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The modifications to the dispersion relation and damping of electromagnetic waves in a metal 
made necessary by large-scale inhomogeneities are analyzed. A random potential with a finite 
correlation length l/k, is adopted as a model for the inhomogeneities. An unusual "microscope 
effect" occurs: Inhomogeneities with a scale dimension l/k, are manifested in the spectrum and 
in the damping of the electromagnetic waves in a greatly magnified form-with a scale dimension 
c/v,k,. The physical mechanism for this effect is discussed. 

The modifications to the dispersion relation and damp- 
ing of plasma waves made necessary by the scattering of 
these waves by large-scale inhomogeneities were studied in 
Refs. 1 and 2 for metals and semiconductors respectively. A 
random potential with a finite correlation length was adopt- 
ed as a model for the inhomogeneities. It was shown that 
experiments on the modified dispersion relation could in 
principle yield information on the basic stochastic charac- 
teristics of the random potential: its standard deviation and 
correlation length. 

Our purpose in the present paper is to see whether the 
same characteristics can be found from the modifications to 
the dispersion relation for electromagnetic waves in a metal. 
There has been no previous study of this topic, despite the 
existence of an extensive literature which deals with a variety 
of extremely subtle and complicated aspects of the interac- 
tion of electromagnetic waves with inhomogeneities (see the 
reviews in Refs. 3-5, for example). 

To analyze electromagnetic waves in an inhomogen- 
eous metal we adopt the approximation of a small and rather 
smooth random potential, in which case we can switch from 
the quantum-mechanical approach to the classical ap- 
proach.6 As in Ref. 1, we assume a single-band metal with a 
quadratic and isotropic dispersion relation for conduction 
electrons. We can then apply Eq. (2.1) of Ref. 1 to f (w,k,p), 
which is the Fourier transform of the nonequilibrium incre- 
ment in the electron distribution function caused by the 
propagation of an electromagnetic wave through the metal. 
This equation was derived without any assumption regard- 
ing the wave polarization. When combined with Maxwell's 
equations and an equation which relates the current density 
off, it forms a complete system of equations for our problem. 

We consider waves of arbitrary polarization (instead of 
restricting the analysis to longitudinal excitations, as in 
Refs. 1 and 2). From Maxwell's equations we have a relation 
between the electric field E and the current density j: 

where o and k are respectively the frequency and wave vec- 
tor of the wave, and kc = w/c .  

k 2(k - kc2)  

Here 

The effect of the operator 7 is defined by 
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where f;; is the second derivative of a Fermi distribution 
function with respect to the energy, and the rest of the nota- 
tion is that of Ref. 1. 

Equation (2) has been written approximately. Its deriva- 
tion used relation (1) and an equation relating the current 
density to the distribution function f (k,p,o). In addition, a 
formal "solution" of the equation off is substituted (twice) 
into integral convolutions of the same equation. Only terms 
with w raised to a power no higher than two are retained. 

Averaging this equation over an ensemble of random 
realizations of the functionp(k), we find a general dispersion 
relation for waves of arbitrary polarization (the vector E) in a 
metal (the z axis is directed along k): 
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Here i, j =x,yj;D, = DII,D,,  = 2D1; and we have intro- 
duced the operator 

where S (k) is the spectral density of tke co~relation function 
of the random function p(r), and p(r),I  '=I (k'). 

For a homogeneous metal (w = 0) we find from (4) dis- 
persion relations for plasma and electromagnetic waves: 

We can derive a closed expression for the current den- It follows from the form of determinant (4) that electro- 
sity j(k, o ) :  magnetic and plasma waves interact with each other in an 

kv 
j = ~ ~ ( j ) + ~ ~ f v { ~ ~ ~ - ~ ~ ~ ~ { ~ j .  PI, p} inhomogeneous metal. This interaction may take the form of 

the decay of a coherent electromagnetic wave into fluctuat- 
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ing plasma waves and, correspondingly, the decay of a co- 
herent plasma wave into fluctuating electromagnetic waves. 
In certain cases there may also be conversions of coherent 
plasma and electromagnetic waves into each other. This ef- 
fect is seen in an inhomogeneous Maxwellian plasma (see 
Ref. 7, for example), where the inhomogeneity stems from 
spatial-temporal thermodynamic fluctuations. 

