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The purpose of the paper is to draw attention to the existence of a mechanism whereby microwave 
fields exert a strong influence on the mechanical motions in a system of ferromagnetic particu- 
lates. It is shown that, upon the excitation of high-Q ferromagnetic resonances in the particles, the 
magnetic retardation of their relative motions is replaced by acceleration of appreciable magni- 
tude. Because of this, a microwave field can be used to effect magnetic separation and control the 
mobility of magnetic bodies. The effect in question exhibits a nonlinear mechanism typical of 
physical systems of different natures, which makes it possible to effectively control the mobility of 
bodies, particles, impurities, etc. with the aid of high-frequency fields that excite internal reson- 
ances in the mobile objects or resonances in the surroundings. The distinctive features of the 
mechanism are investigated in the simplest formulation of the problem. The scales of the effect are 
estimated, and an experiment that can be performed on magnetic substances located in micro- 
wave fields is discussed. 

I. INTRODUCTION 

One of the aims of the present paper is to point out an 
interesting possibility of overcoming with the aid of high- 
frequency fields the magnetic cohesion of magnetic particu- 
lates that have come together. It is clear that a strong vari- 
able magnetic field that deflects the magnetic moments in 
the particles from their equilibrium positions through angles 
- r /2  can bring about a situation in which the attractive 
forces are replaced by repulsive ones. We shall discuss possi- 
bilities of another kind, which arise upon the excitation of 
magnetic resonances in the particles, and can manifest them- 
selves even when the spin-precession angles in the particles 
are quite small. This force effect is due not to the replace- 
ment of attraction by repulsion but to the replacement of 
magnetic retardation by magnetic acceleration. 

The effect in question is by itself interesting, and may be 
of interest in connection with its possible technological ap- 
plications, e.g., for the control of the mobility of magnetic 
bodies and for effecting magnetic separation. It also exhibits 
a strong and universal nonlinear mechanism that allows the 
control of the mobility of bodies, particles, impurities, do- 
main walls, etc., with the aid of high-frequency fields that 
excite internal resonances in the mobile objects or reson- 
ances in the surroundings. 

Nonlinear interactions (with resonances) of a similar 
nature within the framework of the vibrational mechanism 
have been repeatedly considered to one extent or another in 
the literature before, but in connection with other physical 
problems. Here, as an example, we can cite the parametric 
Mandel'shtam-Papaleski motor,' whose operation is based 
on the nonlinear coupling between the rotational motions of 
a rotor and the resonant stator-excitation system." Similar 
vibrational mechanisms can also be perceived in the effects 
of excitation or suppression of low-frequency waves in dis- 
persive media acted upon by high-frequency resonance 
fields, in the electromechanical-instability effects occurring 
in high-frequency cavity resonators, in the effects whereby 

the radiation damping of an atom changes when it is irradiat- 
ed by monochromatic light that is in resonance with its inter- 
nal vibrational modes. Various phenomena of this kind have 
been considered by many researchers, including the present 
author. In this connection, in Refs. 2 and 3 we developed an 
approach to their description which is basically suitable for 
the range of problems, in question here, concerning the mo- 
bility of magnetic bodies in a resonance field, and we shall 
develop the analysis, using this approach. 

In this discussion we shall start by considering the sim- 
plest models, and then proceed to make some estimates suit- 
able for the experimental situation of Ref. 4, in which it is 
noted that, when the ferromagnetic resonance (FMR) in un- 
clamped ferromagnetic samples loosely contained in an am- 
puole is strongly excited, there occur a low-frequency 
"dance" of the samples and their separation. The explana- 
tion of these phenomena that is offered in Ref. 4, and supple- 
mented in Ref. 5, turns out to be i n~o r r ec t .~  It is erroneously 
claimed in Refs. 4 and 5 that the forces and the moments of 
the magnetic forces acting on the ferromagnetic substances 
increase by many orders of magnitude upon the onset of the 
FMR, which reinforced the erroneous calculations. Here we 
only note that, in estimating the magnetic forces in the ferro- 
magnetic substances on the basis of the well-known7 expres- 
sion for the force F acting on a particle with dipole moment 
M in a field H: 

