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A study is made of the relationship between the true (limiting) and effective (measured in actual 
experiments) thermodynamic critical exponents 0 ,  y, and S of a fluid. It is shown that the true 
critical exponents can differ appreciably from the effective exponents obtained in optical andp-p- 
T experiments without allowance for the averaging of the measured physical quantities (scatter- 
ing intensity, compressibility, order parameter) over a layer whose dimensions are determined by 
the size of the entrance slit of the detector or by the vertical thickness of the working cell. 
Calculations of the effective critical exponents have revealed that optical experiments can yield 
values S,, > S and ye, < y,  whilep-p-T experiments can give S,, < S and Be, < P .  

INTRODUCTION 

The recent progress in the physics of critical phenom- 
ena and phase transitions is due, as we know, to our deeper 
understanding of the role of cooperative effects stemming 
from the correlation of strongly interacting fluctuations of 
the order parameter of the system at large distances and 
times. To a certain degree this progress has been promoted 
by the development of theoretical concepts based on funda- 
mental notions of scale invariance (scaling)' and the renor- 
malization group2 and also by the many precision experi- 
ments that have been done.3 

Obviously, it is important to determine the true, or 
limiting, critical exponents from an experiment and to com- 
pare them with the theoretical predictions. In a real experi- 
ment, however, there are always factors which distort the 
idealized critical behavior described by power-law mono- 
mials with the true critical exponents. It is sensible to distin- 
guish two types of distorting factors, which might arbitrarily 
be called "physical" and "methodological." Factors of the 
first type might include external influences which give rise to 
a macroscopic inhomogeneity of the medium, multiple scat- 
tering effects in an optical e~periment ,~ auxiliary thermody- 
namic variables and hidden parameters whose interaction 
with the critical order parameter can lead to a renormaliza- 
tion of the critical exponents and to crossover beha~ io r ,~  etc. 
The second type includes the finite size of the detector slit, 
the limited precision of the temperature control, etc. Often 
the presence of methodological distorting factors makes it 
necessary to take factors of a physical nature into account. 
For example, to do an experiment in a rather wide neighbor- 
hood of the critical point (in the better experiments in classi- 
cal fluids one cannot get closer to the critical temperature T, 
than T = ( T  - T, )/T, -- 10-7 one must take into considera- 
tion the nonasymptotic and asymmetric scaling correc- 
t i o n ~ . ~ - ~  

The influence of the distorting factors is manifested pri- 
marily in the fact that the critical exponents of the power- 
law monomials approximating the experimental data exhibit 
a dependence on the temperature variable r ,  on the local 
value of the order parameter (for fluids in a gravitational 
field--on the density deviation Ap = ~ ( H , T )  - pc]/pc or 
the corresponding "field" variable z = p,gH /p, , where H is 

the height reckoned from the level at which the fluid has its 
critical density p,, p, is the critical pressure, and g is the 
acceleration due to gravity 1 ,  on the geometric dimensions of 
the volume under study, etc. In other words, a real experi- 
ment yields effective values of the critical exponents. 

In this paper we determine the relationship of the true 
and effective critical exponents for a classical one-compo- 
nent fluid. We investigate in detail the role of a physical 
factor-the spatial inhomogeneity of the fluid in a gravita- 
tional field (the so-called gravitational effect)''-and a 
methodological factor-the finite size of the detector slit. 
We study the conditions under which an optical or p-p-T 
experiment can yield the true values of the critical exponents 
of a fluid. 

