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The "Cooperon"-type quantum corrections to the thermoelectric coefficient of "dirty" conduc- 
tors are theoretically investigated. The results obtained in the present paper differ significantly 
from those obtained by Ting, Houghton, and Senna in their well-known paper on the same 
subject. Thus, the corrections Acq to the thermoelectric coefficient 7 figuring in the linear 
relation between the current density and temperature gradient significantly differ in nature and, 
above all, in their dependence on the magnetic field H from the corresponding corrections to the 
conductivity. The experimental investigation of the A, q(H ) dependence yields information about 
the energy dependence of the relaxation time rp . The energy and temperature dependences of the 
relaxation time rp are also investigated in the present paper for the case of inelastic scattering of 
the electrons by the two-level systems that exist in amorphous conductors. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 

The purpose of the present paper is to discuss the role of 
the quantum corrections to the thermoelectric coefficient q 
of a "dirty" conductor. We shall take into account the con- 
tribution to this cokfficient of the so-called "fan" diagrams, 
whose special role has been pointed out by Gor'kov, Larkin, 
and Khmel'nitskiy,' as well as Abrahams and Ramakrish- 
nan2 (see also Langer and Neal's paper3). We shall consider 
the situation in which the role of the electron-electron inter- 
action can be assumed to be negligibly small, and shall ana- 
lyze the cases of both zero and nonzero magnetic field. 

We define the coefficient q with the aid of the following 
relation for the current density j: 

j=oE-q V T ,  (1) 

where VT is the temperature gradient, E is the electric field, 
and a is the conductivity. In experiment, we usually measure 
either the coefficient q directly or the ratio q/a, called the 
differential thermo-emf. 

The problem of computing q in the H = 0 case with the 
aid of the Matsubara dagrammatic technique has been con- 
sidered by Ting, Houghton, and Senna.4 They arrived at the 
conclusion that the relative quantum correction to q coin- 
cides exactly with the correction to u. As a result, according 
to Ref. 4, corrections to the differential thermo-emf should 
not arise at all in the approximation under consideration. In 
that case an experimental investigation of the coefficient q 
would not yield any additional information about this cor- 
rection in comparison with the investigation of the conduc- 
tivity. 

The results of the calculation carried out in the present 
paper do not corroborate this result of Ref. 4. We arrived at 
the conclusion that, in the two-dimensional case, the "Coo- 
per" correction Acq to the kinetic coefficient 7 is not pro- 
portional to a large logarithm. There is, in the first place, a 
conspicuous difference between A, q and the corresponding 
correction to the conductivity founr by Gor'kov, Larkin, 
and Khmel'nitskiil (see also Ref. 2). 

The correction A , 7, like A , a, strongly depends on the 
magnetic field. But again, the nature of this dependence 
differs from the one that was found by Altshuler, Khmel' 

nitzkii, Larkin, and Lee5 and Hikami, Larkin, and Nagaoka6 
for the quantity A,u. Moreover, we can, by studying this 
dependence, obtain additional information about the energy 
dependence of the relaxation time rp figuring in the expres- 
sion for the "Cooper" pole, and thus obtain additional infor- 
mation about the contributions of the various relaxation 
mechanisms to this time (for greater details, see the discus- 
sion at the end of Sec. 3). 

Since the differences between the results obtained in 
Ref. 4 and our results are so serious, we shall give in the 
following sections a detailed derivation of the expression for 
A, q, and then discuss the possible causes of this discrepan- 
cy. 

For the computation of q, we, like Ting et UZ.,~ use the 
so-called I7 approach. Specifically, instead of the kinetic co- 
efficient q, we shall compute the Peltier coefficient n ,  i.e., 
the coefficient figuring in the linear relation connecting the 
heat flux Q and the electric field E: 

where ?c is the thermal conductivity. The quantities n a n d  7 
are connected by the Onsager relation 

The advantage of this approach consists in the fact that we 
can use the standard linear response theory procedure to 
derive the expression for 17. 

