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A BCS model incorporating the orbital effect of the magnetic induction and the paramagnetic 
effect of the exchange field is used to investigate the conditions for the formation of an infinitesi- 
mal superconducting nucleus localized at domain walls in ferromagnets. It is shown that a solu- 
tion of this type always exists in reentrant ferromagnetic superconductors, at least in the metasta- 
bility region of the FN (ferromagnetic normal) phase. The existence of superconducting domain 
walls in the stable FN phase of ideal ferromagnets remains an open question, since the transition 
to this state is apparently of first order and the transition parameters are unknown. From the 
standpoint of realizing superconducting domain walls it seems more promising to consider reen- 
trant superconductors possessing an irregular magnetic subsystem without a coexistence phase 
and having a small exchange contribution to the magnetic energy, i.e., compounds such as 
Ho, -, Y ,  Mo6Ss. 

1. INTRODUCTION 

The question of whether superconductivity exists in fer- 
romagnets was first posed in 1956 by Ginzburg,' who treated 
the problem with allowance for the suppression of Cooper 
pairing by the magnetic field of localized magnetic moments 
in the ferromagnetic state, i.e., an electromagnetic mecha- 
nism of interaction between the superconducting and ferro- 
magnetic ordering. Analysis of the ferromagnets known at 
that time showed that Cooper pairing can arise in a magneti- 
cally ordered phase only in exceptional situations where the 
effect of the magnetic induction (the orbital effect) is for 
some reason suppressed (for example, in a thin ferromagnet 
with magnetization lying in the plane of the slab or in a ferro- 
magnet in the metastable state with the external field direct- 
ed counter to the magnetic moment and compensating its 
effect). 

Shortly thereafter, Matthias, Suhl, and Corenzwit2 not- 
ed the existence of another mechanism working to destroy 
the superconductivity of localized (magnetic) electrons. This 
mechanism is due to the exchange interaction of the local- 
ized moments with the conduction electrons. Abrikosov and 
Gor'kov3 showed that the presence of localized moments in 
the paramagnetic state gives rise to exchange (magnetic) 
scattering of the electrons by the localized moments, thus 
suppressing the Cooper pairing. In the ferromagnetic state 
an additional contribution to the exchange scattering arises 
from the effect of the exchange field, which destroys the 
singlet Cooper pairing of the electrons by causing electrons 
with opposite spins to become separated in energy (the para- 
magnetic effect4). In the end, the electromagnetic and ex- 
change mechanisms of depairing practically rule out the pos- 
sibility that superconductivity can coexist with 
homogeneous ferromagnetic ordering. 

Matthias and Suhls first noted that the conditions for 
the occurrence of superconductivity in a ferromagnet are 
more favorable near a domain wall than inside a domain. 
This circumstance stems from the fact that the magnetiza- 

tion here is inhomogeneous, and the electrons move in a field 
which varies in direction. Therefore, it is possible in princi- 
ple for superconductivity of a localized type to occur near 
domain walls under conditions where Cooper pairing is sup- 
pressed in the interior of the domains. 

The first attempt to describe this effect quantitatively 
was undertaken by K ~ ~ a e v . ~  Specifically, he considered a 
ferromagnet having linear domain walls7 within which the 
magnetization vector varies in magnitude and sign but re- 
mains parallel to the easy axis. At the center of such a wall 
the magnetization goes to zero, and Kopaev hypothesized6 
that a superconducting state can exist in the region of the 
wall where the magnetization is small. Kopaev assumed6 
that the localization length of the superconductivity is small 
compared to the superconducting correlation length and, 
working under this assumption, calculated the conditions 
for the occurrence of localized superconductivity. Such an 
assumption, however, ignores the proximity effect, which 
makes it impossible for superconducting regions with a lo- 
calization length shorter than the superconducting length to 
exist in a metal. 