Working from the general form of dispersion relation 
(4), we can identify a class of spectral functions (of the ran- 
dom-process type) for which the conversion of coherent plas- 
ma and electromagnetic waves into each other does not oc- 
cur. It can be shown that if S (k-k') does not depend on the 
azimuthal angle of k' then all the off-diagonal elements in (4) 
vanish upon integration (this assertion is made only for the 
approximation used here; the correlation functions corre- 
sponding to powers higher than w2 have not been studied). 
This condition is satisfied by S(k) ,  which depends only on 
Ikl, and thus by an isotropic correlation function. Restrict- 
ing the discussion to processes of this type, we find from (4) 
the dispersion relation 

(D,-'/zw21v+QK-) (DL-'/2w21v-QK+) (Dl ,-wZfv,QK,)  =O, 
(7) 

where v , = vx + ivy and K, = Kx f iK,. Equating the 
last factor to zero, we find an expression for the spectrum 
and damping of plasma waves in an inhomogeneous metal. 
The first two factors correspond to the modified dispersion 
relation for left- and right-hand-polarized electromagnetic 
waves. 

To find some estimates we adopt a simple exponential 
correlation function for the inhomogeneities, as in Refs. 1 
and 2. We restrict the discussion to the case q(1, and we find 
a modified dispersion relation for electromagnetic waves 
(the expressions for the right- and left-hand-polarized waves 
are identical): 
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Here s = ( ~ c / w , ) ~ ,  u = (k /ko)', f l Z  = 3 vF2/5c2, k, is the 
correlation wave number of the inhomogeneities (l/k, is the 
correlation length), and y = w/2cF. 

The damping of the electromagnetic waves is deter- 
mined by 

Analysis of these expressions reveals an unexpected result. 
As in the case of plasma waves, we find a characteristic 
modification of the dispersion relation and maximum in the 

damping, but not near the correlation wave number k,: All 
these effects occur at a much smaller wave number, 
k, =flk,. We find an unusual "microscope effect": The 
electromagnetic waves sense not the actual size of the inho- 
mogeneities in the sample, r, - l/k,, but a size which is some 
two or three orders of magnitude greater (r ,  = l/k,) and 
which is absent from the actual structure of the inhomogene- 
ities. Near the characteristic wave number k,, the modifica- 
tion to the dispersion relation and the damping can be de- 
scribed highly accurately by 
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-= UP ( I  7 )  - (i+k2/k$)"(1+k2/ku',' 

where 

kp=op/c, qo=kovplop= ( = I s ) "  ( k , / k p ) .  
Figure 1 shows the modified dispersion relation wl(k ) 

and the damping w "(k )for electromagnetic waves in an inho- 
mogeneous metal. The modification is basically of the same 
form as that of plasma waves: Near the characteristic wave 
number k,, the wl(k ) curve deviates from the corresponding 
curve in a homogeneous sample. The deviation is toward 
lower frequencies. At k = 0, this deviation reaches a maxi- 
mum, which is equal in magnitude to the deviation for plas- 
ma waves. The damping reaches a maximum in the same 
region, at k = k , / O .  

There are also some differences between the modifica- 
tions of the electromagnetic and plasma waves. Under the 
inequality 

i2qobly2<i (11) 

a slight maximum can be seen on the wl(k ) curve at k =: k, a; 
correspondingly, we find a region of anomalous dispersior 
to the right of this maximum. 

The primary distinction between the modification of 
electromagnetic waves and that of plasma waves, however, is 
the renormalization of the characteristic correlation wave 
number of the inhomogeneities, k,. Let us examine the phys- 
ical mechanism for this effect. 

In an inhomogeneous metal with an isotropic correla- 

FIG. 1 .  Modified dispersion relation w'(k ) and damping w ,, (k ) of electro- 
magnetic waves in an inhomogeneous metal (A = 5fop/2q:). Dashed 
lines-Dispersion curves for electromagnetic (1) and plasma (2) waves in a 
homogeneous metal; w; (k )-modified dispersion curve for plasma waves 
in an inhomogeneous metal (at k5 k, this curve is seen as the line 
w = w , - A ) .  
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FIG. 2. Renormalization of the correlation number of the inhomogene- 
ities in the modified dispersion relation for electromagnetic waves (the 
"microscope effect"). I-Plasma waves; 2-electromagnetic waves. 