OPTICAL EXPERIMENT 

Let us consider the typical geometry ofan optical exper- 
iment for the study of critical phenomena in fluids (see, e.g., 
Refs. 11 and 12). Suppose that we have monochromatic light 
propagating in the vertical direction in the working volume 
of the chamber, which is held at a temperature near the criti- 
cal point, and that the scattered light is detected in the hori- 
zontal direction. Here the experimental information is taken 
from a layer of finite thickness AH whose size is determined 
by the width of the entrance slit of the detector. The mini- 
mum value of AH is typically AH = 6.10-2 cm (Ref. 11) or 
7.10P2 cm (Ref. 12) (corresponding to Az = 6.10-' or 
7. lo-', respectively, at p,g/p, = loP5 cm- '). Usually AH 
is larger. For example, in order to study the dependence of 
the depolarization factor on the linear dimensions of the 
scattering volume, Trappeniers et a1.,12 increased AH to 
2.8- lo-' cm. The finite size of the detector slit made it neces- 
sary to analyze the scattering intensity as averaged over a 
layer AH. In fact, the gravitational change in the density and 
fluctuational structure (and, hence, in the scattering power) 
of the material over a height interval AH becomes increas- 
ingly important as the temperature of the system approaches 
T, and as the center of the layer AH approaches H = 0. A 
similar situation should in principle occur not only in optical 
experiments but also in other experiments which do not uti- 
lize some type of stirrer. 
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Critical exponent S. For a one-component fluid whose 
thermodynamic state lies in the vicinity of the critical iso- 
therm the field and temperature variables are related by the 
inequality lzl > IrlP' (P~0 .34 ,  6 ~ 4 . 5  are the true critical 
exponents of the coexistence curve and critical isotherm). 
Generally speaking, this inequality should be satisfied by the 
dimensionless coordinates of the lower boundary z, and up- 
per boundary z, and also by the coordinate f of the center of 
the plane-parallel layer from which the experimental infor- 
mation is taken. 

On the critical isotherm the integrated single-scattering 
intensity averaged over the layer Az = z, - z, is described in 
the Ornstein-Zernike approximation by the expression 

Here 

is a quantity which is practically independent of the proxim- 
ity to the critical point (the notation is standard13,14), a is the 
amplitude of the inverse compressibility [P ; ' = az'" "" ] , 
f * = rf/P, = a d  =: 10-(" - '~ '~ i s  thenonlocality parameter 
of the fluctuations, r, is the amplitude of the correlation 
length rc, and q = 2fln-(l - ~osi))"~/A is the change in the 
wave vector upon scattering through the angle 9 .  Integra- 
tion of (1) yields 

where F(a,,a,;a,;x) is a hypergeometric function. Since 
( 6 - i ) l A  xr,~=azi,~ / f '  pz= llr:,,zqz> 1 

(in the approximation of weak spatial dispersion, which is 
assumed in the Ornstein-Zernike theory, one has rcq < I), it 
is convenient to transform to hypergeometric functions con- 
taining x,' and then expand these functions in the small 
argumentx,' < 1. The final result of the calculation is of the 
form 

where 

Assuming in (3) that z, = f - Az/2 and z, = f + Az/2, 
expanding in the (assumed) small parameter Az/f, and tak- 

ing the limit A z 4 , q 4 ,  we easily arrive at an expression 
for the local intensity 

I ( % )  = (Ala) %-'+'Ib 

which contains the true value of the exponent S of the critical 
isotherm. In the general case, by approximating the average 
intensity ( I  ) from (3) by its local value I(f ), we can find the 
effective value S,,, which depends on S, Az, f ,  and q, in 
accordance with the expression 

Let us analyze the function S,,(S,Az,f ) for rcq-+O. In 
this case we have from (3) and (4) 

In expression (5) the slit width Az is not assumed small in 
comparison with the coordinate f of its center; it is required 
only that f > For small ratios Az/f the expression for 
S,, simplifies to 

It follows from (5) and (6) that failure to average the 
scattering properties over the height of the detector slit re- 
sults in a higher value of the effective critical exponent S,,. 
Table I gives the results of a calculation of S,, as a function 
of f and Az for S = 4.5. We note that two conditions which 
determine the choice of fmin must be satisfied simultaneous- 
ly: rcq < 1 and f > ?'. For realistic values of the minimum 
temperature deviation from the critical point rmin z lop5, 
the condition r,q < 1 with r ,~2.10-lo m, A = 6.28.10-' m, 
and 9 = n-/2 implies that f,, > 6.10-'. At such a value of 
fmin the second condition (f > 78') is also satisfied. The val- 
ues in the first row in Table I were calculated with formula 
(5), and the values in the second row were obtained with the 
approximate formula (6). In these calculations the slit width 
was taken to be Az = 2.10V6 (AH = 0.2 cm). 

