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A relation between the self-diffusion coefficient D and the rotational-diffusion coefficient DR is 
derived and makes it possible to calculate DR from the known value of D. The result agrees with 
experiment for gases of moderate density. 

The coefficients of self-diffusion and rotational diffu- 
sion are important characteristics of the thermal motion of 
molecules. These coefficients must be known for the descrip- 
tion of many processes, such as interaction of radiation with 
matter. The self-diffusion coefficient D is measured by the 
methods of spin echo1 and tracer atoms (see, e.g., Ref. 2). 
These methods are direct and permit D to be determined for 
practically any substance. The determination of D, , how- 
ever, is subject to considerable complications. Measurement 
of D, by the NMR relaxation method is possible only at a 
definite chemical composition of the molecules. Difficulties 
are frequently encountered with separation of the contribu- 
tions of the different relaxation mechanisms.' A direct theo- 
retical calculation ofDR is impossible since there are at pres- 
ent no reliable data on the anisotropic part of the interaction 
potential. We have derived a relation that permits DR to be 
calculated from the known value of the self-diffusion coeffi- 
cient. 

Consider a gas consisting of compact quasispherical 
molecules that have no dipole moment. At sufficiently high 
temperature k T / & )  1 (where& is the energy parameter of the 
potential) the influence of the attracting forces on the dy- 
namics of the system is small; the principal role is played by 
the repelling forces. Since the dependence of the repelling 
part of the potential on the interparticle distance is very 
strong, the system considered can be described within the 
framework of the hard-sphere model with a suitable value of 
the parameter. It is necessary here to take into account the 
exchange of both translational energy and rotational energy 
in the collisions. The Liouville operator for a system of hard 
spheres can be represented in the form 

N 

mined by the relation 

b?Zev(~l, P2, . . . ; J1, J2,. . . ; rl, . . 7 rN) 
=rp(P,', P,', . . . ; J,', JPI . . . ; r,, . . . , r ~ ) ,  

where q, is an arbitrary function, PI, P,, J,, J, are the values 
and the momenta and angular momenta of the particles pri- 
or to the collision, P:, Pf ,  J:, J f ,  are the corresponding 
values after the collision; the vector joining the collid$g- 
particle centers w~ ae. We degne the adjoint operator T i  
by i he  relation (ATu B ) = (BT $ A ). Using the properties 
of Tu (Ref. 3) we can show that 

The coefficients DR and D for spherical tops are connected 
with the Laplace transforms of the correlation functions of 
the momentum and of the angular momentum by the rela- 
tions 

1 
DR = - lim <J1 (0) [s-@]-'~, (0) >, 

3z2 S f 0  
(3) 

where i s  the moment of inertia of the particle, m is its mass, 
[s - Y]-' is the resolvent of the system, and ( . . . ) denotes 
the equilibrium mean value. In the approximation of uncor- 
related successive collisions, the following relations are ob- 
tained for these quantities4: 

Let L, be the total angular momentum of particle 1: 
where 2, is the Liouvillian of the free motion andTu are the Ll=[r,XPl]+Ji. 
operators of the binary collisions. The operators Tu are de- 

(5) 

fined by the relation 3 In a hard-sphere system, the momentum and angular mo- 
mentum change at the instant of collision, so that the incre- 

Pij=Sn+"aZ J d2e0 (-vije) I viie 16 (rij-ae) (hi?-i). ( 1) ments of the momentum and of the angular momentum are 
connected by the simple relation where 

S,+O = lim exp {qvij d/drij), 
q++o  where Q is the radius vector of the point of contact of the two 

vi and v, are  the velocities of the ith and jth particles, vu- spheres, Q = r, - ir,,, and r,, is the radius vector joining 
= vi - v,, a is the hard sphere diameter, andA 0 ( x )  is the the centers of the molecules at the instant of the collision. 

Heaviside function. The action of the operator b ;, is deter- From (5) and (6) we get 
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J,*-J,=-I/, [r,,,X(P,*-Pi) 1. (7) 

We note that Eqs. (6)  and (7), which are exact for a hard- 
sphere system, are accurate enough for real systems in which 
the main increments of the momentum and angular momen- 
tum take place in a region small compare! with mAolecule 
sizes. Using the definitions of the operators b ;, and T,,, it is 
easy to show that relation (7) leads to the following property 
of the binary-collision operator: 

It is also easy tozhow that relation (8) holds also for the 
adjoint operator T A .  By vector multiplication of (8) from 
the left by P ,  we obtain, after scalar multiplication by r,, and 
averaging, 

(r,2[P,,~F,2J,l)=-112(r,,2P,,P,2P,> 

+'I2( (Piri2) (r,2,F i2Pi) ). (9)  

Using the definition of ^T and EqA(8) we can show that the 
left-hand side of (9) is equal to 2(J1 T12Jl). We transform the 
right hand side of (9) lisewise with account taken of the prop- 
erties of the operator TI,. As a result we get 

-2( (J,,Fi2J,) >=-'/za2( (P,,P,,P,) > 
+'Iz( (Pirj2) biz, F12Pi) >. (10) 

A 

The product (r12.T12Pl) is proportional to the longitudinal 
component of the momentum at the collision (to the compo- 
nent parallel to the vector r,,). This quantity is not affected 
by participation of the rotational degrees of freetom in the 
collision. Therefore the value of ((PI-r,,) (r,,.T,,P,)) is 
equal to the value of the same quantity for a system in which 
the rotational degrees of freedom do not pargcipate in the 
collisions ("smooth" spheres). For this system T12J, = 0 and 

((PiFizPi) )=3k,TDs/ (N-1) , 
where D, is the Enskog value of the self-diffusion coeffi- 
cient: 

Here n is the particle-number density and g(a) is the contact 

FIG. 1. Dependence of the values of (D /?,)-I - (4/aZ) (D, / D % ) '  on 
the reduced dgnsity na3 (0-CF,, a 7 4.6 A; 0-CF3Br, a = 5.1 A; A- 
SF,, a = 5.2 A; A-CF3Cl, a = 4.8 A). 

value of the pair-correlatign function [4]. It follows then 
from ( lo)  that ((Pl.r12) (rl,.Tl,P,)) can be expressed in terms 
of D, . Using Eq. (4) and simple algebra, we obtain a simple 
relation between DR and D: 

The diameter a of the hard sphere is obtained from the limit- 
ing value ofDn at zero density. This value was determined by 
extrapolating the experimental Dn(n) plot. Figure 1 shows 
the dependence of (D /D, ) -  ' - (4/a2) (D, /D, ) -  ' on the re- 
duced density, obtained from experimental data for modra- 
tely dense gases (nu3 < 0.2).5-8 According to (12) this quanti- 
ty should be equal to unity. It follows from the figure that the 
relation established describes well the experimental results. 
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