. (61) 

At the moment when the wave energy density in the collaps- 
ing caviton becomes equal to the thermal energy density n,T 
of the plasma, the caviton size, which decreases as 
a cc W-'I3 ,  reaches the value 

a,-a, (W,In,T) 'In. 

By virtue of (6 1) the size a, may turn out to be so much larger 
than the Debye radius r, that the absorption of waves with 
wavelengths of the order a, will be negligibly weak. This fact 
raises the very urgent problem of the role of the electron non- 
linearities in the collapse dynamics, for at W 2  n,T the veloc- 
ity of the electron oscillations in the field of the Langmuir 
waves exceeds the thermal velocity and the dispersion of 
these waves is non-linear. The non-linear dispersion terms 
were calculated in Ref. 8. It was shown there that the contri- 
bution to the Hamiltonian corresponding to them is positive 
in a number of cases and, based upon the assumption that 
this property is universal, a conclusion was reached that the 
collapse is halted by the electronic non-linearities. The auth- 
ors of Ref. 9 also reached the same conclusion. Recently this 
conclusion was confirmed by numerical calculations in 
which the electronic non-linearities were taken into account 
using a model, by adding a positive term quadratic in the 
electric field to the plasma density perturbation.1° Nonethe- 
less there are reasons for doubting the reliability of this con- 
clusion. First of all it is necessary to note that from the hy- 
pothesis that the contribution of the electron non-linearities 
to the Hamiltonian8 is positive follows a conclusion which 
contradicts the one reached. Indeed, this positive contribu- 
tion may be cancelled by the negative contribution from the 
term n ( E  1'. The condition for the cancellation has the form 

n-n,T,r, /moP2az. (62) 

The quantity T,,= W/nO + Tis approximately equal to the 
average electron energy and can be interpreted as the effec- 
tive electron temperature of the plasma in the caviton. Such 
an obvious interpretation not only gives us a valid estimate of 
the non-linear dispersion terms but also to a larger extent 
than the model of Ref. 10 corresponds to their structure: 
these terms, like the linear ones, contain fourth spatial de- 
rivatives of the potential e, (except in some degenerate cases). 
When W 2  n,T substitution of (62) into the equation 

leads to the conclusion that the wave energy density in- 
creases exponentially with time: 

In (W/n,T) -w,i(t-t.). (64) 
Here t, is the moment that the electron non-linearities are 
switched on and wpi the ion plasma frequency. There is thus 
a basis for assuming that the electron non-linearities them- 
selves do not stop the collapse but only somewhat decelerate 
it: the explosive growth of the wave energy density is 
changed to an exponential growth. The slowing down of the 
collapse, of course, facilitates the absorption of waves 
trapped in the caviton through Landau damping or the inter- 
action of electron trajectories. 

5 11. COLLAPSE IN A MAGNETIC FIELD 

In this section we discuss the formation of cavitons and 
collapse in a weak magnetic field which nevertheless appre- 
ciably changes the dispersion of the Langmuir waves: 

Here w,  is the electron cyclotron frequency and k, a charac- 
teristic wave number in the Langmuir spectrum; we assume 
that the phase velocity of the waves up /k, is smaller than the 
velocity of light. To establish a correspondence with the re- 
sults of Ref. 11 we must in what follows distinguish between 
the characteristic values of the wave number at right angles 
to and along the magnetic field, or introduce the angular 
width of the spectrum 8, - k,, /kO. In order that the "mag- 
netic" dispersion correction to the frequency of the Lang- 
muir waves be larger than the "thermal" one the following 
condition must be satisfied: 

As for the parameters of the Langmuir spectrum, we shall 
assume again that the width of the spectrum is much larger 
than the growth rate of its modulational instability, i.e., that 
the adiabaticity parameter is small. It was shown in Ref. 12 
that in that case even for a very insignificant level of the 
plasma density perturbations the fastest of the non-linear 
processes becomes the elastic scattering of Langmuir waves 
leading to the ergodization of their spectrum.6' Under the 
conditions (65), (66) the surfaces of constant frequency in k- 
space to a large extent are the same as cones with an axis 
directed along the magnetic field. Therefore, in the process 
of the ergodization of the spectrum preceding the formation 
of a caviton its angular width remains approximately un- 
changed. As to the characteristic wave number, it increases 
and by the time the ergodization of the spectrum is complet- 
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ed (when the longitudinal "thermal" correction w,k f 6 to 
the Langmuir wave frequency becomes comparable to the 
"magnetic" correction) it reaches the value 

k,'- (aH/ap) e,r,-*. 