As is seen in Table I, a decrease in the variable f at fixed 
T leads to an increase in Seff . If the critical-isotherm condi- 
tion f > <tn z 10 -(7.5-8) is violated, one can obtain still larger 
values of S,, than are given in Table I. For example, for 
f = Az/2 = 2.10-6, i.e., if one of the slit boundaries is at the 
level z = 0, one has S,, = 6.572. 

Of course, formulas (5) and (6) can also be used to solve 
the inverse problem, which is of immediate theoretical and 
experimental interest: namely, to find the true value of the 
critical exponent S from the experimentally determined val- 
ue S,, at known Az and f. It should be stressed that for 
f >4Az (i.e., under the condition that the coordinate of the 
center of the detector slit, as reckoned from the level at 
which the density has its critical value, is four times as large 
as the slit width), the values of S and S,, agree up to the 
second decimal place. 

Critical exponent y. Let us turn now to the relationship 
between the true and effective values of the critical exponent 
y for the temperature dependence of the susceptibility (the 
isothermal compressibility for a fluid) as measured in an op- 
tical experiment in the vicinity of the critical isochore. For 
this purpose, let us analyze the intensity of single scattering 
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TABLE I. Values of a,, (optical experiment). 

average over a layer - z,<z(z, whose center lies at the criti- 
cal-density level and whose boundaries satisfy the inequality 
lzol < 78'. In the Ornstein-Zernike approximation this quan- 
tity is given by 

Critical 

6 . ~ ,  Eq. 
(5) 

6 .., Eq. 
(6) 

1 A arctg (B,/B,) '"z, 
<I>= - ~ I ( z ,  z, q )  dz = , 

220 (BOB<) lhzo 
I (7) 

- 10 

where 

B ,- -b -1 z T +f*q2, Bl=-bl/b0~286-T, 

Ratio 6 /Az  

0.5 I 1 0  / 1.5 ( 2.0 ( 2.5 1 3.0 ( 3.5 1 4.0 I 4.5 

and 6, and 6, are the constants appearing in the expression 
for the isothermal compressibility: 

6,572 

- 

In the present case the dimensionless coordinate z, 
=pcgHo/pc of the boundary of the layer is related to the 

width of the detector slit by the simple relation z, = Az/2. 
The experimental data on the intensity of scattered light 

(or on the compressibility determined in a conventionalp-p- 
Texperiment) in the vicinity of the critical isochore, for 9-0 
and z < 78', is usually approximated by a power law of the 
form 

I (z, q+O) =AP,(z) =Ab,z-' (9) 
and it is assumed that the critical exponent y is the exact 
limiting exponent from scaling theory. In fact, as can easily 
be seen from (7), the critical exponent in (9) is some effective 
exponent ye, which in the general case depends on T, z,, and 
q. The value of ye, and its relation to the true value y which 
appears in (7) is given by the formula 

1 
arctg (BtIBo) "zo= b0z-"eff . 

- (BOB*) "zo 

4.605 

- 

Hence, for q-0 and with allowance for the obvious inequa- 
lity b, < 0 [the quantity PT in (8) must fall off with distance 
from the z = 0 level] we have the following result: 

ye, =y-j36+ (In '6)-' In 
I bi lKzo 

{ arctg T-06 1 b, 1 1/2zo 1. (11) 

4.546 

4.541 

TABLE 11. Values of ycff (optical experiment). 

