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We study the ground state of one-dimensional classical spin chains with exchange and dipole 
interactions between nearest neighbors and with an anisotropy field at an arbitrary angle to the 
axis of the chain. We construct a mapping which connects the spin states at neighboring chain 
sites and we consider its properties in various limiting cases. We show that for a sufficiently high 
anisotropy field chaotic structures may appear. We give the spectral characteristics of these 
structures for the ferro- and antiferromagnetic cases. 

1. INTRODUCTION system. On the other hand, the formation of an incommen- 

Experimental and theoretical studies of the last decade 
have shown that under well defined conditions there may 
occur in solids periodically modulated structures with a pe- 
riod which is incommensurate with the natural periods of 
the lattice. The appearance of incommensurate structures 
has the character of critical phenomena and can occur both 
in magneti~l-~ and in el as ti^^-^ systems. 

An analysis of the incommensurate structures as a new 
class of structures turned out to be intimately connected 
with two general problems of a principal nature. Firstly, it 
turned out that in the one-dimensional case it was possible to 
formulate in a rather general form the problem of finding all 
equilibrium structures and distinguishing from among them 
those for which the free energy is a m i n i m ~ m . ~ . ~ , ~ - ' ~  More 
precisely, the meaning of this analysis consists in the follow- 
ing. Instead of studying the real trajectories of N individual 
particles (N-+ a) one studies only the equilibrium positions 
of these particles. For the equilibrium positions one can 
write down equations connecting their values at neighboring 
chain sites. These coupling equations are in the form of a 
mapping acting in the space of the coordinates of the equilib- 
rium positions of the atoms at the sites. The mapping ob- 
tained, in turn, determines some new dynamic system which 
differs, ofcourse, from the initial one. Its trajectories give the 
coordinates of the atoms at the chain sites. Each trajectory 
corresponds to a well defined value of the free energy. The 
ground state of the chain corresponds to those trajectories 
for which the free energy has a minimum. Such an approach 
enabled one to incorporate into the analysis of possible struc- 
tures of the chain modern methods in the theory of dynamic 
systems. In particular, it was shown in Refs. 10, 11 that an 
incommensurate structure is produced through nonlinear 
resonance in a specially constructed equivalent dynamic sys- 
tem. 

The second general problem for which it turned out 
possible to consider it from a completely different angle is 
the problem of the formation of chaotic disordered, or amor- 
phous, states of the  hai in.^.^.'^.'^.'^ On the one hand, an 
amorphous state arises as one of the invariant sets under the 
mapping for the equilibrium coordinates of the atoms in the 
chain. Of course, the occurrence of such sets is possible only 
in a well defined region of the values of the parameters of the 

surate structure always precedes the occurrence of amor- 
phous structures. ''-I3 One can easily understand this result 
from the point of view of the theory of dynamic systems. 
Moreover, just the results of this theory enable us to reach 
some general conclusions. For instance, there are no chaotic 
states in one-dimensional single-component dynamic sys- 
tems in continuous modekg 

The Frenke1'-Kontorov elastic model and some special 
forms of spin chains have been studied in rather much detail 
so far.273s12p17 The present paper is devoted to the study of 
possible structures in a complex spin chain in which there is 
a planar Heisenberg (XY) interaction between the spins, a 
dipole (D ) interaction, and an anisotropy (A ) effect. We shall 
call this model in what follows the XYDA model. One of the 
problems which will be considered below is connected with 
explaining the effect of one or other form of interaction in the 
XYDA model on the formation of possible equilibrium struc- 
tures. In particular, we shall elucidate the conditions under 
which in the XYDA model an amorphous magnetic structure 
appears. 

2. DESCRIPTION OF THE MODEL 

We consider a one-dimensional chain of classical spins 
a ,  (la, 1 = 1) positioned along thexaxis. Let the vectors oi lie 
in the XYplane at an angle Si with the X axis. The Hamilton- 
ian of the system with interactions between nearest neigh- 
bors can then be written in the form 

where r,,, + , is a unit radius vector between nearest neigh- 
bors, D the constant of the dipole interaction, J the exchange 
interaction constant, G the constant determining the anisot- 
ropy (or any other external) field, and f (a, ) the function de- 
termining how the energy of the anisotropy field depends on 
the orientation of the spin of a single atom. 

