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The kinetics of superradiance (SR) by an extended system of two-level radiators is investigated. A 
closed set of integrodifferential equations is obtained for the space-time SR kinetics. It takes into 
account fluctuations in the population difference. It is shown that the theory provides a much 
better description of the observed SR pulse shape than the space-time SR theory that ignores 
fluctuations, or the mean field theory. 

1. INTRODUCTION 

The method of excluding the electromagnetic-field boson 
operators will be used below to obtain a closed chain of quan- 
tum-mechanical equations for atomic correlators. The 
method proposed below for decoupling the three-particle 
correlators was developed as a result of an analysis of the 
statistical properties of atomic operators. This new method 
takes into account quantum fluctuations in the population 
difference during superradiance (SR). This leads to a reduc- 
tion in the rate of decay at the peak of the SR pulse and, as a 
consequence, to an increase in its length. 

A new approach will also be given to the description of 
the spatial kinetics of superradiance, with account taken of 
the difference between the left and the right electromagnet- 
ic-field fluxes everywhere with the exception of the center of 
the specimen. This ensures that the rate of decay at any given 
point in the specimen at a selected direction of the cylinder 
axis depends not only on the density of the electromagnetic 
field, but also on the energy flux in the particular direction. 
The inclusion of longitudinal effects in the SR process leads 
to a still greater broadening of the SR pulse. 

At present, SR research is being concentrated on the 
development of theories capable of providing a complete de- 
scription of all the basic parameters of the SR pulse. Since 
existing theories provide only a qualitative interpretation of 
experimental data, it will be useful to examine the shortcom- 
ings of these approaches. Since SR arises as a result of the 
phasing of individual atoms, a rigorous analysis of the initial 
stage of superradiance must be based on a quantum-mechan- 
ical description of the vacuum electromagnetic field and the 
radiators. The next stage in the SR process is frequently ana- 
lyzed semiclassically, i.e., the problem of interaction 
between a classical electromagnetic field and quantum oscil- 
lators is solved. This approach is a consequence of the ap- 
proximate decoupling of the chain of quantum-mechanical 
equations describing the SR process. 

We note that the solutions obtained below for the quan- 
tum-mechanical equations improve the agreement between 
theory and experiment.3r4 

2. BASIC EQUATIONS FOR THE SR PROCESS 
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where d is the dipole moment of the transition, w, is the 
transition frequency, R f (R ,: ) is the creation (annihilation) 
operator for the excited state of the jth atom, which satisfies 
the commutation relations 

R 3j is the population difference operator for the jth atom, 
a,+ (a,) is the creation (annihilation) operator for a photon of 
momentum fik and energy &I,, and A + ( r j )  (A -(rj)) is the 
negative (positive)-frequency part of the vector potential. 

Expanding the electromagnetic field potential in terms 
of plane waves in the main part of the two-level system, and 
solving the Heisenberg equation for the electromagnetic 
field operators, we can readily express A +(r,, t ) (A -(r,, t )) in 
terms of atomic operators: 

where 
G, (t-t') =exp {-i(mr--o,-ia(k)) (t-tf))e(t-tf) 

is the retarded Green function, 

is a coefficient describing the loss of photons from'the active 
region of the two-level system, ai = I k, I/k (i = x, y,  z) , 

2nczh. 
gk= (-1 "' ( e ~ ,  +) , 

mku 
e, is the photon polarization vector, S = 1,2, v = L, L, L, is 
the volume of the two-level system, and A,, (r, , t ) is the vacu- 
um part of the electromagnetic field operator [(VIA ;C = 0, 
A "- IvJ =,O and I v )  is the vacuum wave function]. The oper- 
ators A, R are written in the interaction representation and 

The Hamiltonian for a two-level set of atoms interact- ~ , = h ~ ~  [c R.~+-? 
ing through electromagnetic radiation fields is I 1 
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We shall suppose that the radiating atoms occupy a vol- 
ume with Fresnel number F 5  1. Consider the evolution of 
the system from the initially uncorrelated state of the two- 
level system and the vacuum state of the electromagnetic 
field. The average of (R ,, (t )) must then satisfy the following 
equation: 

where 

the evolution of the system. There are at present no known 
internal criteria for the "quality" of decoupling, but it is 
clear that the symmetry properties of the Pauli operators 
must be preserved under any type of decoupling. 

