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Tunneling diffusion of particles in a crystal with an extremely narrow band, in which the particles 
begin to interact intensely with each other even at a low concentration, is analyzed. The periodic 
potential relief of the host has several consequences. On the one hand, it means that a particle 
must jump a finite distance for a resonant transition to occur, and the number of equivalent sites is 
limited. On the other, it causes umklapp processes and limits the kinetic energy. The result is the 
formation of clusters within which both single-particle and many-particle excitations are sup- 
pressed. The equivalent bandwidth for the motion of a cluster as a whole falls off exponentially 
with increasing number of particles in the cluster. At a certain concentration x, an immobile 
cluster of infinite size forms, and the system of particles breaks up into mobile and immobile 
subsystems. The immobile subsystem creates an immobile defect structure, and localization be- 
gins in the mobile subsystem at a certain concentration x, . The critical behavior of the diffusion 
coefficient near x, is that of classical percolation. The disruption of localization at low tempera- 
tures by an interaction with phonons is analyzed. The results are compared with experiments on 
localization and phonon-induced delocalization in the diffusion of He3 atoms in solid He4. 

1. INTRODUCTION 

Previous studies of the localization problem have essen- 
tially always reduced to the analysis of a single-particle 
problem in a random, inhomogeneous, static field or in a 
medium with a static distribution of irregularities. This is 
true of both the quantum-mechanical localization problem' 
and all problems in the classical theory of percolation (see 
Ref. 2, for example). The interaction between diffusing parti- 
cles in this case may substantially change the picture near 
the percolation threshold, but the inhomogeneity of the me- 
dium remains the governing factor for localization. 

In studying the diffusion of particles which are interact- 
ing with each other in a strictly regular crystal we run into 
the situation, in the case of narrow bands, that at a compara- 
tively low particle concentration x the field configuration 
which is realized at each instant is such that the field in- 
homogeneity scale exceeds the critical value required for lo- 
calization of an individual particle in the static case. A fun- 
damental distinction here, however, is the generally 
dynamic nature of the random field. We are led to ask 
whether a localization encompassing the entire subsystem of 
diffusing particles as a whole can arise under such condi- 
tions, so that the diffusion coefficient D would vanish. 

A first glance at the homogeneous analog of the prob- 
lem-diffusion in a liquid- leads to a negative answer. In a 
liquid without stratification an increase in the concentration 
of the diffusing particles does not lead to any of the features 
characteristic of localization. For example, experiments on 
the diffusion of He3 atoms in liquid He4 have demonstrated a 
continuous increase in D with decreasing temperature T 
over the entire He3 concentration range studied (see Ref. 3, 
for example). 

Under certain conditions, however, as the detailed anal- 
ysis below shows, the interaction between particles as they 
diffuse through an ideal crystalline host does give rise to a 
localization. We consider only the case of extremely narrow 
bands, for which the interaction between particles over an 
average distance 7, U (7), and also the value of a I VU / at this 

distance reach the value of the bandwidth, A ,  at a low parti- 
cle concentration x(1, and the condition T> A or even the 
stronger condition T> U(7) holds at such low temperatures 
that the effects of the interaction with phonons are still 
slight. This is a typical situation, in particular, in the tunnel- 
ing diffusion of atomic particles in a crystal. It was for this 
case that the idea of localization in a system of interacting 
particles was first suggested4 (see also Ref. 5); this idea has 
since been developed along with the problem of phonon-in- 
duced delo~alization.~.' The nature of the localization which 
occurs has not been analyzed comprehensively. 

The decisive factor giving rise to this type of localiza- 
tion is the discrete nature of the space, which is a conse- 
quence of the crystalline structure of the host. Because of 
this discrete setting, the system has many properties of fun- 
damental importance which distinguish it from the case of a 
homogeneous medium: 

1. Umklapp processes occur, becoming particularly 
pronounced at T2 A.  

2. Tunneling occurs only over a finite (interatomic) dis- 
tance a. The number of equivalent sites in the nearest coordi- 
nation sphere, z, is limited. 

3. The kinetic energy of the particles is limited to values 
on the order of the bandwidth A .  

The umklapp rules out a nondissipative drift state, even 
in the complete absence of an inelastic interaction with the 
host. 

In a liquid a diffusing particle may undergo resonant 
displacements over some arbitrarily small distance, with 
adiabatic structural adjustments in the surroundings. That 
this behavior is impossible in principle in a crystal can be 
seen very clearly in the He3-He4 system, for example, where 
the effective masses of He3 in liquid and solid solutions at 
comparable densities (the effective mass in the solid phase 
can easily be found if the bandwidth is known) differ by four 
orders of magnitude (cf. Refs. 8, 9, and 3). In a crystal the 
unavoidable limitation on the amplitude of the resonance 
transition, A,, to a minimum possible distance a combines 
with the finite number of possible transition paths (z) to cre- 
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ate a situation in which the level shift SE at neighboring sites 
caused by the interaction with other particles exceeds 
A zzA, in order of magnitude, and the motion of the particle 
under consideration is blocked. It is easy to see that at con- 
centrations xoo(l, at which a shift of this magnitude on the 
average occurs throughout the crystal in a statistical man- 
ner, clusters in which single-particle motions are suppressed 
will exist in the system. As is shown in Section 2, the internal 
many-particle motions are also suppressed, and the displace- 
ment amplitude (a,) of such a cluster as a whole in free 
space, although not zero, does fall off exponentially with 
increasing value of n, the number of particles in the cluster. 
At a certain concentration x, , which has the same scale 
value x,,, an immobile infinite cluster forms. Even at a 
smaller level shift, clusters with n > 2 lose the ability to move 
as a whole that individual particles have; that value of the 
shift at which clusters lose their mobililty falls off progres- 
sively with increasing n. It is easy to show that this effect 
gives rise to an immobile infinite structure (a more "friable" 
structure) at a lower concentration. The problem of the for- 
mation of an immobile cluster is analyzed in detail in Sec- 
tions 2 and 3. 