We rewrite (2.1) in terms of angular variables for the 
case D # J in the form 
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H= (D-I) z [sin 6, sin r).+,+a cos 8. cos 6.+,+ pf (6.) 1, 
n 

(2.2) 
where 

a =  (J+ 2D) l (J-D) , P=G/ (D-I) . (2.3) 

H = ~ I  z [COS 6. nn+,+pif(an) I .  (2.4) 
n 

The conditions for dynamic equilibrium of the chain 
have the form 

for all j. This gives 

cos 6, (sin f+,,+,+sin en-,) 

-a sin 6,(cos 6 n + i + ~ ~ ~  en-,) +Pf1(6n) (2.5) 

We write 

sin cp (6,) =-a sin 6,/p (6,), cos cp (6,) =cos 6,/p (en) ,  

p(6,) =[cos2 6,+a2 sin2 6,]'", $(en) =Pfl(sn) lp(6.). 
(2.6) 

From (2.6) also follows the definition of the function p(a, ): 

Using the definitions (2.6) and (2.7) we can write the condi- 
tions for equilibrium of the spins in the form of a recurrence 
relation: 

sin [6,+,+q~(6~)] =-sin [8n-i.f~ (6,) I -$(en). (2.8) 

The value of the two constants (29-,,al) for the orientation 
angles of the initial spins determines all possible sequences 
(8, ) . We shall see in what follows that the specific features 
of Eq. (2.8) given, in general, a many-valuedness of possible 
"trajectories" (8, ~19,,19,) for fixed (9,,9,). 

We write (2.8) in a more standard form. We introduce 

the variable 

In=6,-6n-1 

and the (I, ,a, ) phase space. We can then write Eqs. (2.8), 
(2.9) in the form of a mapping 

I ( I  6 )  - 6  mod 2n 
6n+i=6n+1n+ir mod 2n ' 

@ (I,, 8,) =-cp(6,) -Arcsin {sin [6,+(p (6%) -InI+*(@n)). 

(2.10) 

The mapping ? determines a dynamic system in the (1,8) 
phase space. The set of all trajectories 1.9;. ,4 l&,Io) (,, of the 
system (2.10) is produced by the set of all initial conditions 
(Io,9-,) and the set ( p) connected with possible bifurcations of 
the trajectories. One seeseasily from Eqs. (2.5) and (2.9) that 
when0 # 0 the mapping T (2.10) can lead to ambiguity in the 
selection of one of two possible solutions. Each pair of initial 
conditions (I,,,8,) therefore generates, in general, 2N trajec- 
tories. The index "p" labels one of these trajectories. The 
family of trajectories described here generates a set of values 
of the free energy of the system: 

1 
F = lim - H({6j9 Ijl60, lo} ( p ) ) ,  (2.11) 

N+rn N 

where N is the total number of spins in the chain. One can 
minimize expression (2.11) for F with respect to (10,9,) and 
(p) .  The result of minimization selects that trajectory which 
determines the equilibrium configuration (in the thermody- 
namic sense) of the spins. 

We consider the Jacobian of the mapping (2.10): 

- - I cos ( 6 n s ~  (6,) -1,) I . (2.12) 
I i-[sin(6,+cp(6,) -1,) +$(en) 1'1'" 

It is clear from this that,-generally speaking, when #O, 
59 # 1 and the mappping T does not conserve measure. We 
shall in what follows give a map of lines of constant 9 illus- 
trating what we have just said. 

One must, however, note that the substitution rj+ - rj 
in (2.1) does not change the Hamiltonian H. This substitu- 
tion is equivalent to the_ substitution t+ - t in dynamics 
systems. The mapping T therefore refers to a class of so- 
called reversible, but non-Hamiltonian systems.I5 There are 
no attractors (limit points, limit cycles, and limit sets of other 
dimensionalities) in such systems, and the quantity g ,  in 
the case of a regular (periodic or quasiperiodic) trajectory 
changes periodically as function of n. Reversible systems are 
in many of their properties analogous to Hamiltonian sys- 
tems. lS The classes of solutions possible in them are invar- 
iant tori which correspond to periodic trajectories and 
broken tori which corrspond to stochastic trajectories. We 
discuss them in sections 4 and 5. 