The possibility that superconducting domain walls can 
exist in a normal ferromagnetic (FN) phase was raised 
anewas9 in connection with experimental studies of the reen- 
trant ferromagnetic superconductors ErRh4B4 and 
HOMO,S,.'~-'~ These compounds, which have a regular lat- 
tice of localized moments of the rare earth elements, undergo 
a transition to a superconducting state at a temperature Tcl 
(8.7 K and 1.8 K, respectively); below the point T, (1 K and 
0.7 K) they exhibit an inhomogeneous magnetic ordering in 
the superconducting state, and at a temperature Tc2 (0.8 K 
and 0.65 K) they return by a first-order transition to a nor- 
mal state with ferromagnetic ordering of the localized mo- 
ments. Fertig e ta / .  lo discovered that below Tc2, down to the 
very lowest temperatures, the resistivity of ErRh4B4 is ap- 
proximately 40% smaller than at temperatures above T,, 
and that it reaches its normal level below Tc2 only in magnet- 
ic fields exceeding 5 kOe. Analogous behavior is also ob- 
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served in HOMO$,, but here the residual conductivity is 
lower (by approximately 10%) and is suppressed in fields 
above 0.7 kOe (Ref. 4)." Tachiki et conjectured that the 
increased conductivity in the ferromagnetic phase below T,, 
is due to the persistence of superconductivity on the domain 
walls. However, here again the idea of a superconductivity 
localized on the domain walls was not realistically rendered, 
since the analysis of that paper8 was based on the assumption 
that the width of the rotating Bloch domain walls is large 
compared to the superconducting correlation length.'' Ac- 
tually, however, in the ferromagnetic superconductors un- 
der discussion the situation is apparently just the opposite- 
the width of the domain wall in these compounds (of the 
order of several angstroms) is small compared to the super- 
conducting correlation length (around 250 A in HoMo6S, 
and 200 A in ErRh4B4). 

In fact, the width of a rotating Bloch wall is given in 
order of magnitude by the relation I, -a(TM/D)'12 with 
Dg T,, where a is the magnetic hardness, which is of the 
order of an atomic length, and D is the anisotropy energy 
parameter. In the compounds under discussion, the strong 
effect of the crystalline field causes the parameter D to be of 
about the same order of magnitude as TM For D> TM one 
has alinear domain wallofwidth I, -a(1 - T/@, )-'I2 (Ref. 
7), where O, is the Curie temperature in the absence of su- 
perconductivity, and 0, =. T,. Therefore, the width of the 
domain wall is greater than an atomic length only in the case 
of very small anisotropy or very close to the Curie point, but 
at temperatures in the region T <  T,, < T, for a reasonable 
value of the anisotropy, the width of the domain wall is close 
to an atomic length. 

Therefore, with real compounds in mind, we should de- 
termine the conditions for the occurrence of localized super- 
conductivity at domain walls whose width is small compared 
to the superconducting correlation length f .  Because of the 
proximity effect, the superconducting solution will itself be 
localized in a region of the order off or larger. In the limiting 

FIG. 1. Isolated domain wall. Shown below is the dependence of the ex- 
change field on the coordinate in the x direction, perpendicular to the 
wall. Shown above is the shape of the superconducting order parameter: a) 
for a clean superconductor, on a scale of 3.766,; b) for a dirty supercon- 
ductor, on a scale of 1.66g. 

case f%I, the final results will not depend on the specific 
type of wall (rotating or linear). 

In this paper we find the conditions for the formation of 
a critical superconducting nucleus of a superconducting do- 
main wall with an infinitesimally small amplitude of the or- 
der parameter, under the assumption that in the absence of 
localized moments the superconductivity would arise at 
temperature T,. For such a formulation of the problem we 
should study the Cooper instability in the presence ofa given 
magnetic order m(r,T) corresponding to the domain struc- 
ture in the FN phase. In accordance with the condition 
I, (6, we can approximate the magnetization m(r,T) and the 
magnetic induction B(r,T) near the domain wall by the step 
functions m, (x,T) = m,(T)sgnx and B, (x,T) 
= 4n-m,(T)sgnx (the wall is located in the x = 0 plane and 

the easy axis is along z; see Fig. 1). 
We shall show that if the magnetic ordering influences 

the superconductivity only through the orbital effect of the 
magnetic induction (the electromagnetic mechanism), then 
the problem of the onset of Cooper pairing near the domain 
wall is completely equivalent to the problem of the nuclea- 
tion of a superconducting center on the surface of the sample 
in a magnetic field parallel to the surface, i.e., the problem of 
determining H,, . l5 Therefore, in regard to the electromag- 
netic mechanism the condition for the existence of supercon- 
ducting domain walls is of the form H ,*, < 4n-m,(T) < H 5 ,  
where the upper critical orbital magnetic fields H 2 and H 5 
depend on the superconducting correlation length f (T); spe- 
cifically, both fields H z  and H z  are proportional to @,/ 
f 2(T), where @, is the magnetic flux quantum, and differ only 
by a numerical f a ~ t o r . ~ . ' ~  