(or F = V(M . H) in the case when V x H = 0), it is absolute- 
ly essential that we take the derivatives at fixed M. Since Fin 
(1) can be regarded as a sum of forces acting on the elements 
of volume of the particle, H can be taken to be an effective 
internal field. Such a field includes the demagnetizing and 
anisotropy fields, which depend on the magnetization, 
which in turn depends on H(x). But these dependences do 
not affect F, since, in determining the magnetic forces, we 
should vary the magnetic energy as a function of all the gen- 
eralized coordinated characterizing the state of the system 
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with respect to the virtual displacements, i.e., with the re- 
maining variables, including the spin variables, fixed. The 
disregard of the fixation condition can lead to appreciable 
errors, as happens in Refs. 4 and 5. 

It is clear from estimates made with the aid of (1) that 
the orders of magnitude of the forces and the moments of the 
magnetic forces are not particularly changed under condi- 
tions of intense FMR excitation. This applies to the forces in 
a system of interacting magnetic bodies. As to the possibility 
of strong mechanical effects, such as the separation of two 
magnetic bodies, or their dance, it is due to the fact that the 
magnetic forces become essentially nonpotential under con- 
ditions of intense pumping of the FMR. As a result, the po- 
tential barriers can easily be surmounted, or there occurs an 
inverse phenomenon: enhanced damping of the mechanical 
motions. The pertinent analysis and estimates will be pre- 
sented below. 

ANALYSIS 

The mechanism underlying the effect of the FMR on 
the mobility of magnetic substances is readily elucidated in 
the simplest case when the microwave field excites one spin 
mode of low intensity, so that the resonant-oscillation ener- 
gy is adequately represented in terms of the normal-mode 
variables c and c* by the approximation 

where wo = w,(H) is the FMR frequency. Then the compo- 
nent F of the generalized forces that stems from the interac- 
tion with the resonance is equal to 

Here and below F = (Fa ', ), x = [xu ) and, correspondingly, 
a /ax (a/ax, 1 .  We can, for definiteness, conceive an interre- 
lation between the motions (the translations as a whole and 
the rotation) of a single-domain ferromagnetic particle in 
which the ferromagnetic resonance has been excited. 

Within the framework of the description of the spin- 
precession dynamics by the Hamiltonian (2), the quantity 
lcI2 is an invariant, and does not change when x(t ) changes. 
Consequently, the function 

where N = IcI2 = const plays the role of potential energy for 
the x motions. In other words, the entire effect of the force 
interaction with the FMR reduces to the elasticity expressed 
by the potential (4). Similarly, considering within the frame- 
work of the model (2) the deformation of the magnetic sub- 
stances (substance), along with their motions, and including 
in the set x = (xu J the amplitudes of the various deforma- 
tion modes, we arrive at the expression (3) for the corre- 
sponding generalized forces, so that the effect of the reso- 
nance reduces to the potential (4) in this case as well.' 

But the situation changes qualitatively if we taken into 
account the finiteness of the Q of the resonance. We shall 
assume that the losses are small, so that the magnitude of the 
Q of the FMR is given by the expression Q = wo/y) 1, where 
y- ' is the magnetic-relaxation time, and take account of the 

pumping of energy into the c mode to compensate the losses 
through the application of an external variable field of fre- 
quency w close to wo in accordance with the model 

if [y+ioo (x) ]c=he-'"'. ( 5 )  
In the general case the x(t ) motions, besides bringing about 
the modulation wo(x(t )), cause the pumping conditions to 
vary. We shall, for simplicity, neglect this variation here. 

We have two typical situations: y ZL?. and y(L?., 
where 0. is a measure of the frequencies of the w,(t ) modula- 
tion produced by the variation of x(t ). In the case when y/ 
a.+O the dissipation and pumping of energy into the c 
mode over periods of time of the order of the times charac- 
terizing the motions of the magnetic substance are insignifi- 
cant, and we essentially have an adiabatic situation, which is 
expressed by the result (4). 