3. EQUILIBRIUM STRUCTURES WHEN THERE IS NO 
ANISOTROPY FIELD 

It is convenient to start the study of the mapping ?with 
the case 0 = 0. Using Eq. (2.7) the maping (2.10) takes the 
form 

Z,+,=I,-26,+2 arctg a tg 6,, mod 2n, 

on one branch of the function @. On the other branch we 
have from (2.8) 

whence we find the solution: 
6zn=60+ nn, @2n+i=6i+nn, mod 2n, 

In= (-1) " (60-61) + (1+ (-1) ") 3x12, mod 2n. 
(3.3) 

The solution (3.3) corresponds to a two-fold continuous de- 
generacy in the parameters (9,,~3~) with energy F =O. The 
period of the chain in this case becomes equal to four. The 
state with F = 0 always is higher than the ground state and 
we shall not consider it in what follows. 

We can associate with the mapping (3.1) the following 
equivalent dynamical system with Hamiltonian: 

arctg ( a  tg r) dz) 6 (z-n) , (3.4) 

where the parameter z plays the role of the continuous time. 
The equation of motion 
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FIG. 1 .  Examples of different configurations with the same energy for 
a =  - 1,p=0. 

dzlaz=-awas,  d61d~=aalaz  (3.5) 

after integration in the vicinity of the point z = n leads to the 
mapping (3.1). 

It is convenient in what follows to perform the analysis 
of the equivalent dynamic system (3.4), (3.5) instead of the 
analysis of the mapping (3.1). We note first of all the physical 
situations corresponding to different values of the parameter 
a .  It is clear from (2.3) that a = 1 when there is no dipole 
interaction (D = 0). The values of a in the vicinity of unity 
correspond to : a strong ferromagnetic interaction with an 
addition of a weak dipole interaction when a 2  1 and a 
strong antiferromagnetic interaction with the addition of a 
weak dipole interaction when a 5 1.  The value a = 0 is 
reached when J = - 2 0  and a = - 1 when J = - D /2. A 
purely dipole interaction ( J = 0 )  corresponds to a = - 2. 

When a = 1 we have from (3.1) the trivial case: 

z,=~on~t=zo, 
(3.6) 

6,+,=Sn+n (1-sign l)/2=S0+nn (1-sign 1) /2 ,  mod 23%. 
Minimizing Fwhen solving (3.6) gives I ,  = 0 when J >  0 and 
I ,  = 77 when J <  0. The parameter 9, is arbitrary. 

When a = - 1 the energy of the dipole and of the anti- 
ferromagnetic interactions are equal (J = - D / 2 )  and this 
leads to the following solution: 

Sn= (-1) "So, I,= (-1) "21Y0 (3.7) 

with a minimum of the energy F = - 3 0  /2. This means a 
continuous degeneracy with respect to aO. Depending on the 
value of 9, the chain can change its order from antiferro- 
magnetic (9, = 77/2) to ferromagnetic (9, = 0 )  (Fig. 1 ) .  The 
physical meaning of this degeneracy can be understood also 
from the following considerations. In the case of complete 
ferromagnetic ordering & = 0 for all n and according to 
(2.2) F + = - J - 20.  In the case of antiferromagnetic or- 
dering 9, = ( - 1)" ~ / 2  and correspondingly F - = J - D. 
Degeneracy with respect to these two kinds of ordering cor- 
responds to the point Jo which is a solution of the equation 
F+ = F - ,  i.e., Jo = - D/2.  

When a = 0 (J = - 2 0  ) the mapping (3.1) takes the 
form 

I,+i=I,-26n, m o d  2n, 

6,+1=6n+in+i, mod 2n. 
The minimized solution is trivial: 9, = ( - 1)" ~ / 2  and cor- 
responds to antiferromagnetic order. 

