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The dynamic damping of a domain wall in a rhombic ferromagnet having an energy that is exactly 
integrable in the one-dimensional case is investigated. The loss of exact integrability in the three- 
dimensional case is analyzed. It is shown that the wall in a three-dimensional magnet dissipates 
energy via two- and three-magnon processes. The contribution of the magnon scattering pro- 
cesses has a nonlinear dependence on the velocity v .  The three-magnon damping force in the 
three-dimensional case is proportional to the velocity and contributes to the wall mobility. The 
general picture of wall relaxation at different temperatures is analyzed. The dependence of the 
velocity of the induced boundary motion on the external field is discussed. It is shown that this 
dependence is strongly nonlinear and has a quasi-saturation character at the velocity lower than 
the Walker limit. The experimental consequences of this fact are discussed. 

INTRODUCTION 

When it comes to describing the dynamics of real mag- 
netically ordered crystals, the first question is that of the 
laws governing the motion of the domain walls (DW) and of 
solitary magnetic domains. Interest in this question has be- 
come particularly great recently. This is due, first, to the fact 
that in the theoretical description the DW constitutes a soli- 
tary wave of the magnetization field (magnetic soliton) and 
the study of DW dynamics is a basis for the development of 
soliton theory.' Second, this question is timely from the 
practical point of view in connection with the use of the rath- 
er high-velocity DW in various 

In the most interesting case of high DW velocity in per- 
fect magnets, the principal mechanism that determines the 
velocity of the stimulated motion of the DW is dynamic 
damping of DW by interaction with thermal quasiparticles, 
mainly magnons. The soliton character of the DW manifests 
itself in many models of magnets1 by nonreflecting interac- 
tion of the magnons with the wall and leads to a distinct 
behavior of the DW relaxation properties. It was shown for a 
model of a uniaxial ferromagnet with simplest quadratic an- 
isotropy (w, = P (M: + M:)/2, Ref. 4), the soliton charac- 
ter of the DW leads to a strongly nonlinear dependence of 
the magnon damping force on the wall velocity. Exact inte- 
grability manifests itself also in the kinetic properties of the 
model described by the sine-Gordon e q ~ a t i o n . ~  

In the present study we investigate dynamic damping of 
DW in a rhombic ferromagnet, with energy given by 

From the theoretical viewpoint this model is of interest be- 
cause in the one-dimensional case it can be exactly integrat- 
ed by the method of the inverse scattering t h e ~ r y . ~  It permits 
also a fairly complete investigation of the dynamics in the 
three-dimensional case. In particular, in the model (1) it is 
possible to describe consistently the changes of the wall 
structure as the wall moves, and also to analyze the magnons 
that are localized near the DW and describe the flexural 
oscillations of the DW. We shall show below that these mag- 
nons give a fairly large (and in some cases the decisive) con- 

tribution to the damping force." In particular, owing to the 
exact integrability of the system (1) in the one-dimensional 
case, the amplitude of magnon scattering by a DW in a real 
three-dimensional case is proportional to k:, where k, is the 
magnon-momentum component in the DW plane, and 
differs from zero only for oblique incidence of the magnons. 
It is thus possible in this model to track the loss of total 
integrability on going to the three-dimensional case and to 
analyze the ensuing dissipative processes. 

On the other hand, in view of the large maximum DW 
velocity and the absence of DW twisting, films with strong 
anisotropy of type (1) (471. ( p ( /3 ) are vital for use in devices 
with magnetic bubble domains., We investigate here the 
damping of DW by interaction with thermal magnons. We 
calculate the contribution of two- and three-magnon pro- 
cesses (with localized magnons taken into account) to the 
dynamic damping of DW. We discuss the overall picture of 
DW relaxation and the dependence of the stimulated veloc- 
ity on the external field. 

1. SMALL MAGNETIZATION OSCILLATIONS IN A MAGNET 
WITH A MOVING DOMAIN WALL 

To describe the magnon damping of DW, we consider 
small magnetization oscillations against the background of a 
DW moving with velocity v .  We represent for this purpose 
M(r,t ) in the form M,(r - vt ) + m(r,t ). The first term de- 
scribes the DW. It is convenient to consider the components 
of the vector m in a coordinate frame in which the magneti- 
zation quanitization axis e, coincides with the direction of 
M,(r - vt ): 

e,=e, cos rp+e, sin rp, 

e,=cos 0 (-e, sin rp+e, cos cp) -e, sin 8, (2) 
e,=sin 8 (-e, sin rp+e, cos rp) +e, cos 8. 

