
Effect of slow molecular motions on nuclear magnetic relaxation under "magic- 
angle conditions" 

V. A. Atsarkin 

Institute of Radio Engineering and Electronics, Academy of Sciences of the USSR 

T. N. Khazanovich 

Institute of Chemical Physics, Academy of Sciences of the USSR 
(Submitted 16 December 1983) 
Zh. Eksp. Teor. Fiz. 87, 279-288 (July 1984) 

The effect of slow molecular motions on the transverse and longitudinal nuclear magnetic relaxa- 
tion in a condensed medium is analyzed. The relaxation is assumed to occur in effective fields 
which act in a rotating coordinate system and a doubly rotating coordinate system under condi- 
tions such that the NMR line is narrowed by the "magic-angle method" of Mefed and Atsarkin 
[Sov. Phys. JETP 47,378 (1978); 59, 172 (1984)l. The Bloch-Redfield method is used. In addition 
to the ordinary nonsecular terms of the dipole Hamiltonian, an effective secular Hamiltonian, 
which arises in second-order perturbation theory, is taken into account. The validity of this 
approach is confirmed by calculations for a model of two isotropically reorienting spins 1/2 
carried out by a random-trajectory method. In a certain interval of correlation times T, a slow 
molecular motion promotes an rf suppression of the dipole width of the NMR line in a rotating 
coordinate system. The width reaches a minimum at 7; ' on the order of the local field in a rigid 
lattice. The longitudinal relaxation time in a doubly rotating coordinate system is particularly 
sensitive to the details of "superslow" molecular motions (T, - 10-3-10-2 s), so that measure- 
ments of this time may prove to be an effective method for studying these motions. 

1. INTRODUCTION 

Studies of nuclear spin relaxation yield extensive infor- 
mation on the atomic and molecular motions in condensed 
matter (see Refs. 1 and 2, for example). The longitudinal 
relaxation time TI in a static magnetic field H,, for example, 
is particularly sensitive to motions with correlation times 
rC -(yHo)-1-(10-8-10-6)s, where y is the nuclear gyro- 
magnetic ratio. To learn about slower motions one measures 
the longitudinal relaxation time TI, in an effective field He 
acting in a rotating coordinate system. The correlation times 
involved in this case are considerably l ~ n g e r , ~  
T, - (yHe ) - I  -(10-5-10-4) s. Correlation times T, in ap- 
proximately this range can also be studied by measuring the 
effective transverse relaxation time in narrowing multipulse 
NMR  experiment^^^ and by several other  method^.^ In 
many cases, on the other hand, we are interested in even 
slower motions, e.g., those characteristic of the vitrification 
region in amorphous substances, of the dynamics of macro- 
molecules, and of low-temperature diffusion in solids. There 
is a difficulty in moving into this region, however: In mea- 
surements of T ,, the effective field He cannot be weaker 
than the local field in a rigid lattice, which would typically be 
(in frequency units) w, - lo4 s-I. Certain approaches to the 
solution of this problem have recently been ~uggested.~.~ In 
the present paper we discuss yet another approach, which 
involves the novel method proposed by Mefed and Atsar- 
kin1'." for observing NMR. The idea is to directly detect 
NMR signals and to measure the relaxation in effective fields 
He and H: which are acting in a rotating coordinate sys- 
tem'' and a doubly rotating coordinate system," respective- 
ly. By imposing the field He in the "magic" orientation one 
can suppress the dipole width of the NMR line to values on 

the order of" 10' Hz. Mefed and Atsarkinl'." believe that 
this suppression raises the possibility of using this method to 
study "superslow" motions with T, -(10-3-10-2) s. We of- 
fer a theoretical analysis of this problem here. 

Two general approaches are taken in the theory of nu- 
clear magnetic relaxation. The first is based on the Bloch- 
Redfield equation for the spin density matrix (see Refs. 1 and 
12, for example). The spin interactions are treated in second- 
order perturbation theory, but this treatment is valid only 
for rather fast molecular motions, with T, (w, -'. The sec- 
ond approach is the random-trajectory method, also known 
as the method of the stochastic Liouville eq~ation.''-'~ Al- 
though this approach is considerably more complicated, it is 
applicable to arbitrarily slow motions, provided that they 
can be modeled by a random Markov process. 