In real compounds we should take into account not only 
the electromagnetic mechanism but also the exchange inter- 
action of the localized moments; these two interaction mech- 
anisms together determine the magnetic ordering tempera- 
ture and energy of the localized moments. In the compounds 
under discussion the contributions of the two mechanisms to 
the Curie temperature O, in the absence of superconductivi- 
ty and to the magnetic ordering temperature TM =@, in the 
superconducting phase are similar to order of magnitude, 
and in treating the problem of superconducting domain 
walls we should take the interaction of the localized mo- 
ments and conduction electrons into account. 

As we have already mentioned, the exchange interac- 
tion suppresses Cooper pairing in the ferromagnetic state 
through a scattering of the electrons by spin waves and 
through the paramagnetic effect of the exchange field. The 
first effect is characterized by a reciprocal magnetic-scatter- 
ing time which is of the same order of magnitude as the con- 
tribution @,, of the RKKY interaction to the temperature 
0,. Because of this scattering, superconductivity of the ordi- 
nary or localized type can exist only under the condition 
@,, - 0, < T, , which is satisfied in the reentrant supercon- 
ductors ErRh4B4 and HoMo6S8. In compounds with 
@,, - T, the suppression of the superconductivity is largely 
due to magnetic scattering, and the existence conditions for 
ordinary and localized superconductivity are not very differ- 
ent. One is therefore unlikely to find superconducting do- 
main walls in ferromagnetic compounds which do not have a 

175 Sov. Phys. JETP 60 (I), July 1984 Buzdin et al. 175 



superconducting phase (such as HoRh4B4 or GdMo6S,). In 
what follows we shall consider only reentrant superconduc- 
tors with Oex (T, and determine the conditions for the for- 
mation of superconducting domain walls in their low-tem- 
perature phase. 

In HoMo6S, and ErRh4B4 the magnetic scattering by 
spin waves can be neglected by virtue of the condition 
Be, - T, (T,, , and only the paramagnetic effect of the ex- 
change field h (r) = h,s(r,T) is important; here s(r,T) is the 
normalized value of the magnetization, s(r,T) = m(r, T)/pn, 
p is the magnitude of the magnetic moment at T = 0, and n is 
the concentration of localized moments. In order of magni- 
tude one has OeX - h i N  (0), where N (0) is the density of elec- 
tron states per localized moment. The quantity h, is not 
small compared to T, even if O,, (T, , and in determining 
the conditions for the occurrence of localized superconduc- 
tivity the effect of the exchange field should be taken into 
account along with the orbital effect of the magnetic induc- 
tion B, (x) = B (O)s(x,T), where B (0) = 4 ~ p n .  Using the ap- 
proximation s(x, T )  = s (T  )sgnx, we shall determine the criti- 
cal value s(Tg&) (as a function of h,, B,, and T,) for the 
nucleation of a superconducting center near a domain wall 
in the FN phase. The temperature T K  is clearly a super- 
heating point of the FN phase with respect to localized su- 
perconductivity if the transition to the state with supercon- 
ducting domain walls is in fact a first-order transition with a 
temperature T,, < T g ' .  

The above formulation of the problem corresponds to 
treating an isolated superconducting domain wall (see Fig. 
1). This formulation is correct for the case in which the thick- 
ness of the domains is much greater than the superconduct- 
ing correlation length 6. 