Here 8 and q, are the angle variables that determine the 
magnetization distribution in the moving DW. This repre- 
sentation is convenient, for if 8 and q, are solutions of the 
Landau-Lifshitz equations for M,, the dynamics of the var- 
iables mi in terms of the Holstein-Primakoff operators a+ 
and a is determined by a Hamiltonian that does not contain 
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terms linear in a+ and a (Ref. 4). This Hamiltonian can be 
written in the form 

h arp 30 
H= dr {- [ ( M ,  cos 0-M, sin 0)-- -Mi -I}+ w { M ~ )  

~p~ a t  a t  

The first term in this equation stems from the fact that by 
virtue of (2) the transformation from M to Mi depends expli- 
citly on the time. W (Mi ) is the energy of the magnet (I),  
expressed in terms of the components Mi.  The energy 
W (Mi ) is of the form 

W{Mi) = J dr {'/,a ( V  Mi) '+'/,a ( V  0) ' (M22+M32) 

+'/*P [MO2- (M3 cos 0-Mz sin 0) '1 

+'l,p[M, cos rp- (M, cos 0+M3 sin @)sin c p I 2 ) .  (3) 

In this equation we have taken it into account that in a mov- 
ing DW we have e, = const in accord with the Walker solu- 
tion (see, e.g., Ref. l), and have left out the terms with Ve,. 
The last term of this equation is due to the rhombic anisotro- 
py and determines the difference between our problem and 
the model of Ref. 4. 

In terms of the Holstein-Primakoff operators a+ and a 
(see Ref. 7), the Hamiltonian (3) contains terms of second, 
third, etc. powers of these operators. Since MI,  M2 cc a, a+, 
the contribution to the quadratic Hamiltonian is made by 
terms of the type MlM2, M:, M:, and Mo-M,. An impor- 
tant circumstance that determines the specifics of a rhombic 
ferromagnet is the presence in W (Mi ) of a term of the form 
pMIM, cos 8 sin e, cos e,. In a DW, the quantity cos 8 is not 
a localized function of the coordinates: 

(x-vt) f' 'h 
cos ~=th- , ($)"'[ I +-sin'rp] 

xo (v) B 
[we assume that the DW moves along the x axis; xo(v) is the 
thickness of the DW, and e, = e,(v)]. Consequently, on going 
over to the spin-wave operators a; and a, with the aid of the 
momentum representation [see Eq. (10) below] this term in- 
troduces into the amplitude of magnon scattering by a DW a 
singular part with a pole at q -+ 0, where q is the momentum 
transfer. This means that even though this term contains the 
small factorsp and sin p (we recall that e, a u/v, at v ( u,, 
where v, =p,u,,Mg0/fi is the Walker limiting DW veloc- 
ity), its contribution cannot be analyzed by perturbation the- 
ory. Analysis below shows that this term makes a substantial 
contribution to the two-magnon damping force, and that 
this contribution does not contain the small factor p. The 
contribution of this term is therefore non-analytic in p and 
cannot be obtained by summing a finite number of terms of a 
perturbation-theory series. 

For a correct analysis of this term we carry out a unitary 
transformation of the operators Ml  and M,. We introduce 
the operators M, and M2: 

and choose Qi in such a way that the energy (3) does not 
contain dangerous terms of the type indicated. Correspond- 
ing to this condition is 

tg @ =tg rp cos 0. ( 5 )  
With this choice, the last term of the energy (3) takes the 
form 

'/,p {Mi (cos2 rp+sin2 cp cosZ 0)'"-M3 sin rp sin 0)'. (6) 
The transformation (4) corresponds to rotation of the 

system of unit vector (the reference frame) about the e, axis. 
Thus, all three parameters, 8, p, and Qi (which can be ex- 
pressed in terms of the Euler angles that determines uniquely 
the position of the reference frame relative to the initial ex, 
e,, e,) have been determined for a rhombic ferromagnet 
from physical considerations. 