For zo+O, this equation implies, of course, that ye,-+y. Oth- 
erwise, ye, < y. Keeping only the first two terms in the series 
expansion of arctan a in powers of the small argument 
a = lbll 112zo/78', we obtain from (1 1) the expression 

ye, = ~ ( ~ b l ) z o 2 / 3 z 2 8 6 ~ l n ~ ~ .  (12) 

Table I1 gives the results of a calculation of the effective 
critical exponent ye, for various values of T, according to 
formulas (1 1) and (12). The limiting value of the exponent y 
was taken to be 5/4, and we used PS = 5/3, 1 b, 1 = 10 (Ref. 
IS), and H, = lo-' cm (z, = lop6). The value of T,,, at 
fixed z, should be consistent with the inequality z, < 78' 
which defines what is meant by the vicinity of the critical 
isochore. For z , ~  lop6 we have rmin 2 10-3.3. 

The calculation shows that ignoring the finite size of the 
scattering volume and neglecting the averaging over height 
of the scattering properties of the fluid lead to a decrease in 
the critical exponent ye, for the temperature dependence of 
the light-scattering (compressibility) of the fluid. By increas- 
ing z, or decreasing .r (and violating the inequality zo <78' ) 
one can, in principle, even get the "classical" value of the 
exponent ye, z 1. It can be shown that for q # 0 the exponent 
ye, becomes still smaller in comparison with the true value 
y. The additional contribution to the difference y - ye,, 
equal to (rcq)2/lln~l, amounts to a quantity of the order of 
10W2 for T Z  10-3.3 (r:q2~6.10-2). 

As is seen from Table 11, only for n = - logr < 3.0 can 
the true and effective values of the critical exponent for the 
temperature dependence of the susceptibility along the criti- 
cal isochore be considered equal (for the values of the param- 
eters 6, and z, used in the calculations). 

4.527 

4.523 

pp-T EXPERIMENTS 

4,518 

4.515 

Let us now turn to the conventionalp-p-T experiments 
for finding the thermodynamic critical exponents. Usually 
in such an experiment the cell containing the material in a 
near-critical state is positioned horizontally and made as 
thin as possible in order to avoid substantial gravitational 
effects. For convenience in comparing with the optical data, 

4.507 

4.505 

4.514 

4.510 
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4.509 

4.506 

n=- log z 

2.9 I 3.0 I 3.i 1 3.2 1 3.3 I 3,b 13.5 13.6 13.7 

1.249 

- 
1.246 

- 
1.242 

- 
1,214 

1.221 

1.233 1.194 

1.197 

1.110 

1.106 

1.174 

1.170 

1,147 

1.140 



in the numerical calculations below we shall take the vertical 
thickness of the cell to be the same as the width of the en- 
trance slit of the detector, i.e., AH = 2.10-' cm 
(Az = 2.10-6). Unlike the optical experiments, where the 
critical exponents are found from the density (height) depen- 
dence or temperature dependence of the light-scattering in- 
tensity, in thep-p-T experiments one obtains the critical ex- 
ponents from an analysis of the order parameter. 

Critical exponent 0. Let us calculate the influence of 
gravity and the finite size of the detector slit on the order 
parameter in the vicinity of the coexistence curve. The main 
contribution to the local order parameter Ap on the coexis- 
tence curve with the gravitational effect taken into account is 
given by the expressionlo 

Ap(lt1, Z ) = C , ~ ~ ~ ~ ( ~ + C ~ Z ~ ~ ~ - ~ ~ ) S ~ ~ ~  Ap. (13) 

The averaged value of the order parameter ( IApl) on 
the gas branch of the coexistence curve [in the approxima- 
tion of a symmetric coexistence curve, when T ~ - ~ - ~  4 1 
( a ~ 0 . 1  I), the same result also holds for the liquid branch of 
the coexistence curve] is given by a relation of the form 

<IApl)=Co(zle(lf ' / z C , ~ o ( ~ ~ - B ' ) .  (14) 

On the other hand, we have (Idp[) = c,IT~~'", from which 
we get 

p eK=~- ln  (l+'lzClzol T(-~') Ilnl zl I-'. (15) 