At concentrations x 2x ,  , a significant number of the 
particles do not belong to an infinite cluster and instead re- 
main as free individuals or members of small clusters. As a 
result, the system of interacting particles in an ideal crystal 
breaks up into two subsystems: an immobile subsystem remi- 
niscent of a swarm of bees in winter hibernation and a mobile 
subsystem whose particles remain able to move. ~ecause  of 
the fundamental limitation on the kinetic energy of the mo- 
bile particles, their interaction with an immobile cluster can- 
not excite the latter (Section 2). An immobile cluster there- 
fore serves as a static defect formation for the mobile 
particles. It thus becomes clear that at a certain particle con- 
centration x, the mobile particles lose their ability to move 
off to infinity, and complete localization occurs in the sys- 
tem. 

As in the traditional percolation problem, the value of 
x, is related to the size of the free volume in which the parti- 
cles can move. There is a fundamental distinction here: As 
the mobile particles undergo collisions they can exchange 
energy in amounts on the order of their kinetic energy, i.e., 
A .  Consequently, these particles kinetically have access to 
the entire volume in which the level shifts at neighboring 
sites due to the immobile cluster, SE, do not exceed A in order 
of magnitude. At T> U (F), there are no special restrictions of 
any sort on motion anywhere in this volume, and a further 
temperature increase plays no role in the absence of an inter- 
action with phonons. The subsystem of immobile particles is 
insensitive to increases in T  (the swarm continues to sleep). 
The concentration x, corresponds to a definite minimum 
value of the volume which is free in the kinetic sense. 

The overall problem is discussed in Section 3; at this 
point we wish to examine the nature of the critical behavior 
of D (x) near x, . We see that the important role of inelastic 
processes in the kinetics of the mobile particles leads to a 
critical exponent which is approximately the same as in the 
classical percolation theory (see Ref. 2, for example). In Sec- 
tion 4 we use the results of Ref. 6 to examine the role played 

by the interaction with phonons, primarily the induced delo- 
calization of particles caused by this interaction at x >x, 
and the effective increase in the number of allowed paths at 
x<x , .  

The phenomenon of localization in a system of interact- 
ing particles in a regular crystal was first observed experi- 
mentally by Mikheev et a1. lo-'' in studies of the diffusion of 
He3 atoms in He4. They established the critical nature of the 
x dependence of D and simultaneously found an anomalous 
temperature dependence, which is inherent in a phonon-in- 
duced delocalization. The results were found to agree well 
with the theoretical predictions of Refs. 4, 6, and 7. The 
system of He3 atoms in He4 is a very appropriate one7 for 
studying localization of this type. 

In the last section of this paper we discuss comparisons 
of experimental data with theoretical predictions. 

2. CLUSTER FORMATIONS AND LOCALIZATION 

We consider a subsystem of N particles in an ideal crys- 
tal with an extremely narrow band. We assume that in each 
of the No unit cells a particle can occupy only a single state. 
The Hamiltonian of the subsystem can then be written in the 
site representation as 

Here g(Ig1 = a )  is the translation vector in the first coordina- 
tion sphere. We assume that the interaction between parti- 
cles can be described by the simple power law 

U ( r )  =Uo (aolr) ", a>3. (2.2) 

The parameter a, is related to the volume of the unit cell: 
u, = +?~a:.  For order-of-magnitude estimates we will ignore 
the distinction between a, and a, the lattice constant. For 
definiteness we assume U, > 0. The restrictions which arise 
in the case of attraction and also in the case of a nonspherical 
interaction (e.g., the interaction caused by a strain field) will 
be discussed in the last section of the paper. 

At a particle concentrationx = N /No -t 0 band motion 
of the particles takes place in the crystal. We assume that the 
bandwidth A satisfies the inequality 

A=zAo<U0 9 (2.3) 

where z is the number of nearest neighbors. In this case the 
potential energy per particle begins to exceed the kinetic en- 
ergy even at a low particle concentration x zx,. The band 
motion is disrupted, and the particles go into quasiliquid 
motion. We are interested in the behavior of the subsystem of 
particles at x > x,, but we retain the condition x( 1; then at 
T 2  A there is no degeneracy in the system, and we can ig- 
nore the nature of the statistics which the particles obey. 

This system has a clearly defined tendency to form clus- 
ters in which the relative motion of the particles, even over 
atomic distances, is suppressed. A cluster forms when the 
scale value of the level shift (SE) upon the displacement of a 
particle into the first coordination sphere exceed yA, and the 
minimum level shift exceeds yA,(y > 1). Here there must be 
at least one more particle within a sphere of radius R,,Ba 
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around each particle of the cluster, where this radius is deter- 
mined by the condition 

Strictly speaking, the set of sites which are coupled by level 
shifts exceeding yA actually has a more complicated shape 
than overlapping spheres of radius Roo, but this circum- 
stance will not affect the results of the calculations below. 

Even in the example of two particles it is easy to see that, 
in addition to the suppression of any relative motion in the 
radial direction by the discrete nature of the lattice, at y) 1 
the motion of each particle in any direction will be sup- 
pressed in the overwhelming majority of configurations. 
When a particle is simultaneously in the field of two or more 
particles, this suppression occurs at a substantially smaller 
value of the parameter y. 

We will now show that if single-particle motions are 
suppressed in a cluster then any internal many-particle mo- 
tions will also be suppressed. To demonstrate this point we 
begin with two-particle motions in a cluster. 

Treating the kinetic energy in (2.1) as a perturbation, we 
can write the following expression for the amplitude of the 
two-particle motion: 

Here SE, is the change in the energy of the cluster upon a 
displacement g, of the sth particle, and c3 is the difference 
between the final and initial energies of the cluster. Since the 
distance (r) between particles is large in comparison with a ,  
we have expanded the potential energy in a / r  in calculating 
S E ~  + After we isolate E~ in the numerator in (2.5), we 
are left with only the second derivative of the direct intera- 
tion between particles, which is even smaller than SE, since it 
contains a small factor on the order of a / r .  In general, E~ will 
be large in comparison with the second term in square brack- 
ets in (2.5), and we will have 

J A 2 / ~ f i I  N ( A o / 6 e ) 2 K 1 .  

A random realization of a resonant situation, I < 1A21, 
which would be required for an actual transition of two par- 
ticles at the same time, is substantially less probable than in 
the case of single-particle motions. 