Since the angle @ depends on the time explicitly, the 
dynamics of the operators Mi is described by a Hamiltonian 
that differs from the initial one by the term 

The energy (3) expressed in terms of Mi contains a num- 
ber of terms with VQi; we shall write out only those which 
contribute to the two-magnon Hamiltonian, e.g., 

a ( 2 - V )  + a  ( V )  ( + )  (8) 
This term is the result of a unitary transformation that 

removes the dangerous terms MlM2 cos 8. Since 
V@=-V0 sin 0 sin cp cos ~(1-sinzcp sin2 0)-', 

i.e., V@ decreases rapidly far from the DW, the term (8) can 
be investigated by standard perturbation theory for the in- 
teraction of a soliton with m a g n o n ~ . ~ . ~  We take the small 
parameter to be the ratio of the DW velocity v to the limiting 
Walker value v,, in which case sin p ~ e ,  =: - u/2vW. We 
assume hereafter thatp ( 0 ;  this inequality holds in the case 
of greatest interest for practice, that of iron-garnet films in 
which p < 0.10 (Ref. 3). 

2. MAGNON SCATTERING FROM A DW AND ITS 
CONTRIBUTION TO DYNAMIC DAMPING 

Proceeding to the spin-wave description of the dynam- 
ics of a ferromagnet, we represent its Hamiltonian in the 
form 

H=Ho+H2+H3+. . . , 
where H, contains the product of n operators a and a+. In 
the present section we study the contribution made to the 
damping force by two-magnon processes described by H2. 

Following the indicated transformations and simplifi- 
cations that follow from the inequality v ( v,, we get for H2 

h 

The operator L has the form of a Schrodinger operator with 
nonreflecting potential 

E=-x,2A+l+ p/2P-2/chz E. 
We expand the ope raps  a and a+ in terms of the eigen- 

functions of the operator L (Ref. 8) 
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where 

Here 0 is the volume of the ferromagnet, S the DW area, 
x = xokx, 

Ak=l+p/2P+x?k2, A k , = p / 2 P + ~ o ~ k , ~ ,  

and k the magnon momentum. The wave functions $, and 
$,, describe the volume and surface magnons, and 
k ,  = ( O h ,  ,k, 1. 

Since the transformation (10) depends explicitly on the 
time, the Hamiltonian g 2 ,  which describes the dynamics of 
the operator a,, contains, compared with (9), an additional 
term of the form4 

k,h' 

Only this term determined the damping force in the uniaxial 
model of a ferr~magnet.~ In our problem, however, a contri- 
bution of the same order is made by the terms with p and p2 
in (9). A consistent allowance for all these terms leads in fact 
to the result indicated above, viz., to vanishing of the ampli- 
tude of the magnon scattering by a DW in the one-dimen- 
sional case. 

In the representation (lo), the two-magnon Hamilton- 
ian takes the form 

R,=H,+H,")+H~~) .  
The Hamiltonian H, determines the magnon states ad- 

justed to the specified position of the wall 

where A, and A,, are given by (1 1) and B = p/2 0 .  
This Hamiltonian can be diagonalized by the standard 

u-v transformation and reduced to the form 

k RL 

where E, and E , ~  are respectively the energies of the volume 
and surface magnons, E, = (A : - B 2)1'2: 

The terms H y )  and H f '  determine the inelastic transi- 
tions between these states. We shall verify later that these 
terms make equal contributions to the damping force in term 
of the parameter v/wg0. For H 11) in terms of b, and b,, it is 
easy to obtain 

1 , Z l  

The amplitudes U"', V"', Y "', and Q "' are defined as 

where U, ,vk ;ukl vkl are the u-v transformation coefficients, 
1=k1, 

i x v ( l + x i 2 )  'Iz [ B ( l + x ~ ~ ) - p l  e - l k , X U L  

P ( I ,  2 , )=A  (kiL-kzL) 2p (2xoS2,) '' 
ch ( n x i / 2 )  

Here A (k) is the Kronecker delta and q = k ,, - k ,, . 
The first term in H y )  describes the scattering of volume mag- 
nons by the wall, the second the transformation of a volume 
magnon into a surface one, and so forth. It can be verified 
that the Hamiltonian Hy) makes no contribution to the 
damping force in the leading order of perturbation theory. 
For terms of the type b ,f b,,, this is obvious. As for the 
scattering processes, we note that their contribution in first- 
order perturbation theory is determined by a formula such as 
(19) below. From an analysis of the conservation law in this 
equation it follows that x: - x: a v(xl - x,). Consequent- 
ly the contribution of H y'  to the damping force contains the 
same power of the velocity as H y) (the same situation obtains 
in the problems of Refs. 4 and 5). It is therefore necessary in 
the calculation of the damping force to take H f )  into ac- 
count in first-order perturbation theory, and with it the two 
next orders of perturbation theory in H y )  (Ref. 4). The Ha- 
miltonian H f )  contains the terms of the same type as H y), 
but in contrast to Hy' the corresponding amplitudes 
U'2', V"', Y'", and Q '2' are proportional to the square of the 
DW velocity and do not contain the factor x:-xi. 