2. SYSTEM HAMILTONIAN AND THE EQUATIONS FOR THE 
SUPERCONDUCTING ORDER PARAMETER 

We describe the system of localized moments and the 
Cooper pairing of electrons in the framework of the BCS 
model, taking into account the exchange field and magnetic 
field of the localized moments and the scattering of electrons 
by nonmagnetic impurities, but ignoring the magnetic scat- 
tering of electrons. The localized moments are located at 
lattice sites i and are described by the parameter s i ,  which 
characterizes the normalized average value of the moment at 
site i (in the quantum-mechanical and statistical sense). The 
Hamiltonian of the system is of the form 

-A* (r) $ (r) iov$ (r) + J (r-ri) lp+ (r) oz (g-1) si$(r) 
i 

where A (r) is the superconducting parameter for the singlet 
pairing of electrons, $(r) is a spinor, the components of a are 
the Pauli matrices, A is the vector potential, J (r) is the ex- 
change integral, A is the dimensionless electron-phonon in- 
teraction parameter, g is the g factor, and the term 2Ys, de- 
scribes the scattering of electrons by nonmagnetic 

impurities. The exchange field h (r) is given by the expres- 
sion' 

This field has both a part which is slowly varying on an 
atomic scale and a rapidly varying part with wave vectors 
which are of the order of the vectors of the reciprocal lattice 
of the localized moments. The influence of the rapidly vary- 
ing part on the superconductivity can be neglected, and 
then4' h (x) = h ~ ( x ) ,  where h, = n(g - l)SdrJ(r). 

We describe the superconducting system using the qua- 
siclassical approximation for the anomalous Gor'kov func- 
tions integrated over the energy ~ariable .~ '  To first order in 
A (r) the Eilenberger equations for the anomalous function 
f (v,r) are of the form'" 

1 
63=of'- sgn o, 

2.t 

(3) = 
o=nT(2k+l), A,=-B(0) J s (z) dx, A.=A,=O, 

0 

where r is the characteristic time for the scattering of elec- 
trons by nonmagnetic impurities, and the integration over f2 
is over the direction of the electron velocity v. The boundary 
conditions on equations (3) reduce to the continuity condi- 
tion for the function f (v,x) and the condition that f (v,x) van- 
ish at 1x1 + w for the localized solution. 

In Ref. 17 we also found the free-energy functional of 
the superconducting system. By minimizing this functional 
with respect to f andg one obtains the Eilenberger equations, 
and the minimum value gives the free energy functional 
9 t h  (r)).  To lowest order in A (r) this functional is of the 
form 

where the functiony(r) is the solution of equations (3). 
The form of equations (3) for h = 0 implies that the con- 

ditions for the formation of a superconducting nucleus with- 
in a domain wall [s(x) = ssgnx and f (v, ,x + + 0) 
= f (v, ,x - - O)] are equivalent to the corresponding con- 

ditions on the surface of the sample [s(x) = s , ~  >O and 
f (u, ,x + + 0) = f ( - v, ,x + + O)]. In fact, a change in the 
sign of the magnetic field in equations (3) is equivalent to a 
change in the direction of the electron velocity. 

Let us now study the role of the electromagnetic and 
exchange interactions in determining the conditions for the 
nucleation of a superconducting domain wall. By comparing 
the orbital term euA / c  forA - B{ with the exchange term h in 
equations (3), one sees that in a clean superconductor the 
relative role is determined by the parameter 
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where A ( T )  is the order parameter at temperature Tin the 
absenceoflocalized moments, and{ ( T )  = v F / d  (T) .  One is 
readily convinced that this same parameter p describes the 
relative contribution of the electromagnetic and exchange 
mechanism in dirty superconductors as well if { (T)  is re- 
placed by the corresponding value of the correlation length.4 
We show below that the parameterp is small in the ternpera- 
ture region TgT,, in the reentrant superconductors 
ErRh4B4 and HOMO$,. Therefore, for these compounds (in 
which T, (T,, ) the conditions for the formation of a super- 
conducting nucleus near a domain wall can be found without 

the solution for a superconducting nucleus in a nonuniform 
exchange field depends in an important way on the purity of 
the crystal. According to the results of Larkin and Ovchinni- 
kovl8 and Fulde and Ferrel,I9 in a clean superconductor the 
solution for a nucleus in a constant exchange field is spatially 
inhomogeneous, while in a dirty superconductor the in- 
homogeneity of A (r) over distances characterized by I /{, 
need not be taken into account (see Ref. 20). 