The first of these approaches has been taken to describe 
the nuclear relaxation in a rotating coordinate system at the 
magic angle of Haeberlen and W a ~ g h . ~  We will expand their 
analysis here, moving partly up to the next order of perturba- 
tion theory and thereby obtaining a qualitatively new result, 
as we will see. 

A similar approach will be taken to analyze the longitu- 
dinal relaxation in a doubly rotating coordinate system. The 
results will then be tested and generalized by the random 
trajectory method for two specific models of the reorienta- 
tions of a molecule with two spins 1/2. 

2. RELAXATION IN A ROTATING COORDINATE SYSTEM 

A spin system is in a strong static magnetic field Ho((z 
and an rf field 2H1 cos wt, where w = yHo + A; the rf field is 
perpendicular to the static field. For molecular motions sa- 
tisfying the condition yH0r,, 1, we should consider only the 
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secular part of the dipole-dipole interaction. If we transform 
to an oblique rotating coordinate system in which the Z axis 
makes an angle 6 = arctg (yH,/A ) with the field H,, i.e., in 
which this axis is directed along the effective field He ,  then 
we can write the Hamiltonian of the spin system as (see Refs. 
1 and 12, for example) 

kp=~efZ+%dp,  ( I )  

where we = yH, = [A + (yH,)2]112 is the Larmorirequen- 
cy of the nuclei in the effective field, the operator I, repre- 
sents thezcomponent of the total y i n  of the system, and the 
dipole-interaction Hamiltonian ZdP can be written (see 
Ref. 6, for example) 

Here 

ri, is the length of the vector r, , which connects spins i and 
k; pi, is the angle between r, and the Z axis; d i n  (6 ) is the 
Wigner function of the Euler angles 0, 6, 0; 

P.V 

is an irreducible spherical tensor constructed from the oper- 
ators of the spherical components of the spins i and k; and 
C ::,,,, is a Clebsch-Gordan coefficient. 

Everywhere below we assume we )wL . The problem of 
relaxation in a system of two spins under this condition was 
solved by Haeberlen and Waugh4 for correlation times 
rc (WL I .  We know that the longitudinal relaxation time in a 
rotating coordinate system is determined exclusively by the 
terms of Hamiltonian (2) which are nonsecular with respect 
to the effective field, while the transverse relaxation time T2, 
is also determined by a secular term (with m = 0). When the 
angle 6 takes on the magic value 

OM=arccos (1/13), 
however, the coefficient dk(6,) vanishes; i.e., the secular 
part of Hamiltonian (2) vanishes. As a result, the expressions 
for T and T g '  turn out to be similar: Each reaches a 
maximum near rc = w;' and falls off monotonically on 
each side of this maximum along the rc scale. 

For TG' ,  however, this result is actually nothing more 
than a consequence of the assumption adopted in the calcu- 
lations. We know that in a rigid lattice (i.e., in the limit 
rc -+w) the width of an NMR line in a rotating coordinate 
system with 6 = 6, does not vanish and is determined by 
the "secular" dipole interactions, which can be separated 
from the nonsecular part of Hamiltonian (2) in second-order 
perturbation theory.15-" The corresponding effective secu- 
lar Hamiltonian was calculated in Refs. 16 and 17. For a 
system of spins 1/2 this Hamiltonian can be written 

1 + - bi,b.. [fi,o (ikl) +Gin (ikl) I ,  
(I). 

where 

and 

7 
fi3,,, (ikl) = -=E ~~~~~~~f~~ (kl) 