To avoid lengthy calculations in the next orders of per- 
turbation theory, we use the method proposed in Ref. 5. We 
carry our a unitary transformation of the operators b, to 
new operators c, in accord with the formula 
b, = S +ck S, S = exp (iK ), K + = K. We choose the op- 
erator S to satisfy the condition that the Hamiltonian, writ- 
ten in terms of c and c+, contain no terms linear in v. It 
suffices for this purpose to choose 

H,"' + i [ H 0 ,  K ]  =O. 

For the two-magneton Hamiltonian we obtain ulti- 
mately (see Ref. 5 for details) 

The Hamiltonian Hint is quadratic in u, but contains 
terms of like order in the parameterp/P. It suffices to take 
Hint into account in first-order perturbation theory; contri- 
bution to the damping force are then given only by the terms 
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of the type c: c k l ,  (Refs. 4,5). The amplitudes for this term 
are easily written. It follows from an analysis of (19) that we 
need only the value - of the amplitude at k ,, = - k, ,  , i.e., at 
k2 = k,,k, = k, k, = - k, . Then 

+ ( u"' (k, P) u(') (p, @ - ~ ( ' ) ( k ,  p) (p, &) 
P &h. - Ep &k f Ep 

The first term in this equation is due to H 12'. The second 
and third describe the effective allowance for the next order 
of perturbation theory in H 11). Here U"',V"',!P'", and @ "I 
are the amplitudes contained in H f'and defined by Eqs. (16). 

Changing in (1 7) from summation over p to integration 
and calculating the corresponding integrals with respect to 
p, , we obtain the sought expression for U,,. This calculation 
turns out to be quite complicated and can be effectively car- 
ried out only after expansion in powers of the small param- 
e t e r ~ /  8 .  It turns out then that the terms proportional to (8 / 
P)2 and 8 /p vanish identically. The first nonvanishing term 
of U,, does not containp and can be represented in the form 

The effective amplitude (18) turned out to be proportional to 
k:, i.e., U,, vanishes in the one-dimensional case. Let us 
examine the meaning of this result in greater detail. The van- 
ishing of the amplitude U,, and the absence of dissipation 
should not cause surprise, for in the one-dimensional case 
the model (1) can be integrated exactly by the method of 
inverse problem of perturbation t h e ~ r y . ~  It follows from this 
fact that the scattering amplitude of a spin wave (including a 
nonlinear one) vanishes exactly on a domain wall that moves 
with arbitrary velocity u < u, and at any ratio of p and 8 .  
Our calculations, adapted for the analysis of the three-di- 
mensional case, reflect this fact. 

In the three-dimensional case the model (1) is no longer 
integrable. As a result there appear at k, # O  a nonzero am- 
plitude of magnon scattering by a DW (18) and a finite con- 
tribution to the damping force. A memory of the exact inte- 
grability magnifests itself in the dependence of the effective 
amplitude on the vanishing and in its vanishing at u = 0 or 
k, = 0, i.e., U,, oc v2k :. 

We proceed now to the actual calculation of the two- 
magnon damping force F2. For F2 at u ( w g ,  we easily ob- 
tain 

The additional small factor (T/E,)' appeared at low 
temperatures because the amplitude is proportional to k:. 

3. CONTRIBUTION OF THREE-MAGNON PROCESSES TO THE 
DAMPING FORCE 

Proceeding to the study of the contribution of three- 
magnon processes to the damping force, we note the follow- 
ing. The Hamiltonian H, does not contain the singular terms 
discussed above. The damping force due to H, is in the three- 
dimensional case a regular function of p/P, and we confine 
ourselves to the first nonvanishing term, which does not de- 
pends onp. In the three-dimensional caseH, leads to a linear 
dependence of the damping force on the velocity. To calcu- 
late it we can disregard in the present section the changes 
produced in the DW structure by its motion. With allowance 
for the foregoing remarks, we obtain the expression 

where a,  is the interatomic distance and s is the spin of the 
atom. 