In the quasistatic limit, i.e., for L? . /y+O,l~1~f const 
when x(t ) varies, and the quantity follows the course of 
the resonance curve: 

where No is the value of at w = w,; the bar denotes aver- 
aging over the period 27r/w. We neglect the difference 
between% andx, which is justified when the frequency w is so 
high that the amplitudes of the high-frequency jitters 
x- = x-2 are small compared to the scales of the character- 
istic changes in wo(x). For the averaged forces we obtain from 
(3) and (6) the expression 

where the potential Uo(x) differs significantly from the po- 
tential (4), and is equal to 

0 0  ( 5 )  -0 
U,, ( x )  = NOy 

7 
Thus, in this limit the force effect of the resonance reduces to 
a potential effect. The profiles of the forces characterized by 
the potentials (4) and (7) in the case when the dependence 
wo(x) is monotonic in the resonance region are shown in Fig. 
1. 

Nonpotential corrections to F appear when the ratio 
0. /y is finite. Thus, we obtain in the case of small 0. /y the 
approximate expression 

where the matrix r = r (x) has the elements 

aoo aoo 2g P r,, = ---- 
ax, ax, ( I + E ~ ) ~  ~ ~ y ~ '  

The parameters 6 and Pare  equal to 

and are respectively the dimensionless detuning of the reso- 
nance and the power scattered by the magnetic system in the 
steady-state FMR regimes for a given x = const; the quanti- 
ty (C12 is given by (6) .  The approximation is in fact equivalent 
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w, ( X )  > w w, (XI< w x 

FIG. 1. The forces F for different natures of the x motion. The curves 1 
and 2 depict the forces in the adiabatic limit for two different initial condi- 
tions; 3) the forces in the quasistatic limit; 4) and 5) the forces that obtain in 
periodic x motions of frequency f l ( y  in regimes that occur on the 
w,(x) > w and o,(x)  < o sides of the resonance. 

to the computation of the forces F ( t  ), (3), using the val- 
ues given by (6), with x taken at the instant t - to, where the 
delay time to = 2(1 + 6 ' ) - ' yP ' .  

These results are easily arrived at if account is taken of 
the fact that the solution (5) can, in the case when x(t ) varies 
smoothly, be represented in the form. 

d -1 

c ( t )  =e-'" [;ii +D ( t )  h 

where 
D=D(t) =y[ l+ig(x ( t ) )  1. 

The expression on the right hand side of (lo) is a power series 
in the parameter R .  /ID I, and, up to terms -0. 2/ID 12, we 
obtain (8). 

Since, according to (9), raB = Ts,, the forces - r x  are 
frictional forces that are linear in the velocity. All the eigen- 
values of the matrix r change sign simultaneously when the 
sign of the detuning 6 is changed, since, for arbitrary wo(x) 
functions and arbitrary real y = (y ,  j , the quadratic form 

when6 > 0 we have retardation; when 6 < 0, acceleration: a 
buildup of the x motions. We can elucidate the physics of 
such behavior by referring to Fig. 1. As a result of the retar- 
dation of the c-oscillation mode, in response to the variation 
of x, the contour 5 has a clockwise direction of circulation, 
while the contour 4 has an anticlockwise direction. The work 
done by the forces over a period of the x(t ) variations, 
which is equal to the area under the contour, is negative 
when wo(x) > w, and leads to the quenching of the x oscilla- 
tions, but positive when w,(x) < w, and leads to the buildup of 
these oscillations. This result does not depend on the sign of 
dwo/dx (in Fig. 1 the reversal of the sign of awo/dx is equiva- 
lent to the reversal of the signs of both x and F ) .  