2115 

are irreducible tensors of ranks 1 and 3, respectively. 
For the rest of this section of the paper we adopt the 

same simple model as was analyzed by Haeberlen and 
Waugh4: an isotropically reorienting system of two spins 1/2 
separated by a fixed distance r. In &his case we are left with 
only the first term, proportional to I,, in Hamiltonian (3). In 
a rigid lattice this term leads to only a slight shift of the 
resonant frequency w, (Ref. 17), but under conditions of mo- 
lecular motion it also contributes to the relaxation, since b ik 
becomes time-dependent by virtue of the fluctuations in the 
angle pik . This term, however, is not averaged to zero by the 
thermal motion: 

where the angle brackets denote a statistical average over the 
lattice variables, and where we have used wi  = 3y4+i2/20r6. 
We write 

where 

(here we are omitting the subscripts from bik ). The first term 
in Hamiltonian (4) thus leads to a small constant shift of the 
frequency we, while the second term causes relaxation. 

We now introduce the local field in the rotating coordi- 
nate system, averaged over the angle, w,, : 

oL;=Sp ( (&don0) '>/Sp fz2=26)L4/70e2. (7) 
We assume that the correlation time of the molecular motion 
lies in the range a; '(rC (o~, ' .  The first of these inequalities 
allows us to ignore the nonsecular Frms of Hamiltonian (2), 
and the second allows us to treat G $ as a slight perturba- 
tion. Using the familiar method',4 for deriving the Bloch 
equation, we find that the contribution to the transverse re- 
laxation rate from secular Hamiltonian (5) is 

where we have introduced the spectral densities 
0 

JL(a)=4n Sdt(yLm(t) YLmq(0) )COS ot, (9) 
0 

and YLm is a spherical harmonic of the polar angles of the 
vector r,,. 

The quantity 1/T$ is proportional to the correlation 
time, and at 7, 5 w; it is negligibly small in comparison 
with the relaxation rate 
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due to the nonsecular terms of Hamiltonian (2). We can 
therefore join the regions w, '(7, (mi,' and T, 5 w; ', set- 
ting 

Tzp-l= (T:) ) - I +  (T:;) )-I .  (11) 

Relation (1 1) means that we are adopting the expression 

as the effective Hamiltonian at 8 = 8,. Strictly speaking, 
Hamiltonian (12) is "illegitimate," since its first term was 
derived from its second term. However, when Hamiltonian 
(12) is analyzed in 2econd-order perturbation theory in a re- 
laxation problem, G $! gives the fourth-order terms approxi- 
mately. 

For several simple models of rotational motion, the 
spectral densities (9) have a Lorentzian shape,18 

JL ( 0 )  = T L / ( ~ + ~ ~ T L ~ ) .  (I3) 

In particular, for a model of arbitrary jumps all the T, are 
equal to rC , and in the other limit-of diffusive motion-we 
define rL by 

T L = [  6 l L  ( L + l )  T,. 

The first model leads to a simple expression for the trans- 
verse relaxation rate: 

It is clear from this discussion that expression (14) holds as 
long as the inequalities wLp (0, go, do. Under typical ex- 
perimental c~nditions,'~*" these inequalities hold by a wide 
margin. 

Figure 1 shows T ,, ' as a function of rC- ' according to 
(14) for the typical ratio @,/aL = 30. We see that the incor- 
poration of the new secular Hamiltonian (5) gives rise to an 
ascending branch on the T,, ' (T; ') curve in the region of 
slow motions. This result means that in addition to the ordi- 
nary maximum in the width of the NMR line at T= z w; ' we 
have also acquired a fairly deep minimum at rC - 0, I. We 
wish to emphasize that the maximum broadening due to the 

FIG. 1 .  The transverse relaxation rate in the rotating coordinate system 
versus the reciprocal of the correlation time for a two-spin system with 
8 = 8, and w,/w, = 30. 1-Model of random rotational jumps; 2- 
model of a rotational diffusion; curves--calculated from Eqs. (8), (lo), and 
( 1  1); points-results of a numerical solution of Eq. (17); horizontal line- 
the limit of a rigid lattice. 

motion here (under the condition rC we = 1) agrees in order 
of magnitude with w,,, i.e., with the width of the line in a 
rigid lattice. It follows that for correlation times in the inter- 
val o,,' > rc > we- ' the molecular motion promotes an rf 
suppression of the dipole interactions, improving the resolu- 
tion of this method. 