In the case when we can neglect the interelectron inter- 
action, the contribution of an electron in the state IV to the 
energy flux density can be represented in the form 

(since in the steady state the actions of the operator im/dt 
and the Hamiltonian yield the same result). We assume, for 
simplicity, that the electron spectrum is isotropic and qua- 
dratic; m is the effective mass. We shall write the Planck 
constant f i  only in the initial formulas, estimates, and final 
expressions, leaving it out in the intermediate computations. 
Going over to the second-quantization representation, we 
obtain for the energy flux density W the expression 
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where the angle brackets denote thermodynamic averaging, 
as well as averaging over the positions of the defects scatter- 
ing the electrons; p is the chemical potential. Let us empha- 
size that we use in (4) the total-electron-energy operator, 
which we write in the form ifid/&, and not the free electron- 
energy operator - fi2V2/2m, thereby taking account of the 
change that occurs in the electron spectrum in the field of the 
randomly disposed impurities. 

Further, we shall use the representation with a fixed 
chemical potential, i.e., we shall measure the electron energy 
from the level p. 

2. COMPUTATION OF A c 7  IN THE H = 0 CASE 

In the Matsubara procedure the sought Cooperon cor- 
rection A,Q is given by the graph shown in Fig. 1. To the 
right-hand vertex corresponds the factor ( p / m ) ~ [ ~  
= riT(2n + I)], while to the left-hand vertex corresponds, 
as usual, the factor (e/mc)p A); here A is the vector poten- 
tial of the electric field E in the div A = 0 gauge. To the 
graph corresponds the expression 

XG (p, E) G (-p+q, E) . (5) 

Here 0 = 2riTrn is the discrete frequency corresponding to 
the variation in time of the vector potential A; we need to 
perform an analytic continuation with respect to it, and then 
go over to the limit 0-0; the G 's are electron Green func- 
tions; (dp) = dUp/ (2d ) " ,  where u is the dimensionality of 
the space; and c i s  the sum of the fan diagrams (the so-called 
Cooperon). 

The symbol denotes the result of the following con- 
traction over the spin indices (see Fig. 1): 

CE Cap~a. (6) 

The quantity can be represented in the form 

C=@ (Im E )  O (-Im E-Im Q) C (4, q2, E )  

t-O (-Im E )  O (Im E + I ~  Q)C(Q, q2, E )  . (7) 

Let us, for simplicity, restrict ourselves to the consideration 
of electron scattering by point defects. If we denote by T the 
lifetime of an electron in a state with a given momentum p, 
then the expression for C has the form 

where Y is the density of electron states (without allowance 
for spin) and D is the diffusion coefficient. Here the quanti- 
ties Y ,  T, and D are assumed to be dependent on the electron 
energy E + p. In the computation of the corrections to the 
conductivity, these quantities appear at E = 0. But in the 
computation of the correctionAcq, as in the computation of 
the coefficient q itself, this degree of accuracy turns out to be 
inadequate. It is precisely the consideration of this circum- 
stance that, to the best of our judgment, gives rise to the 
discrepancy between our results and the results obtained in 
Ref. 4 (see below). 

Being interested in the steady-state thermo-emf, we 
should take into account the mechanisms that eliminate the 
divergence, as 0-0, of the expression (8). We shall consider 
two such mechanisms. First, we shall consider the spin-spin 
(and, in part, the spin-orbit) interaction, which has been 
studied for the present problem by Hikami, Larkin, and Na- 
gaoka,6 as well as Lee.' This interaction can play an impor- 
tant role in ordinary "dirty" metals. Second, we shall consid- 
er the inelastic scattering of the current carriers by two-level 
systems (TLS) (see Blake's review article8). This mechanism 
can play a role in amorphous metals. 

In the first case we write the expression obtained in Ref. 
6 for C in the following form, which is suitable for the subse- 
quent computations: 

Here 

l/a,=2 (1/t8,'+1/a,,"+ I/T,"), 

1/~2=2 (I/Ts'+~/T,,"), 

1/~3=2 (1/'G8"+2/'T,"). 