The transverse wave number then reaches the value 
k 1, - k A 6,. If the initial angular width of the spectrum is 
not small (8,- I), not only the longitudinal, but also the 
transverse "thermal" correction to the wave frequency turns 
out after the ergodization to be of the order of the "magnet- 
ic" correction and the collapse proceeds right from the start 
practically in the same way as when there is no magnetic 
field. 

If 8,( 1 after the ergodization of the spectrum cavitons 
are formed7' with a longitudinal size a,- l /k  6 and a trans- 
verse size b, -a,/B,. The relation 

between the longitudinal and the transverse sizes of the cavi- 
ton is conserved in the collapse process until they become 
approximately equal. After that the effect of the magnetic 
field on the collapse dynamics stops being important. As the 
adiabaticity parameter is small the first of the self-similar 
regimes considered in Ref. 11 is realized at the start of the 
intermediate stage of the collapse; the volume of the caviton 
decreases as ab cc a5, the adiabaticity parameter increases 
asR' ( wa4)'I2 cc and in principle can reach unity. If ini- 
tially this parameter was less than 8;l2 this does not take 
place and the condition of adiabaticity will be satisfied the 
whole time. In the opposite case the adiabaticity condition 
will be violated when the intermediate stage of the collapse 
comes to an end and the second self-similar regime consid- 
ered in Ref. 11 may occur. 

5 12. CONCLUSION 

The main result of the present paper is the instability 
criterion for self-similar regimes of the supersonic adiabatic 
collapse: E ,Z > 14/9. In the scalar model this criterion is sat- 
isfied for all self-similar solutions. In the Langmuir case all 
solutions found up to the present also satisfy this criterion, 
but the theorem forbidding the existence of self-similar solu- 
tions with E 5 < 14/9 is unknown. Solutions with E :  < 14/9, 
if they exist, are very attractive: they not only are not subject 
to the predicted instabilities but are also insensitive to the 
degeneracy of the equations of the supersonic approxima- 
tion9' and are therefore well defined already in the frame- 
work of those equations. If there are no stable self-similar 
solutions of the usual form, the problem arises of the true 
nature of the collapse dynamics. One may propose rather 
many plausible answers to that problem and it is difficult to 

establish which of them is correct. An important help in this 
respect might turn out to be more refined numerical calcula- 
tions than have been performed so far. Good numerical ex- 
periments are necessary also for a definite elucidation of the 
problems touched upon at the end of the paper about the 
effect of electronic non-linearities and magnetic fields on the 
collapse dynamics. 

The author expresses his gratitude to V. V. Krasnosel' 
skikh, E. A. Kuznetsov, A. M. Rubenchik, D. D. Ryutov, G. 
M. Fraiman, V. D. Shapiro, and V. V. Yan'kov for useful 
discussions about this paper and the papers mentioned in it. 

"One should note that for a strongly flattened caviton self-similar solu- 
tions are not found in the whole of space so that there may remain some 
doubt about the existence of complete solutions. 

"One should note that indifferently stable eigenmodes form a countable 
set, as the set of stationary solutions depends on a countable number of 
parameters. 

"We have in mind here again a finite-dimensional approximation with 
subsequent taking of the limit. 

4 ' ~ h e  values of the field are taken from Ref. 4. They differ somewhat from 
the results of earlier  calculation^.^ 

"In this and the following sections we use dimensional quantities. 
6'This conclusion was reached in Ref. 12 using the example of an isotropic 
plasma but it is also valid in the general case. 

7'Starting at this point we use the usually implied assumption that there 
exist stable regimes of supersonic collapse. 

"The adiabatic self-similar regime of the intermediate stage of the col- 
lapse was rejected in Ref. 11 on this basis for no valid reason. 

9'0ne should note that these properties are not independent: the instabil- 
ity is connected with the degeneracy. 
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