Working in the same way, we can derive an expression 
for the amplitude of a k-particle excitation in a cluster: 

where E f' is another quantity containing an additional fac- 
tor of the small parameter a / r .  A fixed set of k particles 
actually has a great number ( z k )  of paths for motion. The 
transition with the highest amplitude is obviously that in 
which each individual particle is displaced in the direction of 
the minimum level shift. This minimum level shift has a typi- 
cal value SE,, ~ S E ~ ~ / Z ,  SO we find the following expression 
for the maximum value of amplitude (2.6): 

We thus see that in practice the resonant situation cannot 
arise at y >  1, even for the most dangerous path of motion. 

Consequently, under the conditions we have assumed 
here, all collective motions in the cluster are suppressed. 

We turn now to the motion of an isolated cluster of n 
particles as a whole. In this case we can use (2.6), setting 
c3 = 0 in it and noting that upon a displacement of all the 
particles of the cluster by an identical translation vectorg the 
set SE, takes on all possible values in the interval SE~ , .  We 
can then write 

&,=A, (E,( ' ) /AO) exp [-n In ( y ' z ) ] ,  y1z2=-I. (2.8) 

In this expression we certainly have y' < y; at a large value of 
n, we would have y' z e. 

We write a separate expression for 2, using explicit ex- 
pressions (2.5) and (2.2): 

We see thus that the cluster translation amplitude 2, falls 
off exponentially with increasing number of particles in the 
cluster. When we take into account the possibility of internal 
motions, we conclude that the amplitude of the cluster could 
in principle be far larger than (2.8). In particular, it could 
approach the value in (2.7) if we set k = n in it. In this case, 
however, we would have A, <E,-, SO that such a motion 
would not actually occur. 

It follows from these results that in the limit n + co we 
obtain a cluster with neither internal motion nor transla- 
tional motion. 

An infinite cluster defintiely exists in our system if the 
concentration satisfies x > x t ) .  If we assume that when the 
system was prepared the particles were distributed among 
lattice sites in a purely random fashion, we can use the re- 
sults of the "random sites problem" in percolation theory 
(see Ref. 2, for example); we find 

(1) - 
2 ,  -Cxoo, 

where we find c z 2 . 7  from numerical calculations, and the 
scale concentration xoo is given by 

ZOO= ( a O I R ~ O ) S .  (2.1 1) 

At x > x t )  the crystal thus contains a subsystem of im- 
mobile particles in which all the internal motions are sup- 
pressed, as is the translational motion of the cluster as a 
whole. At the same time, the crystal regains a significant 
number of isolated particles and small clusters. The number 
of individual particles ("loners"), which do not belong to any 
of the clusters, for example, is 

Ni=Ne-Y, y = ~ I x ~ ~ .  (2.12) 

To determine the number of isolated "duos," &, we 
need to find the probability that two particles will be separat- 
ed by a distance b <Roo, while there will be no other particles 
in a volume u(b ) around them (Fig. I), and then sum over b: 

FIG. 1. 
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FIG. 2. 

F ,  ( y )  = ( $ n ~ . . ) - ~  5 d3b e x p [ y - r v ( b ) / v o ]  

Here y(a, x) is the incomplete gamma function. 
Analogously, summing over all configurations of 

"trios" (Fig. 2) for which two distances of the three are 
smaller than Roo, we find 

1 
= - N y 2 e - T z  ( y )  , 

6 

where we can use 

F ~ ( Y ) ~ ~ [ F I  ( Y )  1'. (2.15) 

for an estimate. 
Pursuing these arguments we see that at x z x t )  the 

loners, duos, and trios constitute about 10% (7%, 2%, and 
1 %, respectively) of the total number of particles. 

In principle, the collisions of isolated particles are in- 
elastic. For example, two loners may exchange an energy on 
the order ofA in an interaction. For this exchange to occur, 
it is generally not necessary that the particles execute a mo- 
tion equivalent to an actual band motion. It is sufficient that 
the particles be delocalized within one or two coordination 
spheres. 

Can single-particle transitions occur in a cluster as it 
interacts with loners? The energy of single-particle excita- 
tions in a cluster lies in the interval yAo - yzAo, as is clear 
from the discussion above. Accordingly, in an inelastic colli- 
sion with a cluster a mobile particle, at a distance r > Roo 
from the bound particle with which it interacts, must lose an 
energy greater than yAo. Let us consider the interval 
Roo < r < R ' directly adjacent to the cluster "boundary" [R ' 
is found from (2.4) by setting y = 11. Here the inelastic ex- 
change with the mobile particle will be described by the am- 
plitude A, in (2.5). For an actual transition, the condition 
sfi z O  must hold within a value on the order ofA,. We thus 
have ISE,~ z and 

At r > R ' the mobile particle may be quasilocalized at a 
distance greater than a. In order to describe its state in this 

case we need to consider the kinetic energy in (2.1) from the 
outset. The amplitude for the simultaneous transition of this 
particle and of one cluster particle is determined by the two- 
particle matrix element of their interaction potential energy, 
U (r,,). Taking into account the large distance (r) between the 
particles, the limitation on the change in the localization 
center upon the transition, and the relative shift of the initial 
and final states, we can write the following expression for the 
part of the interaction which is responsible for the transition 
r ,  = r  + p,, r, = p,: 

a z U  ( r )  
piipzk. 

If we consider that during localization in an individual cell 
the impurity of states at adjacent sites with a relative level 
shift SE is proportional to A0/S&, then we easily see that the 
matrix element of (2.17) agrees with A, in (2.5) at E~ z 0 .  

The decrease in the second derivative of U with increas- 
ing r ,  combined with the circumstance that the matrix ele- 
ment of p corresponding to the mobile particle definitely 
does not increase, means that the amplitude for the inelastic 
exchange is smaller than (2.16). It is thus clear that inelastic 
single-particle processes in a cluster are suppressed. It is not 
difficult to see that many-particle excitations in a cluster 
upon collisions with loners are suppressed even more strong- 
ly. 

We see that the interaction between mobile particles 
and a cluster is essentially always elastic. (The rare random 
satisfaction of the condition for a real process involving the 
inelastic excitation of a particle in a cluster and its displace- 
ment over an interatomic distance will change nothing in the 
picture drawn below.) 

In principle, a particle could collide with an n-particle 
cluster as a whole. In such a collision, however, the possible 
exchange of energy would be on the order of A,, as can be 
seen by associating with an n-particle cluster an effective 
mass m, , whose ratio to the effective mass of a loner, m,, is 

mn/mim&/an. (2.18) 

In this sense the subsystem of particles forming the infi- 
nite cluster actually creates a static defect structure in the 
crystal. 

