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The effect of impurity scattering of electrons on the operation of semiconductor lasers and on 
absorption in semiconductors is considered. It is shown that the limiting field of a neodymium 
laser is increased by (T,, /rim )'I2 times (T,, and rim are the times of electron scattering by phonons 
and impurities) compared with pure lasers, and that under certain conditions the dependence of 
the field on the pump current has a maximum. Combined scattering leads to a broadening 
- ( l r im rph )I1' of the absorption curve. It is found that impurity scattering alone does not broaden 
the absorption line. 

INTRODUCTION 

A kinetic theory of semiconductor lasers, developed in 
Refs. 1 and 2, takes correct account of the microscopic char- 
acter of the electromagnetic-field radiation and of the 
change of the distribution function and of the electron spec- 
trum in a strong field. The most important prediction of the 
theory is that a limiting field exists for a single-mode semi- 
conductor laser. We recall that it follows from the customar- 
ily employed rate equations3 (linear laser theory) that one 
mode increases without limit, contradicting the experimen- 
tal data. 

Let us elucidate the physical meaning of this pheno- 
menon. The elementary act of the interaction of a semicon- 
ductor with a field is emission (or absorption) of a photon 
with transition of the electron from the conduction to the 
valence band. The fundamental circumstances is that pho- 
ton emission is possible only in the presence of simultaneous 
electron scattering (e.g., with emission or absorption of a 
phonon), which upsets the coherence of the electron interac- 
tion with the field. In the contrary case there is no radiation, 
since the electron will execute periodic transitions between 
the bands, at a frequency A = d . E,, where d is the dipole 
moment of the interband transition and E, is the field ampli- 
tude. Thus, the photon emission rate Q should depend on the 
reciprocal coherence-loss time (e.g., the phonon-emission 
time rph ), i.e., Q a 1/rPh. 

Equating the emission rate N /T, to the rate of departure 
of N photons from the cavity (7, is the photon lifetime in the 
cavity), we can find the limiting field'.2 

ho=Pl2~,h, 

where p is a dimensionless parameter defined below; 
P<wph T~~ ; wph = 2pos% l/rph, pO is the Fermi momentum, 
and s is the speed of sound. The field A, corresponds to the 
maximum value of the reciprocal electron-phonon relaxa- 
tion time l/rPh reached at a definite pump value. 

With further increase of the pump current the one- 
mode lasing power increases. The limiting-field effect (i.e., 
the saturation of the watt-ampere characteristic of the laser) 
was apparently observed in a number of studies (see, e.g., 
Refs. 3 and 4) and is the possible cause of multimode lasing. 
The expression given above for the limiting field is valid only 
for pure semiconductors. 

It is natural to expect scattering by impurities also to 
lead to coherence loss. Indeed, it is known from experiment 
that doping exerts a substantial influence on the interband 
absorption and on the parameters of the laser. 

This paper deals with the action of impurity scattering 
of electrons on absorption in semiconductors and on the op- 
eration of the laser. It is shown that in the presence of com- 
bined electron-phonon and impurity scattering and at 
rim grph ,  where rim is the impurity-scattering time, the 
limiting field becomes equal to 

i.e., it increases by a factor (~T,,/T~,) ' /~.  In addition, at 
small the dependence of the field on the pump becomes non- 
monotonic, viz., it has a maximum. 

Combined scattering broadens also the absorption 
curve, but to a lesser degree than is customarily assumed. It 
turned out that pure impurity scattering does not broaden 
the absorption line. For this reason, any field is strong. 

The influence of impurity scattering on the limiting 
field was considered earlierS for the case of weak doping 
(rim )rph ), SO that the corrections naturally turned out to be 
small. 

81. GENERAL EQUATIONS 

We consider a straight-band semiconductor with equal 
electron and electron masses, in a field 

E ( t )  =E, cos Qt 

having a frequency L? somewhat higher than the band gap 
E, . It is known that the field causes interband electron tran- 
sitions that lead to absorption (or emission). 