The magnitude of r (the eigenvalues ) on the steep sec- 
tions of the resonance curve increases, as compared to the 
nonresonance case, like Q for a given P level (which, for 

Q = lo3, comes up to lo9!). 
As a. increases, the magnetic-friction coefficient T be- 

comes frequency dependent. We can form an idea about this 
by analyzing the response of the resonance to weak perturba- 
tions Sx = x - x0 of the x = x0 = const state. From (5) we 
obtain for the response in the case when Sx-0 the expres- 
sion 

do * 
6c ( t )  =-i zf J exp {- (y+ioo) (t-r) )c ( r )  bxa ( r )  

Xa 
-a 

(12) 
where in the integrand wo = wo(xO) and C ( T )  = e '"'D -'h is 
the steady-state c-oscillation mode for Sx = 0. From (3) and 
(12) we obtain for the averaged response of the magnetic 
forces to the perturbations Sx, which can be represented in 
the spectral form 

DD 

bx ( t )  = 5 e-jQt 6x (Q) dQ. 
-e4 

the expression 

-6P ( t )  =P I a-0-F .. 
=K6r ( t )  + J e-'" [ A ( Q )  -iQI'(La) ] 6x ( L a )  dQ, (13) 

where the first term on the right-hand side is the elasticity of 
the magnetic forces in the adiabatic approximation, which 
quantity can be expressed in terms of a potential: 

heremis given by the expression ( 6 )  withx = xO. The integral 
in (13) is due to the response of the FMR, i.e., it represents 
recoil forces. The matrices A (0 ) and r (R ) are given by the 
expressions - 

I ~ 1 ~ a 0 o a 6 . 1 0  E+ E- &,(a)=---- ' ax. ax* [m+iwl* 

where we have introduced the notation ck 
= [w, - (w + R ) ] / y .  The matrices A (0 ) and r (R ), being 

real, symmetric and even in R, have respectively the mean- 
ing of coefficients of elasticity and friction for the magnetic 
forces produced by the reaction of the FMR regime in re- 
sponse to weak harmonic x perturbations of frequency R. It 
is characteristic that in (14), the expressions in the square 
brackets change sign when the sign of 6 is changed and the 
factors attached to them from matrices with nonnegative 
eigenvalues (on account of the fact that the quadratic form 
(1 1) is of fixed sign). Therefore, the eigenvalues of A (fl ) and 
r (R ) are all of one, or the other, sign, depending on the tun- 
ing of the FMR. 

The positiveness of the eigenvalues ofA implies that the 
forces that are proportional to A in (13) strive to return the 
system to the initial statex-xO. The friction matrix r (0 ), like 
its limiting values r, (9), for R-0, represents, when wo-+w, 
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FIG. 2. Behavior o f  the friction coefficient F as a function of f2  and l i n  the 
case when P = const (lowest curve: l = 0.1). 

forces that damp the perturbations and, when wo < w, forces 
that lead to their buildup. The R dependence of the eigenval- 
ues of T is duplicated by the behavior of the quantity. 

which is depicted in Fig. 2. The expression (15) attains its 
maximum at R/y-0 and = 1 ,  where 
z = z,,, = 3 m .  

Notice that the model (2), which forms the basis of the . . 
description of the interaction with the resonance, does not 
take account of all the possible modes of coupling between c 
and x, even without the framework of the single-mode, lin- 
ear-in the c oscillations-magnetic system (with 
x = const): the variables c and c* , having been chosen as the 
normal-mode variables for some geometry x = xO, cease in 
the general case to be such variables for x#xO, so that in- 
stead of (2) we can have 

where v is a function of x, that vanishes at x = xO. We are, 
however, investigating the conditions under which the sub- 
system x is sufficiently inertial, so that the high-frequency 
jittersx- = x-Z are negligibly small in comparison with the 
other characteristics-for the problem-scales. In this case 
the effect of the additional terms in R' on the renormaliza- 
tion of the elasticity and friction at resonance is insignificant. 
This, for example, can easily be followed by approximating v 
by a linear-in x-function. Then, by carrying out a linear 
transformation of the variables c, c* , and x, we can get rid of 
these terms in X.  As for the renormalization of the param- 
eters that results from the transformation, it is insignificant 
when the frequencies of the x and c motions are widely 
spaced, and the oscillations x-  are relatively small: we es- 
sentially have the previous picture of force interactions with 
the resonance. 