In summary, once an infinite cluster forms, the system 
of particles in an ideal crystal breaks up into two fundamen- 
tally distinct subsystems. The mobile particles making up 
one of these subsystems now move in the irregular static field 
produced by the subsystem of immobile particles, which are 
distributed over the crystal in a substantially random man- 
ner, although there are definite spatial correlations. Clearly, 
at a sufficiently high density of the infinite cluster (x > x, ), 
the immobile subsystem will form a static defect configura- 
tion of a type which will block the mobile particles. In other 
words, the mobile particles will become unable to move from 
any spatial point off to infinity, even when we take into ac- 
count the inelastic interaction in the subsystem of mobile 
particles itself. 

In this case we definitely have a localization for the en- 
tire system of particles as a whole. 
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3. LOCALIZATION TRANSITION IN A SYSTEM OF 
INTERACTING PARTICLES 

In analyzing the picture of the transition to localization 
it is natural to consider the relative size of the "free" volume 
(the "white" region), i.e., that part of the volume or that 
subset of the sites which is accessible to the free particles in 
the course of their motion. It is here that the single-particle 
and many-particle problems (we mean mobile particles here) 
are fundamentally different. 

In analyzing the single-particle problem in a crystal 
with static defect we are interested in the relative volume in 
which the energy of the particles in the potential relief differs 
from the band value by an amount less than A. In the many- 
particle problem, the exchange of energy between mobile 
particles (although still limited to a value on the order ofA in 
each individual collision event) gives rise to a diffusion in 
energy space. The effect is to increase the "accessible energy 
band" and thus the corresponding free volume. With an eye 
on the kinetic problem, we note that in principle the effective 
width of this band depends on the temperature. If, however, 
T exceeds a scale temperature of the potential relief, deter- 
mined by the interaction of the particles over the average 
distance, U (T;), this temperature dependence vanishes. In this 
case the free volume includes essentially all sites which may 
contain an isolated loner if we pretend that all the mobile 
particles have been removed. 

In the case of an extremely narrow band, the indepen- 
dence from the temperature arises at very low values of T 
(the corresponding transition temperature tends toward 
zero in the limit A, -+ 0). In analyzing the problem we can 
thus ignore the interaction with phonons (see the next sec- 
tion of the paper). 

To estimate the relative number of free sites, w, in this 
case, we note that for "ideally" free sites, within a radius Roo 
of which there are not even any loners, we would have 

If there is no particle at a particular site, and if there is one 
isolated particle within a radius Ron of it, then this site will 
also be a free one, and we should add to w, a probability [cf. 
(2.1311 

w,='lzye-VFi (y) . (3.2) 

Analogously, using (2.14), we can calculate the prob- 
ability (w,) that there will be two loners or a mobile duo 
within a radius R,, of a free site: 

The reason for the "less than" sign here is that, as will be seen 
below, the number of truly mobile duos is substantially 
smaller than g2 in (2.13). 

Ignoring the other configurations, we use the sum of 
(3.1) through (3.3) to estimate the relative size of the free 
volume. At x z x t )  this sum is about 0.14. In comparing this 
value with the values from percolation theory (see Ref. 2, for 
example), we must allow for the possibility that the critical 
concentration x, , at which percolation through the free vol- 
ume ceases, may lie slightly to the left of x':) or at any rate in 
a region in which the strength of the infinite cluster is still 

low [x, is clearly greater than the concentration 2x,,, at 
which the condition (w, + w,) > 0.2 holds]. 

At these concentrations, however, there is already a 
well-developed subsystem of immobile particles, formed by 
clusters with n>2. Up to this point we have ignored the fact 
that isolated clusters of n particles cease to move even at 
level shifts SE, (SE,, because of the exponential decrease in 
A,, in comparison with A ,  [see (2.8)]. If an n-particle cluster 
is to be able to move in the face of the power-law nature of the 
interaction, (2.2), there must be no particles near this cluster 
which belong to other m-particle clusters with m)n in a 
region with linear dimensions R, substantially greater than 
R,,. This dimension is determined by the obvious relation 

6 ~ , = a l V U I . = ~ ~ = y ~ ~ l A , l ,  yn>l. (3.4) 

It follows immediately that [see (2.4)] 

(Rn/Roo) 3 ~ . ( A o / i i n )  3'(a+i)>1. (3.5) 

The reason for the condition m>n here is that smaller clus- 
ters could in principle leave a region with a level shift on the 
order of C~E, . 

At x > 2x,, more than 80% of the particles are in clus- 
ters with n>3. It is easy to see that the probability that a 
sphere of radius R, will not contain at least one of these 
particles is very small. It follows immediately that the over- 
whelming majority of the trios will actually be immobile. 
The label of immobility can be applied even more safely to 
clusters with n > 3. Estimates show that in this concentra- 
tion interval the overwhelming majority of the duos will also 
be immobile. In practice this means that at these concentra- 
tions there is an infinite immobile cluster of a new type, for 
which the relative motion of the constituent clusters with 
n>3 is suppressed at a lower density. An infinite cluster of 
this type actually arises even at a substantially lower concen- 
tration x, , as can be seen by examining the subsystem of 
trios alone. Ignoring the dimensions of these trios in com- 
parison with R,, introducing the trio concentration 
z ' ~ '  = N ( ~ ) / N , ,  and working by analogy with (2.10) and 
(2.1 I), we find the value of 2:) at which an infinite cluster of 
trios appears: 

- ( 3 )  ( 3 )  
5 ,  =I;3xoo , xdd) = ( a o l ~ d  3. (3.6) 

Substituting expressions (2.14) and (3.5) into (3.6) we 
find an equation for the particle concentration x:) (the con- 
centration of particles, not clusters): 

Solving Eq. (3.7) for realistic parameter values and for 
a = 3-4, we find x:) zO.Sx,,. Clearly, the actual value of 
x, could only be smaller than x:), although it certainly 
looks like the two are fairly close. 

At x z x ,  a substantial fraction of the particles thus be- 
long to an infinite immobile cluster of more complicated 
structure. Estimates show that at this concentration a sub- 
stantial fraction of the duos are also immobile. Only the 
loners actually remain mobile. We wish to emphasize that 
the interaction of the loners with a cluster of this sort is 
purely elastic, as can be seen from the arguments in the pre- 
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ceding section, which would be even stronger here because 
the average level shift for the particles of the constituent 
clusters would be even greater than SE,,. 