It is important to emphasize that the operators R f and 
R ; are Fermi operators when they correspond to a single 
atom (in this sense, they satisfy anticommutation relations): 

and Bose operators when they correspond to different 
atoms, since they satisfy the commutation relations 

(Rj+R,--Rf-Rj+) ( j,l=O. (7) 
vt(r1,  t )  = vk(s. t ) ,  v - ( ~ I ,  t )  = Vk(r1, t ) ,  

k(k,>O) k(A,<O) 
Since the operators in the chain (5) appear in the normal 

n, - ordering (this ordering was obtained by excluding the vacu- - 
V.Gl,t)=fig: C c m l ( k )  { j  dtlG.(t-t') um part of the operators), we shall try to decouple the system 

m=I 
without affecting the disposition of the operators in the cor- 

0 
n+l relator. Bearing in mind the properties (6), (7), and (2), we 

1 4 oo3d2 decouple our three-particle correlators by analogy with 
-=-- x ( R ~ + ( t ) R ~ - ( t ' )  )+H.c.}. T o  c3h , Wick's theorem for boson and fermion operators: 

/3 = (doolch) 3 (Rj+ ( t )  R,+ ( t f )  R,- ( t f )  RL- (t") ) 

and V + (r, , t ) ( V  -(r,, t )) is the rate of SR decay of the 1 the 
=<R,+ (t') Rmf ( t f )  >(Rj+ ( t )  R1- ( t " ) )  

atom from left to right (right to left) along the cylinder axis 
(kx l l Lx  1. 

A closed set of equations can be obtained from the Hei- 4 R j +  (t)R,- ( t f )  >(R,+ ( t f )  Rl- ( t f r )  >, 
senberg equation for V +(r,, t ) ( V -(r,, t )): 

aV+ (r,, t)ldt=Q,+ (rl, t )  +Q2+ (r,, t )  , 

where 

(5) 
(Rj+ ( t )  R,- ( t f )Km+ ( t f )  R,- ( t f f )  ) 

The decoupling (8) differs from the traditional decoupling of 2 j dtrGk(t-t')C,m(k)~.. (kt)  three-particle correlatorsl 
n = l  m=l 0 

~ Z I  tRj+(t)  R 3 m ( t f ) R l - ( t f f ) > = ( R 3 m ( t f )  )(Rj+(t)Rl-( t f f )  ) (9) 

'w by the fact that it preserves the invariance of the integral of 
x  fit"^,,^ (tT-t") (kli ( t )  k m  ( t ' )  kn- ( tr f)  ) + H.c. the motion 

.I 

N N -  <R312>=[(Rs[Rj+Rm-)+'lz(Rsl) 1 / l=j=m='/&, (10) 
Q2+(rl ,  t )  =2g g k z g k , ' E  J dtrGk(t-t') 

k ( k , > ~ )  L' ",=I m=l 0 whereas (9) approximates (10) by the expression (R ,, )2. 
m+l Hence it follows that the decoupling (9) is deficient in that it 

The method of decoupling the chain of equations given 
by (4) and (5) is sometimes indicated by the Hamiltonian of 
the interaction where it contains a small parameter. How- 
ever, when the interpolation theory that is valid in the limit 
of the SR peak is developed, any discussion of accurate de- 
coupling becomes meaningless because the problem does not 
then have a small parameter that can be used at any stage in 

- - .  . 
does not take into account fluctuations in the population 
difference operator R 3 j ,  which is definitely unsatisfactory in 
the region of the SR intensity maximum when (R ,, )4, 
whereas (8) has a tendency to reduce these fluctuations in the 
course of the SR process. 

Substituting (8) in (5) and assuming that, firstly, R ,, ( t  ') 
is a smooth function of spatial coordinates and, secondly, 
most ofthe radiation is emitted into the solid angle Sl2 -A 2/s 
(s is the cross section of the specimen) since FS; 1, we can 
readily obtain the following expression for the first term in 
(5): 
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From (4) and (5) with allowance for (12) and (14), we 
readily obtain the following set of integro-differential equa- 
tions: 

x'-xm) R1- ( t )  ) +H.C} x (~.+(t-? a v+ ( x ,  t )  .= - V+ (x* t ,  + 2V+ (x ,  t )  aR3 (x ,  t )  
at Tz at 

a ( R ~ ,  (t- ( x ,  -2,) / c )  ) . x,-- 
at 

, +LJ & . [ N R , ( X , ~ ) + R ~  t-- 
7rL ( "cX') l  

r,, cos 8-x, - x ,  . The sum over n and m includes all atoms 
lying left of point x, . 