This conclusion agrees with some recent results19 on 
multipulse narrowing, but it contradicts the widely held 
opinion that a natural (thermal) motion of spins could only 
hinder an artificial "mixing" of these spins by means of rf 
fields (see Refs. 4 and 6,  for example). 

We turn now to the solution of this relaxation problem 
by the random trajectory method. For the system under con- 
sideration here Hamiltonian (2) depends on the parameter 
x = cos 8, so that we need to introduce a spin density matrix 
$(x,t) in the random trajectory method to represent those 
spin pairs for which this parameter has a given value. The 
stochastic Liouville equation is 

h 

where the operator r characterizes the Markov process of 
the motion [the probability that the molecule willkave the 
orientationx satisfies theequationdp (x,t )/at = - r P  (x,t )I. 
The standard way to analyze Eq. (15) is to reduce it to an 
infinite system of ordinary differential equations through an 
expansion-of the density matrix in the eigenfunctions of the 
operator r: 

For simple models of isotropic rotation, in which the spec- 
tral densities are of the form in (13), a convenient system of 
functions g,  (x) is the system of normalized Legendre poly- 
nomials of even index: 

gk (x )=  (2k+ ' / ~ ) " ~ P 2 k  ( x )  . 
In this case we have 

h 

(we have Tgo = 0 by virtue of the conservation of the norma- 
lization of the probability P ). The single-sided Fourier trans- 
formation 

$k (S) = j  ^pk ( t )  exp ( - i s t )  dt  
0 

converts the differential equations into algebraic equations. 
If we assume s = pwe + u(u = 0, + 1) and a(@,, we can 
show that by ignoring terms of order wL /we, which are 
small in comparison with unity, we can obtain three uncou- 
pled systems of equations which are satisfied by the coeffi- 
cients 

m 1 

f p k  (0) = 5 d t  e- .Ot  5 S,(r, t )  gk ( s )  d r .  
0 - 1 

HereS,(x,t ) = S, (x,t ) is the spin polarization along the effec- 
tive field of the pairs of spins which have the orientation x at 
the time t, and S,, (x,t) = f (S, i S , ) / ~  are the trans- 
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verse polarization components, which rotate at a frequency 
we around the effective field. It follows that the df,, are the 
Fourier transforms of the total spin polarization, while 
Ref, ,,,(a) describes the shape of the line which can be ob- 
served at 8 = 8,. The equations for f,, are 

j 

where 

Q;) 

and {, = we r2,. If the molecular motion is slow enough to 
satisfy T, )a; l, and if we can ignore terms of order T; in 
comparison with we in (19), then we can write 

- i 
It follows from (1 5) that expression (20) corresponds to Ha- 
miltonian (3). 

We turn now to Eq. (17), and we assume that the ther- 
mal motions are so fast that the following condition holds: 

' C , ~ O , / O L ~ .  (21) 

As follows from (17)-(19), under this condition we have 
f,, GPO for k > 0. If we also assume that the condition 
arc (1 holds along with (21), we can write 

It follows from this discussion that Eqs. (22) are Fourier 
transforms of the Bloch equations with the relaxation times 

Substituting (1 8) and (1 9) into (23), we find, in particular, 

In this expression the first term is the same as 1/Tt) [see 
(lo)]. It can be shown that if (13) holds then expression (24) 
will be essentially the same as (1 1). This means that the sim- 
plified analysis which we began with is actually based on the 
"eclectic" Hamiltonian (12), which has proved to be a rather 
good approximation. 

Expression (23) for TIP is essentially the same as the 
relation derived by Haeberlen and W a ~ g h . ~  It is not difficult 
to show that this result also applies to slower motions which 
would violate condition (21). Specifically, we note that (18) 
and (19) tells us that all the R g'are on the order of W ~ T ,  /w:, 
i.e., much smaller than the diagonal coefficients with k > 0. 
It follows that for arbitrary T, we can assume 

(0) T,p-l=-iQoo , 
which again agrees with Hamiltonian (12), since the secular 
terms do not contribute to the longitudinal relaxation. The 
fact that Hamiltonian (12) is successful in describing the re- 
laxation in the region of slow motions raises the hope that it 
may also be possible to describe the relaxation in multipulse 
experiments in the region of slow motions if the fluctuating 
part of the average Hami l t~nian~. '~  is treated in second-or- 
der perturbation theory. 