The critical concentration x, and the value of x, are 
significantly different. The localization actually occurs in a 
region in which the density of the infinite immobile cluster is 
high. At concentrations x, < x  <x, , where the two subsys- 
tems of particles coexist, the macroscopic diffusion coeffi- 
cient can be written 

D (x) =D* ( x )  Q ( 2 ) .  (3.8) 

Where D. (x) is the local diffusion coefficient. The factor 
Q (x), associated with long-range correlations, is given near 
xc by 

In deriving these results we have tacitly assumed tem- 
peratures 

T>T,=U(x,) .  (3.10) 

Increasing the temperature further would not change the 
size of the free volume, so that under condition (3.10) the 
concentration x, and the nature of the critical behavior do 
not depend on the temperature (at least as long as the interac- 
tion with the phonons has not come into play). 

To analyze the nature of the localization and the critical 
behavior of D near x, , we begin with a problem of indepen- 
dent interest: diffusion in a crystal with static impurities. For 
definiteness we assume that the interaction of the particles 
with the impurities is again described by law (2.2). Examin- 
ing the single-particle problem in the absence of any inelastic 
scattering mechanisms, we can determine the equivalent ra- 
dius (R,) for the interaction of the particle with an impurity 
from the condition 

U ( R o )  = A .  (3.11) 

For a narrow band we would have Rosa .  According to 
the classical theory of percolation, diffusion to infinity dis- 
appears at a certain degree of overlap of the spheres of radius 
R,, which are actually regions inaccessible to particles (ex- 
cluded volumes). The corresponding critical concentration 
xLm is determined by the scale length x, associated with the 
radius R,: 

xcim=qxo, xo= (alRo) 3. (3.12) 
At a lower concentration, however, a quantum localization 
should set in. Far from the localization point, the quantum 
correction to the diffusion coefficient, SD, can be estimated 
by determining the fraction of particles which return as a 
result of rescattering to a volume of radius A (the wave- 
length) around the point which these particles left at the time 
t = 0 (see Ref. 13, for example). It is a simple matter to di- 
rectly show that 

6D/D--h2/102, (3.13) 

where I, is the mean free path of the particles. In the region 
xim -x, we have lo - R,; also using A -a, we find 

16D1/D~1 .  

It follows from (3.13) that in terms of the local diffusion 
coefficient the quantum localization condition ISD I/D- 1 is 

satisfied at lo-a. This condition becomes satisfied at 
xim -xoo >no, x p  [see (2.11) and (2.4)]:Actually, as xLm is 

approached,the decrease in the number of effective paths for 
long-range diffusion effectively increases the scattering, 
which is accompanied by a return to the original region. This 
behavior increases the quantum interference effects in a de- 
termination of -the macrosopic coefficient D, although the 
quantum corrections to the local diffusion coefficient remain 
negligibly small. 

WithinxLm the correlation length and the diffusion coef- 
ficient D can be written 

The critical indices in (3.14) correspond to classical localiza- 
tion and in the 3-D case have values ~ ~ 0 . 8 - 0 . 9  and t=: 1.6- 
1.7. (see Ref. 2, for example). Over scale lengths smaller than 
LC the diffusion is rapid, with a coefficient on the order of 
D r. Consequently, in a volume on the order of L 1 around 
the point which the particles left at t = 0 a uniform distribu- 
tion with a density on the order of L , is established; this 
distribution slowly dissipates at the diffusion coefficient D 
given by (3.14). The scale time for the density decay, t ', is 
found from t ' - L f /D.. Over this time, a particle flux density 
u, /L 1 (u, is the group velocity) crosses the spherical surface 
-A ', and the fraction of particles which return to the vicini- 
ty of the initial point is given in order of magnitude by 

This value determines the relative quantum correction to the 
macroscopic diffusion coefficient describing transport over 
distances large in comparison with LC. Working from (3.14) 
and the fact D irn -- v, R,, we find 

It follows from (3.15) that the transition to the quantum lo- 
calization regime occurs only after a very pronounced de- 
crease in D in accordance with the classical law (3.14), in the 
immediate vicinity of xLm [the corresponding impurity con- 
centration x, can easily be estimated by equating (3.15) to 1; 
the critical concentration corresponding to quantum local- 
ization lies very close to this transition concentration]. A 
corresponding result has been derived by Khmel'nitskii14 in 
an analysis of another problem. 

We thus see that in the case of extremely narrow bands 
the critical exponents over by far the greatest part of the 
critical region correspond to the classical percolation prob- 
lem; only in a very narrow concentration interval near the 
transition point do the critical indices take on the values 
characteristic of the quantum localization problem. We 
might point out that these results are based on the assump- 
tion of a purely elastic scattering by defects and may apply to 
both a monochromatic distribution in energy and a uniform 
distribution of particles over the bandwidth. Even a compar- 
atively slight inelastic scattering, with a scale time rinel < t I ,  
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however, will disrupt the quantum correlations, and the be- 
havior D (x )  will be determined at all x'" by the classical 
correlation problem. 

If there is no interaction with phonons, and the inelastic 
scattering of particles with each other is important, so that 
the corresponding mean free path becomes comparable to I,, 
the situation may change considerably. In a model in which 
the impurities are impenetrable spheres of radius R,, the 
value of xim and the critical behavior in (3.14) remain in 
force; only the coefficient Dim changes. If the interaction 
with impurities is instead a power law (2.2), the energy ex- 
change during inelastic scattering of particles with each oth- 
er will allow the particles to penetrate into the region r < R ,  
near an impurity. Since the energy which is exchanged can- 
not exceed A, however, a region r < Roo is now inaccessible, 
where Roo is determined by an expression analogous to (2.4). 
The entire region outside the spheres of radius Roo, on the 
other hand, is kinetically accessible, at least at T >  U (x'" ). 
The substantial increase in the free volume at x'" -x ,  causes 
delocalization in this concentration region. Now a localiza- 
tion of a new type occurs, at a substantially higher concen- 
tration xkm -xoo [see (2.1 I ) ] .  This concentration corresponds 
to overlapping spheres of radius Roo. The critical behavior of 
the diffusion coefficient here corresponds to the classical 
percolation problem, and the kinetic nature of the develop- 
ment of the free volume affects only the value of D . .  The 
position of the new critical point does not depend on T  if 
inequality (3.10) holds. 