The quantities l/r: characterize spin-flip scattering: 

1/z;=2nvnic2si2, (13) 

where n, is the concentration of the magnetic impurities, c is 
the spin-flip scattering amplitude, and is the mean 
square of the ith component of the impurity's spin. The 
quantities 1/~;  characterize the spin-orbit scattering: - 

1/z,o'=2nvnb2 [pp'] i, 

where ibp >< p'u is the spin-orbit scattering amplitude; the 
bar denotes averaging over the constant-energy surface. Ac- 
cordingly, the reciprocal lifetime T-' has the additional 
terms 

l/~.,"+ ll'T,'+2/z,o=+ 2/zsa. (15) 

In the second case the expression for C has the form 

where 
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distribution functions; P is a dimensionless parameter char- 
acterizing the interaction of the electrons with the two-level 
systems (TLS): 

fi (E) = (7/vo2) ~ r , 3 .  (18) 
Here is the mean square of the electron-TLS interaction 
matrix element, V ,  ' = n[ 'Y is the density of electron 
states per electron (n, is the electron concentration), and r, is 
the characteristic range of the TLS-electron interaction po- 
tential. Finally, Pis the density of TLS states per unit volume 
and unit energy range dE; this density changes little on going 
from one typical amorphous metal to another. The charac- 
teristic value of the dimensionless constantp for such metals 
is of the order of 10-2-10-3. The derivation of the expres- 
sion (17) for r+, is given in Sec. 4. There we also give for 
reference an expression for r+, for the case when it is due to 
electron scattering by the phonons. 

Notice that the denominator in (16) contains the reci- 
procal lifetime of the state with the given energy, i.e., the 
integrated part of the linearized collision operator. At this 
point there occurs a fundamental departure from the equa- 
tion for the "diffusion" with the same energy, where the 
denominator of the corresponding expression would contain 
the linearized collision operator as such." 

Let us now turn to the direct computation of the ther- 
moelectric coefficient. Proceeding in the standard fashion, 
and performing an analytic continuation with respect to the 
variable E, and also using the Onsager relation (3), we obtain 

e de dn, 
p.2CR(Qr q2, E )  

where CR is the analytic continuation with respect to the 
variable R of the function C (if2 ) into the upper half-plane. 

Let us neglect the small q term in the arguments of the 
Green functions. The (dp) and (dq) integrations are then sep- 
arable. Let us set 

Integrating over the angles, and introducing the density of 
states Y as a function of the variable 6 = p2/2m - p ,  we ob- 
tain 

2e de an, &+P 
A,rl =- j 2 i r e - ~ ( 8 )  

umT 
-=o 

de 2nvz 

But 

Further, the 6 integral can be evaluated in the pole approxi- 
mation, i.e., in the lowest order in the parameter Wpr: 

Here we assume that, to the adopted accuracy, 
Y(E) = ~ ( 0 )  + EY'(O), where ~ ( 0 )  and ~ ' ( 0 )  are respectively the 

density of states and the energy derivative of this quantity at 
the Fermi level E = 0. As a result 

where, to make the notation more compact and for conve- 
nience in respect of the subsequent analysis, we have intro- 
duced a diffusion coefficient D (E) that depends on the energy 
E measured from the Fermi level. 

The computation carried out in the derivation of the 
expression (24) needs to be explained. It is necessary to indi- 
cate how the E dependence of the quantities figuring in the 
formulas (23) and (24) can be taken into account. The compu- 
tation of A, 7 (like the computation of the quantity 7 itself 
with theaid of the diagrammatic technique) requires the eva- 
luation of integrals over 6 of slowly varying-in the vicinity 
of the Fermi level-functions f (6 )multiplied by combina- 
tions of the type GR (E, 6 )GA (E, 6 ). The latter are always func- 
tions of the difference x = E-6. The integrand contains the 
factor dn,/d~. In the case 

TIP< 1 (25) 

of interest to us, it is a sharp function of the energy E, even in 
E. Therefore, to within the first nonvanishing term in the 
small parameter (25), we can expand the integrand f (E-x) in a 
series in powers of the small argument E, limiting ourselves 
to the first two terms, and evaluate the integrals according to 
the rule: 

since, in computing Ac7, it is sufficient for us to retain in 
both terms on the right-hand side only the terms of lowest 
order in the parameter l / p r .  

Notice that the expression (24) is found in accordance 
with the Cutler-Mott formula. lo 

Let us proceed to analyze the quantity E(E), (20). It is 
proportional to the sum of terms of the form 

where in the case of the spin-orbit interaction L :is given in 
terms of one of the times ri by the formula 

L?=D ( E )  z i ( ~ ) . .  (28) 

But in the case of the interaction with the TLS we have only 
one term of the form (27), with 

L ~ = D ( E ) ~ ~ ( E ,  T), (29) 

where r+, is given by the formula (17). Let us emphasize that 
if the interaction with the TLS, as well as with the phonons, 
predominates, then we must, in computing ACT, take ac- 
count of the variation of the time rp over the characteristic 
energy scale E - T, since it is precisely this energy region that 
is important in the expressions (24) and (17). 