For a clean crystal we thus seek a solution of the follow- 
ing form for a superconducting nucleus in a system with a 
domain wall: - 

taking the magnetic induction into account. In addition, in 
A k ,  x k,= (0, k,, k,), the temperature region T g  T,, the superconducting charac- 

teristics can be calculated for the limiting case of zero tem- 
1 

(5) 
perature, i.e., the sums over w in (3) and (4) can be converted ~ ( k ~ x ) = - ~ d k , ~ ( k ) e r ~  
to integrals over w. 2n - 

As in the case of a uniform exchange field, the form ofi Substituting (5) into (3) and (4), we obtain the functional 

P=o+ik, cos q(1-pZ)", (6)  

where w, is the Debye frequency. Let us separate out from 
the kernel K (k,kl) in (6) that part K0(k,kf) which corresponds 
to a uniform exchange field h (x) = h: 

KO (k, k') =2n6 (k,-k,') 

I ' 
$(k)=--5 dpln[l-pz(k,'+k,z) 1. 

2 
0 

In the remaining part K1(k,k1) of the kernel the integration 
over w can be extended to infinity. The linear integral equa- 
tion for A (r) has the form of an equation for determining the 
minimum eigenvalue E: 

dk,' 
(r(k) -E) A (k) = 5 K~ (k, k')ln A (kt),  

with K, = 0 for h (x) = h. The function $(x) is minimum at a 
wave vector k = ko = 1.2, which gives the condition for the 
formation of a delocalized nucleus in a uniform exchange 
field, i.e., within the domains, as J h  1 = h = 0.754Ao.18s19 
Let us now find the kernel K1(k,k1) for the domain wall and 
the corresponding value of the critical field. 

3. CONDITION FOR THE FORMATION OF 
SUPERCONDUCTING DOMAIN WALLS IN CLEAN 
COMPOUNDS 

For an isolated domain wall the exchange field is 
h (x) = hsgnx, and the superconducting kernel is given by the 
expression 

I 

K1 (k, k') = 

-1 

x[L (P, k,, kx, kx') +L (P, k,, kx', kx) I ,  
(9) 

L(p, k,, kz, k,') =arcsin [2(1-pkI)l(la+I +la-I)], 
a,=l-pkIztk,(l-pZ)". 

In the problem of an isolated wall there is no explicit small 
parameter. For this reason equation (8) with kernel (9) was 
solved numerically. The form of the function A (k, ,x) which 
minimizes E is shown in Fig. 1 (case a); here h g& = 0.7944, 
and k, = 1.1. The values of h and h by' are nearly equal, 
since the wave function A (k, ,x) is localized in a region of 
approximately 4{,. 

4. SUPERCONDUCTIVITY AT DOMAIN WALLS IN DIRTY 
COMPOUNDS 

For a dirty superconductor the function?(x) satisfies the 
Usadel equationz1 

[ I  w I +ih(x)sgn x-'lZD dxZ f (z) =A (x), D=uF2r/B . 
(10) 

with a continuity condition of?@) and its derivative in the 
plane of the domain wall. For an isolated domain wall we 
find the kernel 

1 
I[(k, k') = [?ln(l+k4) -E 1 6(k-kg) 

-4 j, dxb (x) (l+x2)'" 
[ ( ~ + k ) ~ + 1 ]  [ ( ~ + k ' ) ~ + l ]  ' 
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Numerical solution of the integral equation gives 
h FA = 0.717Ao, and the function A (x) is shown in Fig. 1 
(case b ). The value obtained for h b"l: differs quite substantial- 
ly from the critical exchange field hDc = 0.5A0 of the bulk 
solution, i.e., the localization length in a dirty compound is 
approximately equal to the superconducting correlation 
length l ~ ( l ~ 1 ) " ~ .  

The asymptotic behavior of the function A (x) for x)l, 
can be found analytically. It is governed by the poles of the 
function A (k ) which lie closest to the real axis. These poles 
are found from the equation 

E--'/2 In ( l+k4)  =O, (12) 

which gives k = f 2iP andB = 0.6. Transforming to coor- 
dinate space, we obtain for x) lo 

A (x) =f [,$I (2hlD) (13) 

where f (x) = exp( - Ixl)cos(lx 1 + 71/4). 