We can now easily explain the situation which prevails 
in a crystal without static impurities. At a particle concen- 
tration x -x,, a transition occurs from a gaseous region to a 
quasiliquid region (with an interaction on the order of A ), 
without any manifestations of localization, of course. The 
quasiliquid region persists up to x = x ,  , beyond which, as 
we have already mentioned, an infinite immobile cluster ap- 
pears in the system and serves as a static defect structure. 
The strong interaction between the immobile particles at 
x > x ,  -x,, makes the entire kinetically accessible region 
free for these particles. At x z x ,  , although the density of the 
immobile cluster is high, the concentration of mobile loners 
is still significant, and inelastic processes continue to play a 
governing role in the mobile subsystem. As a consequence, 
the point x,  is a critical point of the second kind, and the 
critical index a in (3.9) must have a value close to that of the 
index characteristic of classical localization. Generally 
speaking, we cannot rule out that there will be some small 
difference between these indices in this case, because the dis- 
tribution of particles in an infinite cluster will have some 
correlation, in contrast with the completely random distri- 
bution of static defects. 

As x changes, there are simultaneous changes in the 
concentrations of the immobile and mobile subsystems. The 
only critical change, however, is that in the concentration of 
the immobile subsystem: The change in the concentration of 
nearly mobile particles leads to only a change in the local 
diffusion coefficient, and this change is insensitive to the 
critical point. 

4. TEMPERATURE AND CONCENTRATION DEPENDENCE OF 
THE DIFFUSION COEFFICIENT; ROLE OF THE INTERACTION 
WITH PHONONS 

We first consider the concentration dependence of D 
over the broad intervalx < x, in the absence of an interaction 
with phonons. At x <x, ,  the motion of the particles is a band 
motion. The clearly pronounced umklapp processes (T> A ) 
cause the rate at which particles collide with each other, 
Op (x ) ,  to be essentially the same as the rate of collisions with 
defects. In this case the diffusion coefficient is given 

D ( 2 )  ='lsza2A2/Qp ( x )  , (4.1) 

where 

Qp ( x )  (aOA) (x/aos) oeffr oefj=~RoZ. (4.2) 

The value of R ,  in this expression is given by (3.11) 
At x > x, the concentration dependence of the diffusion 

coefficient changes, because of the transition of the system of 
interacting particles in the crystal to a quasiliquid regime. 
This transition can be seen simply from the circumstance 
that at these concentrations an individual particle is local- 
ized in the instantaneous potential relief created by the sur- 
rounding particles. The corresponding linear dimension ( I  ) 
of the virtual localization region can be found from the con- 
dition for a shift of the band by an amount on the order of its 
width: 

I I VUI, ,~=A,  r=a0z-'". (4.3) 

Using (2.2), (3.1 I ) ,  and (3.12), we find 

Z E ~ - ~ ~ , Z - " ~  ( zO/z)  a/3=a0 (xO0/x) (a+ ' )13 ,  (4.4) 

At x ) x ,  the size of the region in which the particles are 
localized becomes small in comparison with the average dis- 
tance between particles, 7. 

When two particles interact, each can go into one of the 
quasilocalized states whose wave functions are nonzero in a 
volume of radius I .  It is not difficult to see that the number of 
such states is - ( I  /a )3 .  The matrix element of this transition, 
which is determined by interaction (2.17), is given by the 
following expression for particles separated by a distance r: 

V ( r )  =CC (a+ 1) U, (aolr)  a+2 (1Ja) (Z2/a) Z,Z2, (4.5) 

whereI, is the overlap integral corresponding to the sth par- 
ticle. 

As long as the condition I / a )  1 holds, the number of 
final states (in an energy interval - A  ) is so large, and the 
distance (w)  between levels so small, that the following con- 
dition holds: 

V ( F ) / m B i .  (4.6) 

As a result, the interaction with the surrounding parti- 
cles prevents a state from forming. The energy spectrum es- 
sentially becomes a continuum, and the motion of the parti- 
cles and the exchange of energy in the course of their 
interactions become classical. Here we have a self-consistent 
dynamic picture in which a particle is moving in a fluctuat- 
ing external potential relief. 

An individual particle moves a distance on the order of I 
in a time T determined by quasiband motion: 

T = I / V ~ ,  vg=aAO. (4.7) 
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It is easy to show that this time is also the scale time for a 
change in the potential at the given point and thus for a shift 
of the band by an amount on the order of (we wish to stress 
this point) A. As a result, the effective diffusion coefficient in 
this unusual liquid is given approximately by 

D (x) -'/312/~-'/3za2A,YQPr (x) , (4.8) 
where 

Q ~ ' ( x )  (x) =a1 V Ulr-i. 

At x z x ,  the rate (x) is equal within a numerical coeffi- 
cient to flp (x) in (4.2). 

It follows from (4.8) and (4.9) that at x z x ,  the diffusion 
coefficient undergoes a change in concentration dependence 
from D a x -  ' [see (4.1) and (4.2)] to 

DmX-(a+i)l3 (4.10) 

The possible appearance of a functional dependence of this 
type in the case of an interaction through a strain field 
(a = 3) was discussed in Refs. 15 and 16. 

In principle, this analysis applies at concentrations up 
to x = x, . At x >x, , the diffusion inolves only the parti- 
cles of the mobile subsystem [the concentration of loners is 
x,(x) <XI, which are now in the irregular static potential 
field created by the infinite immobile cluster. As long as the 
concentration of the mobile subsystem is relatively large or 
comparable in magnitude to that of the immobile subsystem, 
x,(x, = x - x,), the local diffusion coefficient retains the 
structure in (4.8). It is useful to note here that an analysis of 
energy diffusion in a static potential relief leads to an expres- 
sion similar to (4.8). Noting that the particles exchange an 
energy on the order ofA in an inelastic collision, we find that 
the time required to cross an energy interval on the order of 
U (x,) is 

t= UZ (x2) T (xi)  /A2. 