In the representation (lo), the Hamiltonian (21) takes 
the form of a sum: 

d n H 3 , H ( 3 v ) + H ( 2 n + 8 ) + ~ ( w + z s )   nu p2 (- %) I u." (kt, L) 1'6 ( E ~ - E ~ ) ,  t P I  
1,2 where the superscripts indicate the magnon types that par- 

n=lz (E) = (eelT- I)  -', 
(I9) ticipate in the process, while u and r denote the volume and 

surface magnon, respectively. We obtain for H(3u) 
where n is the equilibrium Bose distribution function. 

Analytic calculation of the integrals in (19), with H(3u) = {Q, (2,13) c2+cIca+H.a.), (23) 
allowance for the fact that the effective amplitude itself con- 1,2,3 

tains integration, is possible only in the limiting cases of high where 
( T )  E,) and low ( T  ( E,) temperatures: 

v T ( T / 2 n ~ ~ ) ~  e x p ( - - ~ ~ / T ) ,  T<co 
CS (2,131 

..=(,,I a I eo<T ' (20) - -- 
i n ~ ~ x ~ a ~ " ~  (l+x2" ' I2 ( I + X ~ ~ + X ~ ~ - ) C ~ ~ )  A (kil+k31-kzL) 

rll? 
2Q,[2sQ (1+xi2) ( l+xi2) 1''. ch[n (xi+x,-x2)/2] 

where 7, is an elaborate integral whose numerical value is 
5.23. lop5. x exp [ iut ( kl,-tk3,- kZx) I .  
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This operator describes the conversion of one exchange mag- 
non into two others and the inverse processes: v,  + v, ++ v,. 

The Hamiltonian H('"+"' describes processes of the 
type v tt v' + s: 

where 

Finally, the operator H("  + '") describes processes of the type 
S + sf tt u: 

where 

ine0a," ( I + % ; )  yzA (kil+ik31-k21) 
@S ( 1 ~ ~ 2 ,  3 ~ )  =-F exp (ikz,vt). 

4 (2sP) " ch[nxz/2] 

After standard calculations we obtain for the damping force 

We shall write out the final expressions for two limiting 
cases. 

At low temperatures T ( E~ we obtain 

where sJo = ~ , (x , / a )~  is an energy of the order of the Curie 
energy. The first, second, and third terms in the curly brack- 
ets describe respectively the contributions 
H(3") ,H(," + "1 ,H(' + *') . It follows from (27) that themaincon- 
tribution to the damping force F3 is made at low tempera- 
tures by processes in which one volume and two surface 
magnons participate, u tt s + s'. This contribution is larger 
than the contribution of processes of the type u, + v3 tt v2 
considered in Ref. 4. 

At high temperatures T > E, the force is given by 

where the sequence of the terms is the same as in (27). Here 

77, stands for an elaborate mutliple integral whose numerical 
value is 0.14. If the slowly varying function ln(T/~,)  is disre- 
garded, the contributions of all three terms have like tem- 
perature dependences. 

Since E~ -- 0.3 K at HA = 0M0-.2 kOe, the characteris- 
tic value at TZ  300 K is ln(T/~,)  -- 6-7. Consequently the 
contributions of all types are comparable at room tempera- 
ture. 

It follows from the presented analysis that the flexural 
vibrations of the DW (surface magnons) make the decisive 
contribution to the damping force at low temperatures, but 
they must also be taken into account at room temperatures. 

4. CONCLUSION 

Let us discuss the general picture of the DW relaxation 
in a rhombic ferromagnet of energy (1). This model is exactly 
integrable in the one-dimensional case. Analysis has shown 
that the soliton relaxation in this model is due to violation of 
the exact integrability on going to the three-dimensional 
case. 