We analyzed the general situation for arbitrary values 
o f a  numerically. Phase portraits corresponding to the equi- 
valent dynamical system (3.4), (3.5) are given in Fig. 2. For 
all values of a the minimum of the free energy is reached in 
the hyperbolic points of the system (3.4), (3.5).'' When a > 1 
this point occupies the position (0,O) in the (I,$ ) plane and 
corresponds to ferromagnetic order. 

When - 1 <a < 1 the ground state is reached in the 
point (~,77/2) corresponding to antiferromagnetic order. 

When a < - 1 ferromagnetic order is again realized in 
the point (0,O). We note the following nontrivial fact. In the 
range of parameter values - 2 < a < - 1 the dipole interac- 
tion leads to the formation of ferromagnetic order notwith- 
standing the antiferromagnetic nature of the exchange inter- 
action in that range. 

In concluding this section we note the following fea- 
tures of the XYDA model for 0 = 0. 

1. In the parameter value range - 100 < a < 100 no sto- 
chastic structure is observed. This enables us to assume that 
the mapping (3.1) refers to an integrable case. 

2. In the same range no modulated structures of the 
ground state are observed. This, in particular, means the 
absence of incommensurate structures. 

3. In the vicinity of the point a = - 1 small fluctu- 
ations can change the ground state configuration strongly, 
changing it from ferromagnetic to antiferromagnetic. 

4. EQUILIBRIUM STRUCTURES WHEN THERE IS NO DIPOLE 
INTERACTION 

Let D = 0 (a = 1 )  and let the anisotropy field be chosen 
in the simplest form: 

f (s) =cos"(s-r), (4.1) 

where y is an angle fixing the position of the anisotropy axis 
relative to the chain. The Hamiltonian (2.2) then takes the 
form 

N-i 

H=-J x [COS (an+,-6.) +fi C O S ~ ( ~ . - ~ )  I .  (4.2) 
n=O 

Hamiltonians with this structure were considered in Ref. 1 1 .  
We write 

FIG. 2. Phase portraits of the equivalent dynamic system for 
p = 0; - ~/2<9<?r/2;  - .rr<Z<?r. The separatrix is indicat- 
ed by a dashed line. 
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FIG. 3. Phase portrait of the XYDA model for the case of antiferromagnet- 
ic exchange ( J <  0): a = 1, b = 0.3, y = ~ / 4 .  The forbidden regions are 
shaded; the dark filled circles are the fixed hyperbolic points. 

In the variables (S,9 ) the mapping ? (2.10) then takes the 
form 

Sn,,=Sn+P sin 2 (6,-y) , 6n+,=.6.n+~v(Sn+,), (4.4) 

where 

and the index Y determines the choice of one of the possible 
branches of the mapping ?. It follows from (4.4) that T con- 
serves measure, independent of y. 

To begin with we consider the properties of the map- 
ping (4.4) for each of the branches separately. One sees easily 
that the equivalent dynamic system with the Hamiltonian - - 

8=H0 (S) +P cos2 (b- y) 6 (1-n) , 

Ho (S) =vnS+ (-1) '[S arcsin S+ (I-S2) '"I 
and the equations of motion 

m 

dS/dz=-&%/86=p sin 2(B-y) 6(z-n), 
a=-OD 

(4.7) 
db/dz=dL%/dS=o, (S) 

generates the mapping (4.4). 
The system (4.7) describes a non-linear pendulum with 

frequency w,(S) perturbed by impacts with unit period. The 
role of the time is, as before, played by the variable z. The 
stability properties of the solutions of the system (4.7) are 
determined by the characteristic Lyapunov multipliersil for 
the mapping (4.4). We have 

X=l+K(S, 6)*[ (l+K(S, 6))2-1]'", (4.8) 

where 

The dynamics of the system is thus determined by the pa- 

FIG. 4. Chaotic structure of an antiferromagnetic (J<O) chain (a = l, 
b = 0.3, y = ~ / 4 ,  N = 2048): a: spin component along the ansiotropy 
axis; b: Fourier spectrum of the angle 8,. 

rameter K and for sufficiently large K <Kc 5 1 there appears 
chaos. 