Thus far, all the formulas written out above [with the 
appropriate delimitation of the limits of the (dq) integration] 
have been applicable to both the u = 2 and u = 3 cases. Be- 
low we shall focus our attention on the two-dimensional 
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case, in which the quantum corrections of interest to us are 
more strongly pronounced. 

Substituting as the upper limit of integration in (27) a 
quantity of the order of 1/1= l / v ~ ,  where v = p / m  is the 
electron velocity, we obtain, for I<L, 

A 
I 

In (LIZ). 
2nD (e) 

Substituting this expression into (24), we obtain for the con- 
tribution A, y made by each term of the type (27) to A, y the 
following expression 

The subsequent computation is easiest in the case of 
spin scattering, when the characteristic energy scale deter- 
mining the dependence Li (&) is much greater than the tem- 
perature T. In that case, in the lowest approximation in the 
parameter T / p ,  we have after summing the expressions of 
the type (3 1): 

This formulation most clearly demonstrates the differ- 
ence between the characters of the quantum corrections to 
the conductivity and the thermoelectric coefficient. In the 
first case the answer would contain the logarithm of a large 
argument; in the second, the energy derivative of this loga- 
rithm. 

In the two-dimensional case the relaxation time 7- does 
not, when the scattering is by "point" impurities, depend on 
the energy E;  therefore, from (32) we have 

In the three-dimensional case the mean free path I is energy 
independent when the scattering is by "point" impurities. A 
calculation similar to the one performed above yields 

In the case when the impurities are not point impurities and 
u = 3 the q integral in the expression for the "Cooperon" is 
determined by the upper limit, which, in the present case, 
depends on E. Therefore, the expression for the quantum 
correction should look significantly more complicated than 
(33). It is, however, important that the expression for the 
difference between the zero-magnetic-field and nonzero- 
magnetic-field values of A ,  y (and, hence, for the coefficient 
q itself) does not depend on the indicated limit (see the fol- 
lowing section). Let us determine what fraction of the ther- 
moelectric coefficient y, in the zeroth approximation, which 
is given by the expression 

this correction constitutes. The ratio A, y/yO is, in order of 
magnitude, equal to 

f i l pd  for u=2, 

fiZ/pF21L, for u=3. 

Despite its relative smallness, the contribution A, y can be 
separated out through its dependence on the magnetic field. 
This question will be considered in detail in the following 
section. Furthermore, the magnitude of this contribution 
can be significantly greater than the value given by the esti- 
mate (35) if Li depends strongly on E over an energy scale 
5 T through the characteristics of the scattering mechanism 
that determine the magnitude of L, . 

In the case of relaxation on the TLS the integral in (30) 
should be evaluated more accurately, since the T ~ ( E )  depen- 
dence is characterized by two energy scales. One of them is, 
according to (17), T. The other is given by the 0 ( E )  depen- 
dence. In the energy region of interest to us, we can represent 
it in the form0 ( E )  = 0 (0) + ~0 '(O), SO that in order of magni- 
tude 10 '(0)I -0 (O)/E, , where E, is the characteristic scale of 
the variation. As a result, the expression for ln(r,/T), 
which figures in a formula of the type (3 1) for the thermo- 
emf, can be represented in the form 

The integral of the first term yields, on account of its even- 
ness, zero, and we obtain as a result the expression 

We must now discuss the possible causes of the discrep- 
ancy between our results and the results obtained in Ref. 4. It 
is difficult for us to form an entirely definite opinion about 
this, since details of the calculation of the coefficient y are 
not given in Ref. 4. Therefore, our inference will inevitably 
have a conjectural character. 

For example, the formula (4) of Ref. 4 can be obtained if 
we ignore the dependence on E of the quantities D and T, 

entering into the Cooperon block, but take into account the 
corresponding dependences at all the remaining points. But 
as we verified above, allowance for this dependence in the 
Cooper block leads to the cancellation of the logarithmic 
corrections to y. As a result, it turns out that, in contrast to 
the correction to a (Ref. I), the correction to y does not 
contain a large logarithm as a factor. 