1.1. Absorption 

Defining the absorption Q as the time average of the 
interband current J and of the field E (divided by fiL? ), we 
readily obtain2g6 

Herep(p) = (a,, +b, +) is a nondiagonal density matrix that 
describes electron transitions between the valence and con- 
duction bands; a,+ and b,+ are the electron and hole cre- 
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ation operators. We have neglected in (1) the photon wave 
vector; this is legitimate in the low-Q regime (A4wph),' 
which is assumed in the present paper. 

We note that here Q is the number of photons absorbed 
(emitted) per unit time. 

For inverted population Q < 0, so that we obtain the 
equation for the field in the laser by equating to - Q the 
number N of photons that leave the cavity, i.e., 

-Q=N/zo. (2) 

1.2. Equation for the density matrix 

The equation for the density matrixp(p) can be obtained 
by the Bogolyubov method6.': 

Here lP = p2/2m - p, p = (f2 - E, )/2, f, = (a,  +a, )is 
the distribution function of the electrons in the conduction 
band; (+/at ),, describes the changes ofp on account of dissi- 
pative scattering processes. We consider a model in which 
the electrons are assumed to interact with the phonons and 
the impurities. In this case we have 

The electron-phonon contribution can be represented 
in the form 

where g2(p) is the matrix element of the electron-phonon 
scattering, w, = qs is the phonon frequency, and the number 
Nph of the phonons is customarily assumed to be zero. 

It was assumed in the derivation that the field is weak 
(an exact criterion will be given below) and that the electron 
spectrum was renormalized. 

Impurity scattering leads to the following change of the 
matrix p: 

y i m = 2 ~  C I Vq I 6 ( E P + E p - q ) .  (8) 
'4 

where V, is the matrix element of the impurity scattering. 
We note that (7) and (8) can be obtained from (5) and (6) by 
putting w, = 0 and letting g2+vi.  

1.3. Equation for electron distribution function 

Equation (3) must be supplemented with an equation for 
the distribution function, which can be obtained by a similar 
method: 

3 f P  - = - i h  (p-p') + 
d t 

The collision integrals, which describe the collisions of 
the electrons with the phonons and with the impurities, are 
here of the form 

§2. DENSITY MATRIX AND FIELD ABSORPTION 

2.1 Electron scattering and field absorption 

It is known that stationary absorption is possible only if 
the electron undergoes scattering (e.g., by phonons or impur- 
ities) that upsets the coherence of the interaction with the 
field. In fact, putting in (3) (dp/dt ),, = 0, we find that 

and hence Q =0. 
It turns out that the character of the absorption de- 

pends, generally speaking, on the scattering mechanism. We 
consider therefore in succession absorption in electron- 
phonon, impurity, and combined interaction. 

2.2. Electron-phonon scattering 

We obtain the stationary matrix p from Eq. (3). The 
integral term in (5) is usually neglected. The remaining term 
describes then damping of the matrix, with a time y ~ ' .  

In this approximation the matrix& ) takes the form 

and the absorption is accordingly equal to 

where a(f2 ) and a, are the semiconductor absorption coeffi- 
cient in a nonequilibrium and in the ground (i.e., in a very 
weak field at T = 0) states. 

It is easy to verify that if we let yph -0 and assume slow 
variation off (f ), we get for a the usual perturbation-theory 
value that is independent of the scattering mechanism: 
a = a,(l - 2f (6 = 0)). 

Let us estimate the order of magnitude of the integral 
term discarded in (5). Recognizing that at yph/mph <1 the 
function& ) differs from zero near6 = 0 in a narrow energy 
region - yph , we find 

i.e., at yph /wph 4 1 it is small compared with the term yp,p 
that describes the damping. 
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2.3. Impurity scattering 

Results of a different kind are obtained for impurity 
scattering. The fundamental difference from electron- 
phonon scattering is the impossibility of neglecting in (dp/ 
at )i, thep terms with arrival for owing to the inelasticity of 
the scattering (a, = 0) the arrival makes a contribution 
comparable with the departure. 