tion function, the equations for the expected values of the 
projections of the current density ( ji) decay into three inde- 
pendent equations, as can be seen from (7). One of these new 
equations describes plasma waves with (E) Ilk, while the 
other two describe electromagnetic waves with (E)lk. 
However, the independence of the equations for the expected 
values means only that there is no conversion of the coherent 
components of the plasma and electromagnetic waves into 
each other; it does not imply that there are no interactions 
between these waves. Each of these independent equations 
and, correspondingly, each of the three independent disper- 
sion relations (7) reflects both the fluctuating electromagnet- 
ic waves and the fluctuating plasma wave. In other words, 
there are both direct and cross mechanisms for the decay of a 
coherent wave into fluctuating waves. The second terms in 
the curly brackets in (8) and (9) correspond to the direct 
mechanism, and the first terms to the cross mechanism, for 
the decay of a coherent electromagnetic wave into fluctuat- 
ing electromagnetic and plasma waves. The cross mecha- 
nism is predominant (the direct mechanism corresponds to 
small terms on the order ofp  '). It is this circumstance which 
gives rise to the "microscope effect," which can be conve- 
niently explained by means of Fig. 2, which shows the unper- 
turbed dispersion curves for plasma waves (1) and electro- 
magnetic waves (2) (this figure is not drawn to scale). 

The waves which interact most effectively with the in- 
homogeneities with a correlation wave number k ,  are the 
plasma waves with k = K O  (i.e., with w = mo). As a result, 
near k z  k, we see a modification of the dispersion relation 
and a maximum in the damping of the plasma waves.' 

We find a different picture for the electromagnetic 
waves. The decay of an electromagnetic wave into fluctuat- 
ing electromagnetic waves near k ,  occurs again [see the last 
terms, proportional to p 2 ,  in (8) and (9)]: at k - k ,  we see a 
modification of the dispersion relation and an increase in the 
damping of the electromagnetic waves. These effects, how- 
ever, are negligibly small in comparison with those caused 
by the transfer to the electromagnetic waves of those pro- 
cesses which occur in the plasma waves. This transfer is im- 
plemented by the cross decays of electromagnetic and plas- 
ma waves which occur at the frequency m,. From 
expressions (6)  we easily find that the wave numbers of the 
plasma and electromagnetic waves corresponding to a given 
frequency convert into each other with a scaling factor P. 

This circumstance again gives rise to a microscope effect: 
The events which actually occur with the plasma waves at 
k - k ,  are manifested in the electromagnetic waves at 
k-pk,.  We might note that the dispersion relation and 
damping of the plasma waves which follow from general re- 
lation (7) also reflect both direct and cross scattering mecha- 
nisms. For the plasma waves, in contrast with the electro- 
magnetic waves, it is the direct mechanism which is 
predominant; it was studied in detail in Refs. 1 and 2. 

CONCLUSION 

We have studied the effect of a random inhomogeneous 
potential with a finite correlation length on long-wavelength 
electromagnetic and plasma excitations in a metal. In the 
first nonvanishing order of perturbation theory we have de- 
rived a dispersion relation [relation (4)] for the expected val- 
ues of these excitations. 

The case of an isotropic correlation function has been 
studied in detail. In this case the dispersion relations for the 
expected values of the plasma waves and electromagnetic 
waves become independent. On the other hand, the modifi- 
cation of the dispersion relation and the damping of the plas- 
ma waves are determined by the decay of these waves into 
both fluctuating electromagnetic waves and fluctuating 
plasma waves; the same is true of electromagnetic waves. 
The modifications of the plasma waves and of the electro- 
magnetic waves are both caused primarily by the decay of 
these waves into fluctuating plasma waves (i.e., by the direct 
process in the case of the plasma waves and by the cross 
process in the case of the electromagnetic waves). This result 
is, in particular, a justification for the approximation used in 
Refs. 1 and 2, where the decay of plasma waves into fluctuat- 
ing electromagnetic waves was ignored. 

The results of this paper show that experiments on the 
dispersion relation for electromagnetic waves (like experi- 
ments on the dispersion relation for plasma waves) can in 
principle reveal two basic characteristics of the correlation 
function of the random potential: the relative mean square 
fluctuation y and the correlation length r, = k ; '. When 
plasma waves are used to determine the correlation length, 
the range of wave numbers k - k, must be studied. For elec- 
tromagnetic waves, on the other hand, there is a microscope 
effect: In order to determine the same correlation length of 
the inhomogeneities one must study considerably longer 
waves, with k -  (u,/c)k,. 
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