ESTIMATES 

Let us briefly sketch a picture of the motions of a mag- 
netic particle in a potential well under the action of a micro- 
wave FMR pump. Keeping ourselves within the framework 
of the above-described single-mode model for the magnetic 
resonance, we have, for a. 4 ID I, the following equations 
describing the mechanical motions: 

mx+dU/dx=-I'i. (16) 

Here U = Uo(x) + U,(x), where the potential U,(x) repre- 
sents the forces in the absence of the pump field; Uo(x) and 
T (x), the same quantities figuring in (8), are proportional to 
the power P scattered by the magnetic substance; and m is 
the inertia matrix. 

When wo(x) > w, the forces - T x  retard the motions, 
and the particle will settle at the minimum of the potential U. 
When wo(x) < w, the friction coefficient T i s  negative, and the 
particle will try to get out of the potential wells no matter 
what shape they have. The eigenvalues of the matrix 
T = m T  - ' determine the times scales involved in the devel- 
opment of the instability and, consequently, the time it takes 
the particle to get out of the potential wells. 

Notice that the particle under consideration can be a 
"composite" one, i.e., a system of magnetic bodies whose 
geometry is described by the coordinates x = (x, 1,  and 
whose dynamics is sufficiently inertial, so that R .  (ID I. As 
the inertia coefficients m decrease and the steepness of the 
potential relief U,(x) increases, the frequencies R . increase, 
and the approximation can lose its validity. For frequencies 
a. that are high compared to ID I ,  we approach the adiabatic 
situation, and the probability of overcoming the correspond- 
ing potential barriers falls. Let us note further that, within 
the framework of the equations (16), the effect is described in 
its pure form, no account being taken of the mechanical fric- 
tion. The latter leads to the appearance of a threshold for the 
power P, above which the forces - Tx are, under conditions 
of favorable FMR tunings, not compensated by the mechan- 
ical friction, and instability develops. 

Let us estimate the time scale Tcharacterizing the sepa- 
ration of two magnetic spheres under the conditions, indi- 
cated in Ref. 4, of FMR excitation. The spheres, which were 
YIG pellets with diameter d 5 1, magnetization parameters 
4rm0 = 1750 G, and density p = 5.17 g/cm3, were loosely 
enclosed in a glass ampoule located in the antinode region of 
a magnetic field of frequency w = 9.5 GHz. A constant mag- 
netic field of intensity Ho = 3.3 X lo3 Oe was applied in the 
direction perpendicular to the microwave field, and the 
FMR region for the samples was traversed by slowly varying 
this constant field. As the FMR was approached from the 
region of low Ho values, the spheres were observed to sepa- 
rate and dance with a frequency of several hertz. The mag- 
netic resonance excited in the samples was nearly homogen- 
eous, and we shall not take the other spin modes into 
consideration in the estimates. 

Choosing as x the distance R between the centers of the 
spheres, we find that the parameter (awo/ax)/wo figuring in 
(9) is - 3/R, since the dominant contribution to it is made by 
the dependence of wo on the field induced by one sphere in 
the other, a field which varies like R -3 (in the dipole approx- 
imation). As a result, if we use the above-indicated numerical 
data, and take R = d = 1 mm and m = (r/3)d 3p, then we 
obtain in the case when the power of P = W and we 
have the optimal FMR tuning 6 = 1 / 0  the order-of-magni- 
tude estimate 
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For powers in the region of tenths of a watt, the time T lies in 
the region of hundredths of a second. No values are given in 
Ref. 4 for the power P and the time T, but the estimates 
obtained are apparently characteristic of experiment, judg- 
ing by the figures given for the total microwave power (it was 
largely absorbed by the employed microwave cacity resona- 
tor, whose Q value was - lo3, which was more than an order 
of magntiude higher than the Q value for the FMR) and the 
resonance-traversal speed of the Ho field. 