We give in Fig. 3 the phase portrait of the system (4.7) 
for J <  0, /3 = 0.3, and y = ~ / 4 .  We depict the points of the 
trajectories corresponding to five different initial conditions. 
One of these trajectories is stochastic. All trajectories corre- 
spond to energies P> Fo, the free energy of the ground state. 
The latter corresponds to a periodic trajectory (heavy dots in 
Fig. 3) with a period 2 and with So = S,  = 0 and a0 = 3a/4, 
9, = 7 ~ / 4 .  The structure of the ground state is antiferro- 
magnetic. The stochastic trajectory has the F value closes to 
Fo. This is connected with the fact that it spends the longest 
"time" as compared to the other (periodic) trajectories near 
the hyperbolic points determining the trajectory of the 
ground state. 

In the regions shaded in Fig. 3 the denominator 
[l - {sin($ + p(9 ) - I) + $(9 ) )  2]1'2 in expression (2.12) 
for the Jacobian becomes imaginary. This corresponds to 
those segments of the trajectories of the mapping (4.4) which 
in some step m may lead to a value S, > 1. !n other words, 
there is a space, which is invariant under the Tmapping (4.4) 
which is a subspace of the cylinder SE( - 1, I), 9 ~ ( 0 , 2 ~ ) .  This 
subspace clearly does not include the shaded regions in Fig. 
3. In reality the actual boundary of this subspace has a more 
complex form due to the existence of stochastic trajectories. 

We consider in more detail the chaotic structure. It is 
convenient to introduce the quantity 

which determines the spin component along the anisotropy 
axis. For the stochastic structure the n-dependence of a, is 
given in Fig. 4a. The spectral properties of this structure can 
be described by the Fourier transform of the phase: 

The quantity A, = 18, I for the stochastic trajectory is 
shown in Fig. 4b. The maximum in the vicinity of the value 
q = N / 2  shows the formation of an amorphous structure 
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FIG. 6. Lines of constant Jacobian (2.12) for a = - 1.05, P =  0.55, 
y = ~ / 4 :  1: 9 = 0.5; 2: 9 = 0.95; 3: 9 = 1.05; 4: 9 = 5; dashed lines 
are those where 9 = 1. 

FIG. 5. Chaotic structure of a ferromagnetic ( J >  0) chain (a = l ,P  = 0.3, 
y = ~ / 4 ,  N =  2048): a: points of the trajectory in the phase plane 
(9, = 3.927, So = 0); b): spin component along the anisotropy axis; c: 
Fourier spectrum of the angle 9,. 

with short-range antiferromagnetic order with a period close 
to 2. 

The appearance of an amorphous structure for suffi- 
ciently large values ofp  occurs also in the case of a ferromag- 
netic kind of interaction (J>  0). For the same values 0 = 0.3 
and y = 7~/4 the points of the stochastic trajectory ( S ,  ,a, ] 
are given in Fig. 5a. The analogous picture for the DNK 
model with a mapping of the kind (4.4) was obtained in Ref. 
16. It is clear from Fig. 5b that the amorphous structure is a 
disordered sequence of structures of the Block domain wall 
type. The spectrum of the system has a maximum close to the 
period 8 (Fig. 5c). This corresponds to a structure in which 
the direction of the spin along the anisotropy axis (y  = r /4)  
is specially selected. 

The results of this section show that for a sufficiently 
strong anisotropy amorphous structures occur which may 
conserve approximate short-range order. The latter is deter- 
mined by the relation between the parameters of the interac- 
tion of the spins and the anisotropy constant. 

5. STUDY OF THE GENERAL CASE 

In the general model (2.2) it is useful to distinguish from 
the beginning some special cases in which all three forms of 
interaction-the exchange, the dipole, and the anisotropy 
field interactions-are present. 

We introduce for the case a = - 1 (J = - D /2) the 
new variable 

The ? mapping (2.10) then takes the form of the measure 
conserving mapping 

P,+i=-P,+Pj' (en),  6n+1=-6,+Arcsin P,+i, (5.2) 

For arbitrary a ,  however, the mapping (2.10) does not 
conserve measure. It is therefore convenient to start the 
analysis of the case (2.10) with the range of a values lying 
close t o a  = - 1. 