3. COMPUTATION OF A.7 IN A MAGNETIC FIELD 

Let us begin by considering the purely two-dimensional 
situation. We shall assume that the thickness d of the film 
satisfies the following conditions: 

d<a,= (cfi/  le 1 H )  '", Li. (38) 
The magnetic field H is assumed to be perpendicular to the 
plane of the film. 

We shall proceed along the lines of the paper by Al't- 
shuler, Khmel'nitskii, Larkin, and Lee,' who consider the 
effect of a magnetic field on the correction to the conductiv- 
ity. According to this paper, in fairly weak magnetic fields it 
is sufficient to consider the effect of the field only on the 
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Cooperon. Allowance for this effect amounts to the making 
of the following substitution in the Cooper block: 

where we take as the upper limit the integral part of the 
quantity 

ch/2 1 e 1 H12=aHZ/212, (40) 
and the results make sense when m) 1, i.e., when a, >I. As a 
result, it turns out that the product 27~D (E)E(E) figuring in the 
expression for the thermo-emf can, by analogy with the cor- 
responding formulas of the preceding section, be represented 
in the form of a sum of terms of the form 

where y, = a&/4L f ( ~ )  and the quantities L, (E) are given by 
the formula (28). Proceeding in the same way as we did 
above, we obtain the following results. 

In the case of "spin" scattering 

where 

6 being the Riemann function. 
In the case of scattering by the TLS 

where 

The second terms in the expressions (43) and (45) are con- 
nected with the E derivative of the upper limit of the summa- 
tion over n. They do not depend on the magnetic field, since 
we assume that a, )I, and ensure the H-0 transition of the 
expressions (42) and (44) into (32) and (37) respectively. No- 
tice that the (H dependent) first terms in (43) and (45) have 
different forms. The more complicated form of (45), as com- 
pared to (43), is due to the fact that, in the case of inelastic 
processes, the time T, (E) depends essentially on the energy E 

in a region of width of the order of T, and we cannot set x = 0 
in the argument of the function g. This is the situation in the 
case of inelastic scattering of any nature, and, thus, a de- 
tailed study of the experimental dependence of Acv on the 

magnetic field allows to determine how important the inelas- 
tic processes are and precisely which of them predominate. 
In the absence of a magnetic field, this difference does not 
arise, since g is then an even function of its argument. In 
stong magnetic fields, i.e., for lga, (L, , we can neglect yg 
in comparison with 1/2 in the expression (45). As a result, 
the first term assumes the form 

31isx4y'~H-i. (46) 

In the three-dimensional case a calculation similar to the one 
performed above yields magnetic-field-dependent contribu- 
tions differing from (43) and (45) by the replacement 6 (2, 
x)--+(l/4aH)( (3/2, x) .  There are no H-independent terms in 
the case of scattering by point impurities, since I does not 
depend on E. If, on the other hand, I depends on E, then 
within the framework of our approximations we can consid- 
er only A c v(H) - A c v(0) = 77(H - ~ ( 0 ) .  

4. COMPUTATION OF T, FOR THE INELASTIC PROCESSES 

Let us give the derivation of the expressions (16) and 
(17), which give the sum of the fan diagrams with allowance 
for the inelastic scattering. At this scattering, we shall con- 
sider either the scattering by the phonons or the scattering 
resulting from the interaction of the conduction electrons 
with TLS. We shall in either case represent the correspond- 
ing propagator (with allowance for the vertices describing 
the interaction) by a wavy line (see Fig. 2a). 

In the approximation in which both the electronic spec- 
trum and the elastic properties of the medium are isotropic, 
so that we need to take into consideration the interaction of 
the electrons with only the longitudinal phonons, the propa- 
gator for these phonons can be represented in the form 

where 
(c,I 2=h92Q,/2ps2. 

Here q is the phonon wave vector, s is the velocity of (longitu- 
dinal) sound, 0, = sq, and E is the constant of the deforma- 
tion potential describing the interaction of the electrons with 
the deformation field. 

Let us explain the expression (47) for the electron- 
phonon vertex c,. The relaxation time T, is determined by 
the actual processes to which the phonons with wave vectors 
qzq,=T/+is contribute. In fairly good conductors the 
wavelength of such a phonon is much longer than the char- 
acteristic screening distance, and, hence, the averaged- 
over the Fermi surface-part of the deformation potential 

FIG. 2. 
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tensor Eik (p) is virtually completely canceled out by the self- 
consistent electric field that arises in the presence of defor- 
mation. Therefore, it can be assumed that (Eik(p)) = 0, 
where the angle brackets denote averaging over the con- 
stant-energy surface, but that (Z;k (p)) #O. Accordingly, the 
encircling of the electron-phonon vertex by an impurity 
dashed line yields an additional infinitesimal. As a result, the 
value of the electron-phonon vertex turns out to be the same 
as in the pure metal. 