Since Cl is always positive (the order parameter grows with 
increasing lzl), it follows from (15) that Pe, <P. Assuming 
that tC,z,l~1 O 6  < 1, formula (15) can be written in the ap- 
proximate form 

p ., =P-'12Ciz, l ~ l - ~ ' I  In I -G I I -'. (16) 

Comparing (12) and (16), we easily see that by virture of the 
smallness of the ratiozd78' in the neighborhood of the criti- 
cal isochore and coexistence curve, the following inequality 
should hold: 

AP=P-P .,'AY=Y-Y,,. 

Such a change in the exponents Pe, and ye,, and also the 
growth in the exponent S,, , agree with the familiar identity 
fl = y(S - 1). The results of the calculation of pe, are given 
in Table 111. For zo and PS we used the same values 
zo = and PS = 5/3 that were used in the case of the 
critical isochore in the optical experiments. We assumed 
C, - lb, l/(S - 1) -2.5, since the difference in the coeffi- 
cients is given by just such a difference of the isothermal 
compressibility P, on the coexistence curve and on the criti- 

cal isochore. The limiting value of the critical exponent B is 
0.340. 

The significant decrease in Per for n 4  is explained by 
(in addition to the main factors-gravity and the finite width 
of the detector slit) the fact that the inequality zo < IrlP6, 
which defines what is meant by the vicinity of the coexis- 
tence curve, is violated in this region of 171. As in the vicinity 
of the critical isochore, the exponents B and Be, draw closer 
together with increasing temperature deviation Irl; at 
n = 2.0 we have Peff = 0.3394. 

Critical exponent S. It is of interest to compare the val- 
ues of the effective critical exponent S,, obtained in the opti- 
cal and p-p-T experiments. In the latter case we must deal 
with the order parameter as averaged over the layer 
Az = z, - z,; on the critical isotherm this averaged value is 
given by 

Here do is the value of the scale function G (x) of the equation 
of statez = Ap% (x) sign Ap on the critical isotherm (x = T/ 

z1/06 -0). 
By equating ( IApl) from (17) to the local value of the 

order parameter at the center of the layer, IAp I = (</do) '/"", 
we obtain the following equation for finding the relationship 
between S and Se, in ap-p-T experiment: 

ForAz/< < 1, corresponding to a situation in which the aver- 
age density of the material in the working cell is rather far 
from the critical value p, , we have 

Equation (19) implies a somewhat unexpected result: p-p-T 
experiments give an understated value of the critical expo- 
nent S,,, rather than an overstated value as in the optical 
experiments. Comparing (6) and (l9), we easily see that with- 
out allowance for the small corrections 0 (Az4/< 4, the differ- 
ences between the effective and true values of the critical 
exponent S in the experiments under discussion are connect- 
ed by the simple relation 

The values of the critical exponent Seff for different val- 
ues of the ratio < /Az for S = 4.5 are given in Table IV. Rela- 

T A B L E  111. Values of be, ( p-p-T experiment). 
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TABLE IV. Values of S,, ( p-p-T experiment). 

Critical 
exponent 

tion (20) and a comparison of the data in Table I and IV show 
that under otherwise similar conditions ap-p-T experiment 
can in principle yield a value of the exponent S,, that is 
closer to the true value S than an optical experiment can. 

The difference we have found between the values of S,, 
obtained in the optical andp-p-T experiments can be under- 
stood on the basis of the following considerations. Optical 
experiments for measuring the compressibility, which on the 
critical isotherm falls off (approximately as P, a lzl ) 
with distance from the critical-density level z = 0, yield a 
value of the average intensity (I ) over the width of the detec- 
tor slit that is higher than the exact local value I ( [ )  at the 
center of the slit. In other words, the averaged compressibili- 
ty (Or ) oc [ - + turns out to be larger than the exact 
local compressibility P,([ ) a 6 - ' + I/', and it follows imme- 
diately that S,, > 6.  In p-p-T experiments the situation is 
reversed. The order parameter increases in absolute value 
with distance from thez = 0 level along the critical isotherm 
(approximately as Ap - 1z1°.2 ). Therefore, the averaging of 
the order parameter over the layer Az yields a value 
(Ap) a< '/"" that is smaller than the exact local value 
Ap([ ) a [ ""t the center of the layer, and so Se, < 8. 