We give in Fig. 6 in the ( P,S ) phase plane the lines on 
which 9 = const and the variable P is as before determined 
by Eq. (5.1) but now (when a # - 1) depends on the point in 
phase space. The corresponding phase portrait of the system 
(2.10) in the variables ( P,S ) is given in Fig. 7 for five different 
initial conditions. The fixed points in it can be determined 
from the general condition (see (2.10)): 

(F, 6) = F ( F ,  C). (5.3) 
With the use of Eqs. (2.6), (2.7), and (2.10) Eq. (5.3) leads in 
the general case to the following result: 

~=sin2%=~f ' ( .8 . ) / (a- l ) ,  

or, for the anisotropy (4.1) and y = ?r/4 

P=sin 26, tg 26=p/ (a-I). (5.4) 
Hence 

K='lZ Arctg [$I (a-I)] (5.5) 

and the expression for the free energy F is  found after substi- 
tution of (5.4), (5.5), into (2.2): 

F='/z(D-J) {I+a+ p+ (-1)" sign (a-I) [ (a-1)z+p2]'b) 

(Y =o, 1) .  (5.6) 

In particular, if there is no single-particle anisotropy I = 0) 
we have 

F(j=O) =i/z (D-J) at-" (v=O, 1 ) .  (5.7) 
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FIG. 7. Phase portrait of the XYDA model for a = - 1.05, B = 0.55, 
y = ~ / 4 ;  the forbidden regions are shaded; the black filled circles are fixed 
hyperbolic points. 

The choice of branch, i.e., the value of v is determined by the 
condition that F have a minimum in the point (5.5). The 
latter, in turn, depends on the values of a and P. For in- 
stance, whenp = 0 the branch with v = 0 is always realized 
according to (5.7). 

The minimum of F in Fig. 7 corresponds to the heavy 
point (it is repeated with period 71). The stochastic set of 
points corresponds to one random trajectory with param- 
eters ( a =  -1.05; 8=0.55;  y=.rr/4; a,= -0.1111; 
a l=  -0.1211j. 

The two sets of points of a "figure of eight" type with a 
smeared out region near the point of intersection are also a 
single trajectory. It corresponds to the lowest value of the 
energy from all the trajectories shown in Fig. 7 (except for 
the points determined by Eq. 5.5)). 

In the general case of the XYDA model (2. I), as in the 
case when there is no dipole interaction (D = 0), there is thus 
the possibility of chaotic structures. 

6. DISCUSSION OF THE RESULTS 

The analysis given in the foregoing requires a discussion 
of a number of problems which are a matter of principle and 
of methodology. 

1. First of all, one must pay attention to the avoidance of 
confusion in the use of the concept of an "equilibrium state." 
The state which is an equilibrium one in the thermodynamic 
sense, satisfies the conditions for a minimum of the quantity 
F of (2.11). The determination of a structure corresponding 
to the minimum of F is connected with the determination of 
trajectories of a mapping (2.10) (or the trajectory of an equi- 
valent dynamic system). This trajectory is not necessarily 
stable for the mapping which generates it. Moreover, in all 

nonstochastic cases the minimizing trajectory is a hyperbo- 
lic (i.e., an unstable) point of the mapping. This feature of the 
model had also been noted in the other m ~ d e l s . ' ~ ~ ' ' ~ ' ~  

2. The paradox that the energetically stable state corre- 
sponds to an unstable fixed point of the mapping generating 
the distribution of the elements of the chain requires a more 
detailed discussion. 

Let initially the interaction constants (a,  p, y) of the 
problem be such that stochastic trajectories either do not 
exist or can appear only in exponentially small regions of the 
phase space of the mapping. It is then relevant to pose the 
problem of the effect of a small perturbation on the state of 
the system to which the coordinates of the hyperbolic point 
corresponds. The answer is well known in this case. The 
trajectory of the mapping will leave the hyperbolic point be- 
cause of its unstable nature. As the system considered per- 
forms in phase space a finite motion the perturbed trajectory 
will be periodic and will periodically approach and go away 
from the equilibrium position. As the perturbation is small 
the period of the trajectory will be very large. The perturbed 
trajectory therefore corresponds to a modulated structure of 
the chain with a very small deviation of the energy from its 
equilibrium value (of the order of the magnitude of the per- 
turbation) and with a very long period. In that sense we can 
say that small perturbations of the trajectory of the mapping 
even in the vicinity of its unstable fixed point lead also to 
small perturbations in the structure of the chain. 