In the specific computations of the time T,, because of 
the interaction of the electrons with the phonons, we shall 
assume the quantity E in (47) to be isotropic, and not consid- 
er its complicated angular dependence. This allows us to 
obtain the correct temperature and energy dependences, as 
well as order-of-magnitude estimates for the quantity rP.  

Of greater interest to us will be the propagator describ- 
ing the interaction of the electrons with the TLS. The Hamil- 
tonian of the electron-TLS system has the form8 

Here A is a parameter characterizing the asymmetry of the 
TLS, A is the tunneling parameter of the TLS,2' a, and a, are 
the Pauli matrices, which act in the space defined by the 
states of the TLS, E, is the single-particle electron energy, 
the c,+ (c,) are the creation (annihilation) operators for an 
electron in the state p, and V,, ' is the matrix element giving 
the change that occurs in the asymmetry A during transi- 
tions in the electron subsystem. 

Let us perform on the states of the TLS the canonical 
transformation that diagonalizes the sum of the first two 
terms in (48): 

Here 

(50) 
Further, we shall use for the Pauli matrices a, and a, 

the quasifermion representation introduced by Abrikosov" 
for the description of spin systems, and used by Maleev12 to 
analyze the TLS in glasses. 

The interaction between the conduction electrons and 
the TLS can cause the atom or group of atoms forming the 
TLS to undergo transitions from one level to another. As a 
result, there arises a TLS-mediated inelastic interaction 
between the conduction electrons that is similar to the 
phonon-mediated interaction. With this interaction can be 
associated a propagator of the boson type. It is depicted in 
Fig. 2b. 

In this representation a TLS is described by a Fermi 
propagator (the arrowed dot-dash lines in Fig. 2b). The 
numbers on the fermion lines indicate the TLS-level 
numbers, 1 and 2. Since we are interested in the inelastic 
processes only, we take into consideration only the term with 
a, in the last term of the Hamiltonian (49). In this case the 
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FIG. 3 

retarded propagator of the effective TLS-mediated interac- 
tion between the electrons (which, according to our defini- 
tion, includes the W"' vertices) can be represented in the 
form 

(51) 
Let us now find out how a wavy propagator can figure in the 
equation for the Cooperon, i.e., the sum of all the fan dia- 
grams. In the zeroth approximation in the inelastic scatter- 
ing the answer is given by the sum of the diagrams shown in . 
Fig. 3, which satisfy the integral equation depicted in Fig. 4. 

As is evident from Ref. 1, the Cooperon corrections sep- 
arate out because there occurs, when the (dp') integration in 
the last diagram in Fig. 4 is performed, almost total cancella- 
tion of the left-hand side of the equation depicted in the fig- 
ure, or, more precisely, the difference between the left-hand 
side and the second term on the right-hand side is Dq3rC. 

The inelastic scattering leads to two types of graph 
modification. The modification of the first type constitutes a 
correction to the self-energy of the electron (Fig. 2a). Its 
allowance amounts to the following replacement in the elec- 
tron Green function 

1 / 2 ~ +  1 / 2 ~ + 1 / 2 ~ , ,  (52) 

where 

In the case of electron scattering by three-dimensional phon- 
ons, we have after substituting (47) into (53) 

FIG. 4. 
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In computing the TLS-induced relaxation time rp , we must 
take into account the fact that in metals (after the averaging 
over the positions of the TLS in the sample) I V, 1' does not, to 
a high degree of accuracy, depend on q. After substituting 
(51) into (53), w can easily obtain the formula (18). 

The second type of modification consists in the fact that 
there arise graphs in which the wavy lines go into a fan (see 
Fig. 4). In our approximation such graphs make a small con- 
tribution. Indeed, allowance for the wavy lines in a fan leads 
to the appearance of pole factors of the type 
[ - if2 + Dq2 + l/rp], where f2 is the transmitted frequen- 
cy, equal in order of magnitude to T / f i  [see (17) and (47)l. 
Thus, on account of the condition Trp/fi,l, the corre- 
sponding contributions are negligibly small. 