The damping force consists of two- and three-magnon 
parts F, and F3. The effective amplitude of magnon scatter- 
ing by a DW, which determines I;;, is equal to zero in the 
one-dimensional case. In the three-dimensional case the 
memory of the exact integrability of the system manifests 
itself in the absence, from the damping force F,, of a term 
linear in the velocity. The relation F a v is the result of only 
three-magnon processes, because their amplitude is more 
strongly modified in the three-dimensional case than in the 
one-dimensional.' Indeed, the amplitude (23), which de- 
scribes processes involving three volume magnons, contains 
a factor 1 + xg(k f, + k :, - k L). In the one-dimensional 
case this is rewritten as E~ + c3 - E,, and the amplitude van- 
ishes on the mass shell. At the same time, in the three dimen- 
sional case this factor, with account taken of the conserva- 
tion law in (26), is x i  (k f, + k :, - k ;, ), and the amplitude 
makes a finite contribution to F3. The contribution of the 
three-magnon processes, however, contains additional fac- 
tors that are small compared with F,, of the type T/T, and 
E~/T,, where T, -sJ, is the Curie temperature of the mag- 
net. This means that the contribution F2 of the two-magnon 
processes which is small in the parameter v/o+,, can be- 
come comparable with the contribution of the three-magnon 
processes at a sufficiently low velocity v = v. (T) .  From (27) 
and (28) we can obtain 

v. (T) =lOooxo 

This value of the velocity determines the transition 
from a linear velocity dependence of the damping force to an 
essentially nonlinear one. The transition from the regime 
F a v and F a us leads to a change of the experimentally 
determined dependence of the velocity of the stimulated mo- 
tion of the DW on the external field: v a H 'I' at v > v.  (T) 
(Refs. 4 and 5). The transition to the v a H 'I' regime is simi- 
lar to velocity saturation in a strong field. Such a saturation 
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is frequently observed already at v < v w  in experiments on 
iron garnet films.3 

Let us estimate u. ( T ) .  It can be seen from (29) that u. ( T ) ,  
unlike in a uniaxial ferromagnet, has a nonmonotonic tem- 
perature dependence. Using the values H A  =;2 kOe, i.e., 
~ ~ ~ 0 . 3  K and T ,  - lo3 K ,  which are typical of epitaxial 
iron-garnet films, we find that u. - v ,  at room temperature. 
The conditions for realizing the effect at low temperatures 
are more favorable, since u. has a minimum at T - E ~ .  Using 
(29) at T-eO,  we obtain v .  - 10-2w,,x, ( u w .  It can also be 
seen from (29) that the nonlinearity of u ( H  ) manifests itself 
most strongly in weakly anisotropic magnets with high Cu- 
rie temperature. 

We are grateful to V. G. Bar'yakhtar for helpful advice 
and discussions, to I. V. Bar'yakhtar and A. L. Sultanskii for 
a discussion of the work, and the E. V. Malanushenko for 
help with the numerical calculations. 

"The model of a uniaxial magnet with dipole interaction, considered in 
Ref. 4, is equivalent in the one-dimensional case to the model (1), but 

cannot make allowance for the contribution of the DW flexural oscilla- 
tions to the damping force because the interaction has a nonlocal charac- 
ter in the three-dimensional case. 

'A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Dinamicheskie i topo- 
logicheskie solitony. Nelineiye volny namagnichennosti (Dynamic and 
Topological Solitons. Nonlinear Magnetization Waves), Kiev, Naukova 
dumka, 1983. 

'V. G. Bar'yakhtar, V. V. Gann, Yu. I. Gorobets, G. A. Smolenskii, and B. 
N. Filippov, Usp. Fiz. Nauk 121, 593 (1978) [Sov. Phys. Usp. 20, 298 
(1978)l. 

3A. P. Malozemoff and J. Slonzuski, Domain Walls in Materials with 
Magnetic Bubble Domains [Russ. transl., Mir 19821. 

4A. S. Abyzov and B. A. Ivanov, Zh. Eksp. Teor. Fiz. 76,1700 (1979) [Sov. 
Phys. JETP 49, 865 (1979)l. 

'V. G. Bar'yakhtar, I. V. Bar'yakhtar, B. A. Ivanov, and A. L. Suk- 
stansky, A Kinetic Equation for Kink-Type Solitons. Preprint ITP-82- 
166, Kiev, 1983. 

'E. K. Sklianin, On Complete Integrability of Landau-Lifshitz Equation, 
LOMI-preprint E-3-79, Leningrad, 1979. A. E. Borovik and V. N. Ro- 
buk, Teor. Mat. Fiz. 46, 371 (1981). 

'A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii. Spin Waves, 
Wiley, 1968. 

RJ. M. Winter, Phys. Rev. 124, 452 (1961). 

Translated by J. G. Adashko 

173 Sov. Phys. JETP 60 (I), July 1984 Ivanov et al. 173 