To go beyond restrictions (2 1) in the description of the 
transverse relaxation and to obtain a gradual transition to a 
rigid lattice we must solve Eq. (17) directly; this solution 
requires numerical methods, but the calculations are simpli- 
fied substantially by the fact that we can use approximation 
(20) in the region of superslow motions. 

The points in Fig. 1 are line half-widths calculated from 
Eq. (17) under approximation (20). The calculations were 
carried out by the Lanczos a l g ~ r i t h m . ~ ~ . ' ~  As the limit of a 
rigid body is approached, the line becomes non-Lorentzian, 
acquiring two peaks which become singularities in the limit 
T, + w . In this region, the distance between those points on 
the outer slopes of the peaks which are at half the height of 
the highest peak is adopted as the line width. Shown for 
comparison by the horizontal line in Fig. 1 is 5wi/ 
16we z0.58wLp, half the distance between the singularities 
in the limit of a rigid lattice. 

We see from Fig. 1 that there is a completely definite 
region of motions with T, )wL in which the results of the 
numerical solution of Eq. (17) are essentially the same as the 
curves plotted from (8), (lo), and (1 1). 

The reason for the somewhat nonmonotonic behavior 
of T g as a function of T; ' at (w, T, ) - I  < 10W2 is somewhat 
arbitrary method we have used to determine the line width; 
this nonmonotonic behavior has no real significance. 

3. LONGITUDINAL RELAXATION IN A DOUBLY ROTATING 
COORDINATE SYSTEM 

We turn now to the experiment of Ref. 1 1, in which the 
condition 6 = 0, was maintained, and in addition another 
alternating field 2H,cosR t was imposed in the direction 
perpendicular to the effective field, with a frequency and a 
strength satisfying R = we + A ' and yH2)wLp. In the dou- 
bly rotating coordinate system (the second rotation is 
around H, at the frequency R ) a new effective field H :  
= [(A ' / Y ) ~  + Hi]112, is acting. This field makes an angle 
8 ' = arctg(yH2/A ') with the "old" field. In an oblique dou- 
bly rotating coordinate system whose Z '  axis is directed 
along H i ,  the Hamiltonian of the system becomes 
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A 

where w: = yH :, and the operator ZdPP represents the di- 
pole interaction in the double rotating coordinate system. 

To analyze the longitudinal relaxation in the region of 
superslow motions we follow the recipe formulated in the 
preceding section: We form Xdpp from the sum of Hamilto- 
nians (2) and (3), transformed into the doubly rotating coor- 
dinate system. Fr~m~Harniltonian (3) we must single out the 
expectation value ( e p p ) ,  since it may in general be non- 
zero. We thus have 

& - - 0 0  
dop - Gdpp f &$p, @Opp = %::p - <$?::p) (25) 

and for N spins 1/2 we find 

+ 1 z Dik, [z don1 ( 0 ' )  c,.' ( i k l )  
0, 

I f k f l  (26) 

where B,, = b f, - ( b  f, ) [cf. (7)] and Dl,, = b,, b,, - 
(b, ,  b , , ) .  The primes on the operators mean that they are 
acting in the oblique double rotating coordinate system. 