5. ORDER OFTRANSITION AND THE EXISTENCE REGION OF 
SUPERCONDUCTING DOMAIN WALLS 

We have found the superheating field h of the nor- 
mal phase with respect to the onset of localized supercon- 
ductivity around a domain wall in dirty (0.7174,) and clean 
(0.7914,) superconductors. However, there is reason to be- 
lieve that the transition to the superconducting-domain-wall 
state should be of first order. Let us consider the sign of the 
coefficient in front of the fourth-order term in A ( k )  in the 
expansion of the superconducting functional at the point 
T = TgL. In evaluating this coefficient we can regard the 
exchange field h (x) as given (and equal to h~sgnx) ,  and we 
should also take into account the additional contribution 
due to the change in the magnetization s(x) under the influ- 
ence of the superconductivity. This additional contribution 
is always negative in sign and is equal in order of magnitude 
to (dY/d~)~ / (d~Y, /d s )~ ,  where 3 is given by formulas (9) 
and (1 1) for clean and dirty compounds, respectively, and 
3, Os2 near the point TM. As a result, at smalls zAo/h0 
we obtain a contribution of the order of 
Oex N (OM 41/OcA is2. At the same time, the fourth-order 
term in A (k ) at a given exchange field h is N (0)d 46 /A i (and 
is of unknown sign). Thus, for A,/h,(l the term which we 
know to be negative is the dominant one, and the transition 
to the superconducting-domain-wall state should be a first- 
order transition at the point hDc, which can be substantially 
higher than h 3 in a system with ho>Ao. In compounds with 
approximately equal values of h, and A ,  it is possible to pre- 
dict the order of the transition to the superconducting-do- 

main-wall state only on the basis of a quantitative treatment. 
It is clear, however, that in this case hDc can differ from h 
only by a numerical factor of order one. 

A solution of the superconducting-domain-wall type 
thus exists for h = h$(T) < h,, . However, for a supercon- 
ducting domain wall to exist it is also necessary that the FN 
phase itself be stable within the domains. 

The stability region of this phase is determined by the 
condition h > h,, , where hc2 = h,9(Tc2 ) is the critical value 
of the exchange field for the first-order transition from the 
superconducting state to the FN phase. Thus a supercon- 
ducting domain wall exists only in superconducting ferro- 
magnets for which hDc > hc2 . 

In a regular compound with an ideal magnetic subsys- 
tem, Tc2 is the point of a transition from the FN phase to a 
superconducting phase DS with an inhomogeneous magnet- 
ic ordering of the domain-structure type,17,22.23 and 

where ii is a parameter which determines the domain-wall 
surface energy 7 = Oexs2Zn and is of the order of an atomic 
length. It is seen from (14) that hc2 is higher than h gL, but 
the relationships between hc2 and hDc are unknown (see Fig. 
2). 

In the compound HoMo,S,, estimates17 based on the 
experimental data of Refs. 24 and 25 give h , ~  16 K, hc2 z 10 
K,s,, ~ 0 . 6 ,  andA,=: 3 K. The data of Ishikawa and Fisher26 
give H 2 (0) z 3 kOe for the upper critical field. Substituting 
these estimates and the value of B (Tc2 ) = B (0)sc2 at 
B (0) = 4.8 kOe into the expression forp, we obtainp ~ 0 . 0 4 .  
We see that the existence region of the superconducting do- 
main walls is actually determined mainly by the paramag- 
netic effect of the exchange field, and we can use the results 
obtained above. The matter of whether superconducting do- 
main walls exist in HoMo,S, remains an open question, how- 
ever, since hc2 > h EL, and the value of hDc is unknown. 