Here the particle traverses the scale dimension of the poten- 
tial relief, 7, so that we have 

D..F=/t. 
It is not difficult to see that when we use (4.3) this expression 
becomes literally identical to (4.8) at x, -x2, 

When x,  decreases greatly, inelastic exchange in the 
mobile subsystem is hindered, and the corresponding value 
of r(xl) begins to increase rapidly from the value in (4.7). 
Near the localization point, however, the relative concentra- 
tion of mobile particles, x,(x, ), is still significant, and expres- 
sion (4.8) can be used to find D . in (3.5) approximately. The 
actual concentration in this region will of course be deter- 
mined by the function Q (x). 

A point deserving special note is that the interval (x,, 
x,,) may prove extremely narrow in a real situation. This is 
generally true i fa)  1 (in the problem of impenetrable spheres 
we have x, = x,,). However, even at a = 3, a typical value 
for an interaction through a strain field, x, and x,, are ap- 
proximately equal if the ratio A /U, is not small enough. This 
situation occurs, in particular, in the diffusion of He3 
through a crystalline He4 host. In this case, concentration 
dependence (4.1) may give way to the critical behavior (3.8) 
without any explicit manifestation of the behavior deter- 
mined by relation (4.10). 

Here we have an important comment. As the concen- 
tration x,, is approached, the ratio I /a  decreases, reaching 
values on the order of unity. At the same time, w increases, 
ultimately reaching values on the order of A,. Transition 
matrix element (4.5) in this case is given approximately by 
( 1 1 9  1 2 -  1) 

-'A 
V -  ( a f l )  y,xoD (xi/xoo) (a+2)13 AD. 

The condition V/w > 1 imposes certain conditions on the pa- 
rameters in this region. The arguments above regarding the 
value of the local diffusion coefficient in the concentration 
interval (x, , x, ) implicitly assumed that these conditions 
hold. 

We note in this connection that in our analysis of the 
kinetics we have used a qualitative picture which would cor- 
respond to an effective partitioning of the volume into a 
"black" region (associated with the immobile cluster) and a 
"white" region (kinetically accessible to the loners). We can- 
not rule out the possibility, however, that there may be a 
"gray" region near spheres of radius R ,  around particles 
belonging to a cluster. The nature of the particle motion in a 
gray region may be sensitive to the value of V. It is not diffi- 
cult to see that if such a region does exist it will not cause any 
fundamental changes in the qualitative structure of the re- 
sults, although it may reduce the value ofx, . In the opposite 
limit, V/wg 1, however, the volume of the gray region may 
become large; this case requires special study. 

In the entire analysis above we have assumed T >  U (x). 
Under this condition all the characteristic configurations are 
equiprobable at x < x, . In the opposite limit, A < Tg  U (x), 
some of the configurations may, in contrast, be improbable. 
In a state with static impurities we would have obtained an 
ordinary activation law for the diffusion coefficient: 

In our case, although the potential relief for an individ- 
ual particle is not fixed, the contraction of the number of 
effective paths associated with the decrease in the number of 
allowed configurations as the temperature is reduced leads 
to a similar activation-law behavior: 

The coefficient 7 in this expression is clearly smaller than { 
because of the lability of the system, which effectively re- 
duces the effective barrier height. The same behavior is 
found for D. (x) in the interval (x, , x,), with a coefficient 
between 6 and 7 in the exponential function in (4.11). 

At x > x, the diffusion coefficient is nonzero only to the 
extent that there is an interaction with phonons. As has been 
shown in previous ~ o r k , ~ , ~  the dynamic fluctuations in the 
relative positions of the levels in the adjacent cells under the 
influence of the interaction with phonons give rise to a delo- 
calization of the particles. This is true of all the particles, 
including those belonging to the immobile cluster. At this 
point the particles begin to move, remaining in the infinite 
cluster or undergoing a transition to a free volume, which is 
bounded under these conditions. On the other hand, parti- 
cles from the free volume may combine with the infinite clus- 
ter. A snapshot of the situation will look statistically as be- 
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fore, with a change over time in the configuration of the 
cluster in absolute space. 

A fundamental kinetic characteristic of the interaction 
with phonons is the decay frequency of the density-matrix 
elements which are nondiagonal in the site index, Oph (T); 
this frequency is also a measure of the relative fluctuations of 
the levels in the adjacent  well^.^-^ A particle which is a mem- 
ber of a cluster hops to an adjacent cell as a result of the 
interaction with phonons with a probability given at 
T> U(x) by496 

Here E , ,  + , is the relative shift of the energy levels in the 
neighboring cells. In order to determine the contribution of 
the cluster particles to the macroscopic diffusion, we need a 
definite procedure for averaging (4.12) over the distribution 
of level shifts. 

IfO,, (T) (  I & , ,  + ,I, this averaging will not depend on T 
and will lead to the replacement of E , ,  +, by an effective 
value 

GE, ( x )  = P U ~ X ( ~ + ' " ~ ,  (4.13) 

where only the numerical factor P depends on the nature of 
the averaging. 

Particles which do not belong to the immobile cluster 
and which remain small in general as x increases may un- 
dergo displacements over distances of order 7 only by over- 
coming, by virtue of the interaction with phonons, regions 
with a relative shift greater than A, in which the kinetics of 
the hops is governed by (4.12). Consequently, the contribu- 
ton of these particles to the long-range diffusion effectively 
causes a redefinition o f0  in (4.13), and the general expression 
for the total macroscopic diffusion coefficient becomes 

D,"'/,~a~Ao~Qph ( T )  / [Ge, ( x ) ]  ' .  (4.14) 

In the opposite case, a,, ) I & , ,  + , I, probability (4.12) is com- 
pletely independent of the static shifts; everything is deter- 
mined exclusively by the dynamic level shift, and we have 

D ~ ' / , z a 2 A O Z / ~ p h  ( T )  . (4.15) 

In either case, the temperature dependence of the diffusion 
coefficient is universal, independent of the particular fea- 
tures of the potential relief. If A(@, (OD is the Debye tem- 
perature), two-phonon processes are governing, and at 
T<OD we have 

Qph ( T )  mT9. (4.16) 

In metals at low temperatures, dynamic fluctuations due to 
interactions with electrons may be predominant. In this case 
we would have 

Qph(T) +& ( T )  wT.  

If OPh(T)  and the characteristic shifts are comparable in 
magnitude, the result of the averaging depends on T. For the 
behavior in (4.16), however, the intermediate temperature 
interval is narrow, and we can write the following general 
expression for the diffusion coefficient: 

with the value of p found in the temperature interval in 
which (4.14) holds. 