The Bloch equations are strictly applicable only to a 
two-spin system.' The relaxation of a multispin system may 
be nonexponential, but even in this case the standard expres- 
sions for the relaxation times (see Ref. 12, for example) give 
us the initial slope of the relaxation curve. It is in this sense 
that we should understand T ,, , the longitudinal relaxation 
time in the doubly rotating coordinate system, which will be 
calculated from Hamiltonian (25). By analogy with partition 
(8), we introduce the times T FP and T (,A, defined by Hamil- 
tonians (26) and (27), respectively. The terms in these Hamil- 
tonians which are secular in the effective field H: are propor- 
tional to d & (6' ') or d &(6' '), vanishing at 6' ' = ~ / 2 ;  i.e., this 
angle is a magic angle in the doubly rotating coordinate sys- 
tem." For 6' ' = ~ / 2  we find 

1 -- - 9 { z J . k , i h ( u e f )  + z b k , i i  ( 0 1 ' )  
T(" 64a,2N ,+h 

i P P  i f k f  1  

[t ~ i k 1 , i k l  ( m e r )  
i f k f  1 (28) 

where we have introduced the spectral densities 
m 

I i h , i ~ k  ( a )  = J dt  cos 0 t (Bik( t )  B i , k -  (0) ), 
0 

Comparison with (10) shows that we have T(,'d, = Tyj. In 
particular, for a two-spin system which undergoes reorienta- 
tions in arbitrary jumps (see the preceding section) we have 

The first term, 1/T v p ,  can be comparable to the second only 
in that interval of slow motions in which the condition 
7, 2 (0:)-' holds; for faster motions, the first term is negligi- 
bly small. If yH,(w,, on the other hand, then in the region 
7, 2 (w:)-' the first term will be predominant, and the curve 
of T ;,' versus 7; ' will have a maximum at 7; = w:. 

The longitudinal relaxation of this model two-spin sys- 
tem in a doubly rotating coordinate system has also been 
analyzed by the random trajectory method, by analogy with 
the preceding section. We again found that if we ignore the 
terms of order w, /we and wi /we w: in comparison with uni- 
ty we find a result for T ;,d which is essentially the same as 
(30). As in the case of T G', we find that relation (30) holds for 
arbitrary 7, within the specified accuracy. We may thus ex- 
pect that result (28) and (29) for a multispin system will also 
be valid at arbitrary rc -more precisely, as long as T ,, is 
smaller then the corresponding relaxation time in a rigid 
lattice. 

Figure 2 shows curves of T ;rpd versus 7;' calculated 
from (28) and (29) for two spins separated by a fixed distance 
and for three spins at the vertices of an equilateral triangle 
under the assumption that the isotropic rotation occurs ei- 
ther in a diffusive manner or in arbitrary jumps. We see that 
there are extrema or inflection points on the curves at 7,-' 

zw:, i.e., at 7, -10-3-10-2 s. Consequently, measure- 
ments of T ,, by the method of Ref. 11 can indeed furnish 
information on some extremely slow molecular motions. 

We wish to emphasize that, as can be seen from Fig. 2, 
we have the freedom of choosing between different models 
for the molecular motion; there is essentially no such flexi- 
bility in the measurements of T,, . To illustrate the situation 

FIG. 2. Longitudinal relaxation rate in a doubly rotating coordinate sys- 
tem versus the reciprocal of the correlation time for 8 = OM, 8' = n/2, 
O,/oL = 30, and o:/oL = 0.1. 1-Model of random rotational jumps; 
2-Model of a rotational diffusion; solid lines-two-spin system; dashed 
lines-three-spin system. 
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we could plot, instead of (Tl,oL)-' in Fig. 2, the corre- 
sponding curves for the quantity (T lpoL  ) - I ;  we would find 
that all four curves merge to form a common curve. The 
reason why the measurements of TI, are more informative 
is that, according to (28), the values of T ,, are expressed in 
terms of both two-particle and three-particle autocorrela- 
tion and cross-correlation functions, not simply in terms of 
two-particle autocorrelation functions, as T, and TIP are. It 
would be particularly promising to use measurements of 
TI, to study diffusion in crystals, since in diffusion by a 
vacancy mechanism there would be a correlation in the mo- 
tions of the atoms which would have a slightly effect on the 
values of T,and T ,, (Ref. 23). Measurements of T ,, thus not 
only extend the range of motions which can be studied but 
also furnish substantially more information about these mo- 
tions. 

We thank M. I. Rodak and A. E. Mefed for a discussion 
of these results. 
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