Of course, if thep-p-T data are used to analyze not the 
order parameter Ap but the compressibility PT a ap/dz on 
the critical isotherm, then, as can easily be seen by differenti- 
ating (18) and comparing the result with (5 ) ,  both experi- 
ments for studying the compressibility give a,, > S. 

Ratio CIAz 

1 3.0 1 2.5 1 3.0 ( 3.5 I 4.0 I 4.5 

CONCLUSION 

Our calculation of the critical exponents of fluids has 
shown that the values of these exponents observed in a real 
experiment depend to a substantial degree on effects due to 
the averaging of the physical properties (compressibility, or- 
der parameter) over a layer of dimensions determined by the 
width of the entrance slit of the detector or the thickness of 
the working cell. Neglect of the gravitational effect, even for 
small thicknesses of the order of 0.1-0.2 cm, can lead to 
noticeable changes in the effective values of the critical expo- 
nents from their true (limiting) values as given by the modern 
theory of phase transitions. For example, optical experi- 
ments can yield an overstated value S,, > S and an under- 
stated value ye, < y. Conventional p-p-T experiments can 
lead to an understated value Be, < P  and, in contrast to the 
optical experiments, to an understated value Se, < 6.  

There is a certain amount of experimental support for 
the correctness of the conclusions of our theoretical calcula- 
tions. 

4.500 

4.497 

A decrease of ye, all the way to the "classical" value 
was obvserved in experimental studies1, of the thermody- 
namic properties of SF, in close proximity to the critical 
point. Although it was ap-p-Texperiment that was done in 
Ref. 16, the exponent y was calculated by analyzing the com- 
pressibility, a situation which is equivalent to the results of 
an optical experiment in terms of the direction of the inequa- 
lity ye, < y. In Ref. 17 the "classical" value ye, =: 1 in SF, 
was given a qualitatively correct explanation in terms of the 
influence of gravity. It should be stressed that, in agreement 
with the calculations of the present paper, the inequality 
ye, < y was observed in SF, in the region r < lop3. 

A somewhat unusual situation in terms of the exponent 
Se, also occurs in experiment. In fact, experimental light- 
scattering studies along the critical isotherm in cyclopentane 
and n-pentane" gave 6 = 5.0 and S = 4.9, respectively. On 
the other hand,p-p-T measurements of the critical isotherm 
in He3 (Ref. 18), N, (Ref. 19), and SF, (Refs. 16 and 17) have 
shown that the exponent S is equal to 4.16, 4.28, and 4.30, 
respectively. The values of S,, found in the light-scattering 
experiments are obviously larger, and the values obtained in 
the p-p-T experiments, smaller, than the limiting value 
S = 4.46 given by the E expansion to second order in 
E = 4 - d for a spatial dimension d = 3 and a scalar order 
parameter (n = 1). 

In the modern picture of the phenomena occurring near 
critical and phase-transition points an important position is 
held by the so-called universality hypothesis, according to 
which a certain physical property in systems having the 
same dimensionality n of the order parameter, the same spa- 
tial dimensionality d, and the same radius r, of direct inter- 
molecular interaction obey the same scaling laws, i.e., are 
described by the same limiting critical exponents. The above 
calculations of the effect of two (out of the many existing) 
factors which distort the idealized critical behavior give rea- 
son to hope that many differences in the values of the critical 
exponents obtained in different experiments can be eliminat- 
ed, and that the intellectually attractive hypothesis of a uni- 
versality of the diverse critical phenomena and phase transi- 
tions in the world around us will thus prove to be correct. 
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