We turn now to the effect of the interaction with phon- 
ons on the diffusion coefficient in the region x<x, .  At 
x <x, the existence of an additional mechanism for the 
scattering of particles by phonons leads to changes in the 
expressions for D in (4.1) and (4.8) (see Refs. 5 and 6):  

At x, < x < x, the particles belonging to the infinite cluster, 
whose density remains constant over time, diffuse in accor- 
dance with (4.17). Among the particles which do not belong 
to the infinite cluster, only that fraction f (x) which are on 
infinite percolation paths participates in the development of 
a large-scale diffusion. We thus have Q (x) z f (x)x,/x in (3.5), 
and the critical behavior is related to f (x) cc (x, - x ) ~ .  The 
other "free" particles, with a concentration x,(l-f ), are on 
dead-end paths and participate in the large-scale diffusion 
only by overcoming the regions with a scale shift exceeding 
A by virtue of the interaction with phonons. In this sense the 
behavior of these particles is analogous to that of the parti- 
cles of the immobile subsystem at x >x,, but for the same 
reasons these particles are described by a diffusion coeffi- 
cient approximately the same as that in (4.17), along with the 
particles which belong to the infinite cluster. The relative 
number of these free particles is 

x, (1-g) /x+ ( x - x , )  / x = 1 - ~ x i / x .  

As a result we can describe the diffusion coefficient at 
x > x, by an approximate expression similar to that intro- 
duced in Ref. 6: 

D  (x, T )  =Do (x, T) Q ( x )  +Di (2 ,  T )  [I-Q ( x )  I . (4.19) 

This expression actually applies to the entirex and Tranges, 
giving the correct values at x < x m  [Q(x) -+ 11 and at 
x>x,[Q(x) =01. 

5. CONCLUDING REMARKS 

The results found in the preceding sections have been 
based on the particular particle interaction potential in (2.2), 
which corresponds to a repulsion, but many of these results 
are independent of the sign of the interaction. For the forma- 
tion of an immobile cluster, for example, as for the motion of 
the particles at x-x,,, what is important is not the values of 
the potential energy but the level shifts in neighboring cells. 
As is easily seen, these shifts change sign as the cells in the 
first coordination sphere adjust, so that the sensitivity to the 
sign of the interaction itself is lost. In the absence of an inter- 
action with phonons, the particles cannot diffuse into a re- 
gion in which the shifts exceed A. Consequently, under ine- 
quality (3.10) the kinetics is the same for the cases of 
attraction and repulsion. When the interaction with phon- 
ons is turned on, however, and there is an attraction, the 
temperature Tmust be higher than the depth of the potential 
well for the binary interaction if the results derived above are 
to be valid. In the opposite case, a stratification of phases or 
at least a formation of droplets will occur in the system. 
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In the case of narrow bands we are always interested in 
low concentrations and thus the interparticle interaction 
which falls off most slowly. In a crystal this interaction 
would usually be the coupling of particles through the strain 
field, which falls off as rP3. This interaction changes sign as a 
function of the angle, so that the applicability of the results 
in this case depends on the satisfaction of the same condi- 
tions as for an attractive potential. It should be noted that, by 
itself, an anisotropy of the interaction which would compli- 
cate the geometry of the surrounding volumes on whose ba- 
sis the clusters are constructed would cause no fundamental 
changes. The important point is the way in which the modu- 
lus of the interaction changes over distance. For estimates 
we can therefore use the results found for a = 3. 

In this light it is easy to see that an exceptionally good 
system for a study of this phenomenon would be a system of 
interacting He3 atoms which are diffusing through a crystal- 
line He4 host. Not only is the band narrow (A  - loP4 K; 
Refs. 8 and 9), but also the interaction between the diffusing 
particles is weak, even when separated by atomic distances 
(Uo- lop2 K; Ref. 17). On the one hand, the concentration 
xoo is on the order of a few percent in this case, and the 
condition x, (1 holds, while on the other we have not only 

U (x) but also Uo at very low temperatures. Since it is 
through a strain field that the He3 atoms interact with each 
other, the latter inequality means that the picture will be 
insensitive to the changes in the sign of this interaction with 
direction in the crystal, and to the fact that all possible con- 
figurations of the diffusing particles will be statistically equi- 
probable. At concentrations x -xoo, temperatures T > 0.1 K 
are sufficient to prevent stratification. At such tempera- 
tures, however, the interaction with phonons (a two-phonon 
interaction) is still quite weak, so that experiments could 
reveal the localization pattern to its full extent. 

Another important circumstance, found clearly even in 
the early experiments (see Refs. 18 and 19, for example; see 
also Refs. 9 and 20), is that the motion of He3 atoms at a low 
concentration is a band motion, and despite the small value 
of A the mean free path is determined not by defects but by 
collisions of particles with each other. These comments ap- 
ply even more strongly at a high particle concentration. Con- 
sequently, in this case we are actually dealing with a system 
of interacting particles which are diffusing in an essentially 
ideal crystal. 

All these circumstances, taken together, show that it is 
possible to experimentally detect localization in this system, 
as was first done by Mikheev et a1.'0-'2 Interestingly, Mik- 
heev et al.",12 reported that the particular way in which the 
diffusion coefficient falls off with concentration is approxi- 
mately as predicted by the classical percolation theory, 
which corresponds to the results of Section. 3. A point very 
important for the analysis of the overall picture is the obser- 

vation in these studies of a ~honon-induced delocalization of 
the particles, with the clearly defined nontrivial temperature 
dependence in (4.17). This comment applies to that concen- 
tration interval in which the scale length for the critical de- 
crease in D is large, so that most of the particles are either in 
the immobile cluster or on nonpercolation paths (Section 4). 
The temperature dependence of D was'studied over a broad 
range of x, spanning both the region of purely band motion 
and the region of a pronounced criticaldecrease in D. The 
results found agree well with the theoretical values predicted 
by a relation of the type in (4.19) over the entir; plane of 
parameters. We might note that for the parameter values of 
this system we would typically havex,-xoo, so that the con- 
centration dependence of the diffusion coefficient in (4.2) 
probably converts directly into the critical dependence, skip- 
ping the region in which (4.10) holds. This would be why 
interpolation relation (4.19) with 0, from (4.2), as proposed 
in Refs. 6 and 7, has not proved adequate for describing all 
the results. 
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