In a ferromagnetic superconductor with an irregular 
magnetic subsystem (e.g., in the pseudoternary compounds 
Ho, - , Y ,  Rh4B4 or Ho, - , Y ,  Mo,S,) the coexistence phase 
DS may be absent, and such a compound on cooling will 
exhibit a first-order transition S + FN at a temperature Tc2 . 
The S-FN transition point is determined by the condition 
that the magnetic and superconducting energies be equal, 
O, s:2 z N (0)A !/2 for N (0)A i/2(TM. From this we obtain, 
for N (Old i < Tc2 , 

h : 2 = ~ 0  (O,,lO,N (0) Ao2) 

and hC2 5; A, if Oex 5; TMA i/h i .  This last condition can be 
satisfied for ho)Ao when the ratio OeX/Tc2 is small, i.e., 

FIG. 2. Temperature intervals for the stability of the normal nonmagnetic 
phase N, the superconducting nonmagnetic phase S, the phase DS in 
which superconductivity coexists with inhomogeneous magnetic order- 
ing, and the normal ferromagnetic phase FN in a compound with an ideal 
magnetic subsystem. The point T$$. lies in the stability region of the DS 
phase; the position of the point TDc is unknown. Superconducting domain 
walls can occur for TD, > T,, . 

FIG. 3. The N, S, and FN phases in a compound with an irregular magnet- 
ic subsystem. Here the DS phase is absent at a sufficiently high degree of 
disorder. The point TgL can lie above T, if the exchange contribution to 
the magnetic energy is small. The position of the point TDc is unknown. 
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when the dominant contribution to the magnetic energy of 
the system of localized moments is from the magnetic dipole 
interaction. In this case it is even possible to satisfy the ine- 
quality hc2 < h (see Fig. 3). For example, in HoMo6S, 
we have 0,,=:0.08 K, TM=:0.7 K, and 
(O :x /O,N (0)A :)'I4 z 1.4. Therefore, in the pseudoternary 
compounds Ho,, Yx Mo6S, one can expect superconduct- 
ing domain walls to arise at concentrations x sufficient to 
destroy the DS phase. 

The ferromagnetic superconductor ErRh4B4 apparent- 
ly belongs to the class of asperomagnets which have a transi- 
tion from a superconducting nonmagnetic phase to an asper- 
omagnetic phase FN.27 For this compound h0=:42 K, 
s,, ~ 0 . 8 8 ,  and H,*, =: 10 kOe, according to the estimates 
made in Ref. 27 from the experimental data of Refs. 28-30. 
Ford.=: 15 K and B (0) = 6.5 kOe we obtainpz0.05 for this , , 

compound. The existence of superconducting domain walls 
here remains an open question, since h,, > h 3. 

Thus the question of whether it is possible for systems 
having a regular magnetic subsystem to exhibit supercon- 
ducting domain walls remain unresolved. To elucidate this 
matter it will be necessary to determine the critical value 
h,, for a first-order transition to the superconducting-do- 
main-wall state. Our results show that more promising com- 
pounds from the standpoint of realizing supeconducting 
domain walls are pseudoternary ferromagnetic supercon- 
ductors having a first-order transition S -+ FN and a small 
exchange contribution to the magnetic energy of the system. 

We wish to thank V. L. Ginzburg, Yu. V. Kopaev, and 
D. I. Khomskii for interest in this study and a helpful discus- 
sion. 

"The absence of complete short-circuiting of the normal metal here could 
be due to the polycrystalline nature of the samples, since in such a situa- 
tion there is no infinite superconducting path. 

"In such an unrealistic model the conditions for the occurrence of super- 
conductivity within the rotating walls are practically the same as within 
the domains, and the width of the existence region for localized super- 
conductivity is negligibly small. The calculations of Ref. 8, being of an 
heuristic nature, did not determine the conditions under which super- 
conductivity persists within the domain walls but is absent inside the 
domains. 

"For the ideal ErRh4B4 crystal the parameter D in the easy plane is -0.1 
K (Ref. 15). 

4 ' ~ h k  Hamiltonian for the exchange interaction of the localiz$ momepts 
and electrons is usually written in the literature as 2(g - 1)EJ, where J i s  
the operator for the localized moments and 3 is the operator for the spin 
density of the conduction electrons. The parameter I is related to the 
magnitude of the exchange field ha by h, = (g - l)Z ( J, ) .=, /v ,  where v 
is the number of atoms in the chemical formula and ( J, ) is the average 
value of the z component of the moment at T = 0. 

"The Ginzburg-Landau approximation cannot be used to solve the prob- 
lem posed in the present paper because we are interested in the tempera- 
ture region T <  T,, (T,, . In the low-temperature region the Ginzburg- 
Landau approximation is unsuitable for describing the paramagnetic 
effect of the exchange field. 
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