5. CONCLUSION 

Thus, we see that the investigation of the thermoelectric 
phenomena occurring in two-dimensional dirty conductors 
can yield a wide variety of data, by no means identical with 
the data that are obtained in the experimental investigation 
of magnetoresistance. We have at present a wealth of experi- 
mental magnetoresistance data on dirty conductors. These 
data are interpreted in a number of cases from the standpoint 
of the theory of quantum corrections. The investigation of 
the thermoelectric phenomena can serve as an additional 
verification of the correctness of such an interpretation. 

In the present paper we limited ourselves to the investi- 
gation of only one possible experimental geometry. In actual 
fact the calculation carried out here can, if the needs of the 
experiment require it, relatively easily be generalized to the 
case of another geometry. It is especially tempting to investi- 
gate a thermoelectric circuit consisting of two identical long 
thin-walled cylinders. The thermoelectric current in such a 
circuit should, evidently, be equal to zero. But by producing 
a magnetic field in one of the cylinders, we obtain a way of 
carrying out direct measurement of the Cooperon contribu- 
tion to the thermo-emf. We should, however, note that, for 
the purpose of measuring the absolute values of the coeffi- 
cient 7, we may find it useful to study a thermoelectric cir- 
cuit consisting of the dirty conductor under investigation 
and a superconductor. 

The entire analysis performed above concerned the case 
of the isotropic spectrum. Let us discuss what changes will 
have to be made in the results obtained when we go over to 
the real situation. First, the relaxation time rp in the expres- 
sion for the diffysion coefficient will be replaced by the reci- 
procal operator I - ' for the collisions with the elastic impuri- 
ties; as a result, the diffusion coefficient will become a tensor: 
D (&)+Dlk ( E )  = (u, I - 2 ~ k  ) E ,  wheretheanglebracketsdenote 
averaging over the constant-energy surface. In view of this, 
we shall have entering into the expression for L, some aver- 
age--over the directions of q-value of the quantity Dl, 
( ~ ) q ,  qk /q2. It is, however, important that the energy depen- 
dence of th@ quantity is the same as that of the component of 
the tensor D entering into the numerator of the integrand in 
(24). In consequence, as in the isotropic case, the correspond- 
ing energy dependences cancel out, and the results differ by 
only numerical coefficients. 

Further, we should emphasize that, in the present pa- 
per, we have studied only the "diffusion-governed part" of 
the thermo-emf. In principle, there exists another contribu- 
tion to the coefficient 7 resulting from the entrainment of the 
electrons by the phonons. In interpreting experiments, it is 
advisable for us to verify that the contribution from the 
phonon drag is negligibly small. In the first place, the tem- 
perature dependence of the main part of the thermoelectric 
coefficient 7 can serve as the criterion here. 

Futhermore, we must bear the following in mind. In 
discussing the theory of the electron-phonon interaction, we 
considered, as is customarily done in such problems, the 
electrons to be two-dimensional and the phonons to be 
"three-dimensional." This corresponds to the usual physical 
situation: a metallic film is fastened to a bulk substrate in 
which phonons can propagate. The idea we wish to express 
here is that, to decrease the effect of the drag, we must take a 
substrate prepared from an amorphous dielectric (glass). The 
phonons in such a substrate have a short mean free path, 
since they are intensively scattered by the TLS. We should 
only bear in mind that, in this case, even when the metallic 
film is crystalline, the conduction electrons can interact with 
the dielectric's TLS located at the boundary with the metal, 
which can lead to a decrease in the time 7, .3' Thus, from the 
standpoint of the magnitude of this time it does make a dif- 
ference from which material (amorphous or crystalline) the 
substrate is made. 

Thus, the study of the thermoelectric coefficient in dirty 
conductors can yield a variety of data on the relaxation 
mechanisms determining the magnitude of the quantum cor- 
rections. Of primary interest to us here is the comparison of 
the rP values that result from the processing of experimental 
A c v  and A,(T data. 

We are grateful to B. L. Al'tshuler, A. I. Larkin, V. Yu. 
Petrov, B. Z. Spivak, and D. E. Khmel'nitskii for a discus- 
sion; D. A. Parshin and A. L. Shelankov, for a critical review 
of the manuscript. 
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