The position is completely changed if the values of the 
parameters are such that there occurs an appreciable region 
in phase space in which the trajectories of the mapping are 
stochastic. First of all, the vicinity of the hyperbolic point is 
subjected to a stochastic disruption. Any arbitrarily small 
perturbation of the trajectory near the hyperbolic point leads 
to the occurrence of a stochastic trajectory with a probability 
close to unity. The ground state of the system becomes thus 
really unstable. Moreover, the energy of the chaotic struc- 
ture corresponding to the stochastic trajectory of the map- 
ping differs from the ground state energy by a finite amount 
which is not connected with the magnitude of the perturba- 
tion of the initial conditions (the latter may, as we mentioned 
already, be arbitrarily small). 

3. The basic feature of a stochastic (amorphous) struc- 
ture is the stochastic disruption of long-range order with a 
partial conservation (if one is not too far from criticality) of 
short-range order. The latter is just determined by the 
amount one is away from criticality, e.g., by Ip -PC I, where 
p, is the boundary of stochasticity in the parameter P. The 
connection between short-range order and the amount one is 
away from criticality was for the standard mapping estab- 
lished in Ref. 19 In the given case the short-range order is 
easily seen from the spectral histograms in Figs. 4, 5. It de- 
termines the characteristic average size of the domains in the 
amorphous structure of the spin chain. We emphasize that 
we are dealing here only with such stochastic structures 
which are generated by stochastic trajectories which fill an 
exponentially small volume in the phase space of the map- 
ping. 

4. One should pay special attention to the form of the 
invariant set of points of the mapping in which the stochastic 
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trajectory lies. This set has a very complex but everywhere 
dense structure of a hierarchical nature. A more detailed 
description of it must be given separately. 

5. We note, in particular, that when a = 0 
(J = - 2 0  < 0) the mapping (2.10) takes the form 

Zn+i=Zn-2xn-Pf' (Arcsin x,) , 

z , + ~ = z ~ + Z ~ + ~  ( I ~ n l G f )  

in the variables 

and conserves measure. When a = (J = D > 0) the map- 
ping (2.10) has the same form (6.1) with the substitution 
x, = cos 9,. This mapping can turn out to be useful in the 
analysis of the order-disorder transition in pseudo-spin fer- 
roelectric systems. 

6. We have already mentioned that the many-valued- 
ness of the mapping (2.10) is a specific property of spin 
chains. It produces, generally speaking, for each initial con- 
dition 2N trajectories in the phase space of the mapping (Nis 
the number of particles). However, a numerical analysis 
shows that in all cases considered the "local minimization" 
condition selects the trajectory corresponding to only a sin- 
gle well defined branch of the mapping (2.10). In other 
words, the branch index v is an invariant of the mapping. 
The choice of the value of v is determined by the parameters 
(a,  p, y) (see end of section 5). 

The local minimization consisted in the following two 
conditions: a) a2H /a9 2 > 0 for all n; b) when condition "a" 
is satisified one must choose at a given stop in the iteration n 
such a v = v, for which H 2 < H :; H z  is the density of the 
Hamiltonian H" for the branch v: 

N- L 

n-0 

Of course, such a choice of the minimizing trajectory does 
not exhaust all possible 2N cases. In particular, in phase 
space the "forbidden" regions of initial conditions are those 
for which either the mapping (2.10) has no meaning or for 
which condition "a" cannot be satisfied for n = 2. Generally 

speaking, one does not exclude those regions of phase space 
such that a trajectory starting from them arrives at a step 
n > 2 at a case for which condition "a" is not satisfied. 

"We note that the points ofstable equilibrium of the initial system (3.1) are 
not the same as the points of equilibrium of the equivalent dynamic 
system. The statement made here does therefore not contain a contradic- 
tion. 
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Note added in proof (31 May 1984): In the general case (arbitrary a) the 
variables in terms of which there arises a measure preserving mapping 
have the form 
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