Differentiating the first term in (1 1) with respect to x, 
we can readily show that, when L /c7, < 1 (Q = r l / N  ), Eq. 
(1 1) assumes the form 

+ t]} dx1+2v+ ( x ,  t )  aR3 (2, t )  
C at  

Substituting (8) into the expression of Q ,+, we obtain the 
following expression 

0 P 

aR31 &J sin 0 d0 Qz+(x[, t )  =V+ ( x [ ,  t)- - 
at 

0 

BF N1 N I  

x J sin 0' do1 { C C exp [?r,. c cos o I 

V+ (x ,  t )  =V- (L-x, t ) ,  (17) 

where T, is the time of transverse relaxation of the dipole 
moment. Equations (15)-(17) must be augmented by the fol- 
lowing initial conditions: 

3. SOLUTION OF THE SET OF EQUATIONS 

When we ignore quantum fluctuations in the popula- 
tion inversion [i.e., when we replace the decoupling (8) and 
(9)], the set of equations describing the SR process has the 
following form: 

x-x' +A{ j d x r [ ~ ~ 3 ( x . t ) + ~ 3  t - - ) ]  
T,L ( c 

(I3) V+ (x ,  t )  =v- (L-x, t )  . (20) 

Taking the average of (13) over the cross section of the cylin- The basic difference between (15)-(17) and (18)-(20) is 
der containing the two-level system, and assuming that re- that the former 'ystern acquired terms the form 

tardation is important only along the axis of the cylinder, we a (2, t )  
TI'+ (2, t )  a t  obtain 
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which are important in the region of the SR intensity maxi- 
mum. These terms produce a considerable broadening of the 
radiation pulse during the SR process. Figure 1 shows plots 
of the SR decay rate V +(x, t ) near the center and near the 
right edge of a thin cylinder, calculated from (15)-(17) and 
(18)-(20). The abscissas are 2t /T,. 

The following equation for SR has been obtained1 for 
extended systems in the mean-field approximation (i.e., 
when the cooperative decay time is T, )L /c ) :  

FIG. 1. Rate of SR decay V +(x, t ) as a function of time: a- 
near the right edge of the specimen, b--near the center of the 
specimen T, /T, = lop3, cr, = 3L; dot-dash curves-solu- 
tion obtained for (18)-(20); solid curves-solution obtained 
for (15)-(17). 

2 L L-sf x ' 
= - R,  ( t )  jdz' {? V+ (z', t) 4- - V -  (z', t )  

Ti L2 
0 

Replacement of the functions L-x' and x' with their 
mean values within the interval (0, L ) (i.e., with L /2) reduces 
(22) to an expression that has the same form as the third term 
in (21). 

Thus, (18)-(20) take into account longitudinal effects in 
the course of the SR process that are due to the variation in 
the electromagnetic field radiation density. In final analysis, 
this ensures that (1 8)-(20) describe a broader SR pulse than 
(21). 

An approximation such as (22) can also be obtained for 
(16)-(17). In the mean-field approximation [i.e., when x' and 
L-x' in the integrand in (22) are replaced with L /2], we then 
obtain the following equation for the population inversion 
(see Ref. 5 for further details): 

where 

To compare the solution of (1 8)-(20) with the solution of 
(21), it is convenient to integrate (18)-(20) with respect to x. 
In the Markov approximation (T, )L / c )  the expressions for 
the collective terms in (18)-(20) then assume the form 

FIG. 2 SR intensity as a function of time deduced from (18)- 
(20)--curve 1, (15)-(17)--curve 2; Eq. (2l)--curve 3, Eq. 
(23)--curve 4. 
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Like (16)-(17), this equation takes into account fluctuations 
in the population difference in the two-level system, but ig- 
nores the variation in the field amplitude over the specimen. 
The effect of the second term in (23) on the shape and half- 
width of the SR pulse can be estimated analytically. Near the 
SR intensity maximum, the right-hand side of (23) can be 
neglected, so that, since the boundary conditions are 

Eq. (23) becomes 

Near the SR peak, when R , / N <  1, the exponential can be 
replaced by the series: 

exp ( 2 R 3 / N )  =1+2R31N+2 (R31N)a.  (25) 

Substituting (25) in (24), we readily obtain the following 
solution: 

where r;f1 = 0.687; and to is the delay time. Thus, 7;- ' 
turns out to be less than the value obtained under the gener- 
ally accepted decoupling (9). The same conclusion is ob- 
tained for the point system by introducing the replacement 

rl+ro into (24). 
Figure 2 shows the results of a numerical integration for 

the SR intensity 

obtained by using (15)-(17), (18)-(20), and (21), (23). Thus, 
(15)-(17) leads to a broader and asymmetric curve for the SR 
intensity as compared with (21), (23) and (18)-(20). 

4. CONCLUSIONS 

Our theoretical investigation shows that the simulta- 
neous inclusion of quantum fluctuations and longitudinal 
structure of the interaction field between the radiators re- 
sults in a substantial improvement in the agreement between 
theory and experiment. Our new method of decoupling en- 
ables us to preserve some of the symmetry properties of ki- 
netic equations for the two-level systems that influence the 
shape of the SR pulse. We have also shown that the separate 
allowance for the size of the system will also broaden the SR 
pulse. 

It is clear from the foregoing discussion that fluctu- 
ations have an important effect on the shape and half-width 
of the SR pulse and that the decoupling (8) can be effectively 
used in equations for SR kinetics. 
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