CONCLUSION 

We have considered in the present paper the character- 
istics of the effect of ferromagnetic resonance on the mobility 
of magnetic bodies, using a small number of parameters and 
simple mathematical tools. The main idealization involved 
here lies in the assumption that the resonance subsystem c is 
single-mode linear (for x = const) system. It is significant 
that we obtain in the case of a multimode system, when, 
instead of (2), we take as the basis of the description the mod- 
el 

matrix analogs-in the indices of the c variables-of the 
above-obtained expressions, and are able to establish a num- 
ber of relatively simple general laws governing the effect of 
the resonances on the mobility. These analogs and the role of 
the nonlinearity of the resonances will be considered else- 
where. Here we only note that the above-considered single- 
mode model gives an ideal about the scales of the changes 
that occur in the magnetic friction in the case of slightly 
nonlinear magnetic resonances. But the limits of variation of 
the magnetic friction can change significantly under condi- 
tions of intense excitation of the resonances, when their an- 
harmonicity appears (in the x = const = case). By our esti- 
mates, the anharmonicity, which can be modeled by 
including terms of fourth order in c in the Hamiltonian A?, 
can, in the case when the anharmonicity terms have the right 
sign, lead to a mobility that is many orders of magnitude 
higher than the estimates given in the text for the same level 
of P in a certain, albeit narrow, region of resonance detun- 
ings. Also effective for the selective control of the mobility of 
magnetic substances are the regimes in which we have para- 
magnetic pumping of the magentic resonances, when these 
resonances have low thresholds. 

Notice that the effect of the resonant fields on the mo- 
bility of small objects moving in viscous media e.g., the con- 
trol by a high-frequency field of the structure of a ferroli- 
quid, may, on the face of it, seem ineffective, since the 
magnetic forces, like body forces, decrease with decreasing 
body dimensions d much faster than the Stoke viscous 
forces, which decrease linearly with d. But the magnetic fric- 
tion coefficient r can decrease relatively slowly. According 
to (9), the dependence on d enters into the expression for r 
largely through the factor 

where the inhomogeneity scale 1 can be of the order of d (as in 

the above-considered example of two magnetic spheres). The 
admissible values of the power P dissipated in the particle do 
not decrease faster than d 3: in the case of normal heat trans- 
fer through the surface, it decreases like d '. Therefore, the 
quantity r can decrease even more slowly than the Stokes 
forces. 

Concerning the other objects, let us note that the ap- 
proach described in the present paper can easily be used to 
estimate the effect of resonant magnetic fields in polydomain 
samples on the mobility of the domain walls. In the case of 
high-grade samples possessing a high-Q spin system, we can 
expect the effect of the resonances in the domains or walls on 
the mobility of the latter to be appreciable. The experimental 
observation of an increase in the mobility of domain walls 
under resonance conditions is reported in Ref. 8, but the 
mechanisms underlying this increase are not considered in 
detail, and there may be other factors here.3' The mechanism 
considered in the present paper is, possibly, also of interest in 
connection with the establishment of ordered motions of im- 
purities and dislocations in substances. 

"In the light of the effects under discussion, the operation of such a motor 
in the case when w)O. (where o  is the frequency of the power supply and 
O.  characterizes the smoothness of the variations of the angle x(t ) of 
rotation of the rotor) can be described as the continuous overcoming by 
the coordinate x of a periodic potential relief with a pole period, that 
occurs as a result of the presence of appreciable negative friction for the 
rotational motions, which friction is produced by the nonlinear interac- 
tion with the resonance. 

2'Strictly speaking, the expression (2)-(4) and the subsequent ones do not 
reflect the characteristics of the interactions that expressly involve the 
magnetic resonance, and we arrive at the same conclusions when we 
analyze interactions with resonances of a different nature. 

3'0ne of these factors is the vibrotranslation mechanism, similar to the 
well-studied mechanism in  mechanic^,^ in which the "dry" friction is, as 
it were, converted into viscous friction. In such a mechanism, in contrast 
to the one under discussion, the overcoming of the potential barriers 
occurs as the result of the increase of the level of the high-frequency 
vibrations x- = x-Z, and not as the result of the buildup of the slow Z 
motions. The role of high-frequency resonance then amounts simply to 
this: It brings about an increasein thex- level. The sign ofthe effect does 
not depend on the sign of the resonance detuning, and its effectiveness 
rapidly decreases with increasing frequency w of the influences. 
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