In the isotropic case p depends only on f ,  so that we 
obtain from (7) 

i.e., the even part of the matrix& ) is not subject to damping 
on account of impurity scattering. If we confine ourselves 
only to impurity scattering, the stationary equation for p 
takes the form 

( E + i y i m )  p ( E )  =h(2f-1) + i y i m p ( - E ) .  (16) 
Assuming for simplicity a weak dependence of y,, and 

off on f ,  we get from ( 16) 

P ( E )  ( 2 f - 1 )  ( E - i 2 y i m )  1E2. (17) 

It can be ssen from (17) that p ( f )  tends to infinity at 
f = 0 and differs greatly fromp as described by (13). 

Substitution of the imaginary part ofp(f ) in expression 
(1) for the absorption would lead to divergence of the integral 
at f = 0. The reason is that the imaginary (even) part ofp(f ) is 
not subject to damping. Thus, despite the widespread intu- 
itive notion, pure impurity scattering does not broaden the 
absorption line. 

To avoid divergences in (17) we must forego the pertur- 
bation theory in terms of the field, which was used to derive 
Eqs. (3), (5 ) ,  and (7). The criterion of validity of (5) for elec- 
tron-phonon interaction is the condition2 

h a ~ p h .  

Since w, -0 for impurity elastic scattering, perturbation 
theory is not valid in any arbitrarily weak field. It can be 
shown, by using the quasiparticle approach,' that an exact 
treatment leads to replacement of f in the denominator of 
( 17 )by f2+A2 .  

2.4. Combined scattering 

We take into account in (3) both types of scattering: 

[2E+ i ( y p h + y t m ) l  p ( E ) = h ( 2 f - f ) + i y i m p ( - E ) .  (18) 

This yields for p(f ) 

The "width" of the functionp(5) is 

y = y p h  (1+2yirn/7ph)'" 

or for Yim %Yph 

r z  ( 2 ~ i r n y p h ) " ' ;  

it increases like yi,f with impurity density, i.e., impurity 
scattering leads to broadening only when combined with 
electron-phonon scattering. 

The question arises: how large can the broadening y 
become as y,, + co ? It can be shown that y has an upper limit 

-aph.  Indeed, at this value of y the width of the function 
p(f ) becomes -aph , and we can no longer neglect the inte- 
gral term (arrival) in (+/at )ph. If we do take it into account 
we obtain the aforementioned result. 

Substituting (19) in (I), we get the absorption coefficient 

where 

- *,, 

We note the substantial difference between (20) and (14) 
for a pure semiconductor. In the latter, the area under the 
function T/(x2 + y), which describes the shape of the inter- 
action region, does not depend on ? and remains constant. 
On the contrary, in (20) the area under the function y/ 
(x2 + y?) depends on y,, and yph : 

I dxv 'la - -= 
2yi, '11 

~ ~ + ~ ~ p h  = ( I + ~ )  ' 

(21) 
- m 

This means that doping increases the absorption coefficient. 
We shall show that this circumstance influences strongly the 
laser operation. 

53. GENERATION IN A DOPED SEMICONDUCTOR LASER 

3.1. System of equations for laser 

In the stationary case the laser is described by Eq. (2), 
which takes on substitution of Q the form 

and by the kinetic equation forf, obtained from (9) with ac- 
count taken of (19): 

where2 = A 2 v ~ p h  /aph 7, is the recombination time, and J, 
is the pump source. At y,, = 0 the system (22) and (23) goes 
over into the equations investigated in Ref. 2. 

Impurity scattering "broadens" the region of the field 
interaction with the electrons [Pph -+(.t.,, ;t;)'/']. This result, 
confirms the qualitative arguments advanced in a number of 
papers, favoring "the homogenizing action of the doping." 
At the same time, it is much less than expected, viz., we 
obtain (y,, yph ) 'I2 in lieu of yi, . 

3.2 Threshold conditions 

At the lasing threshold (A = 0) Eq. (22), with account 
taken of the smoothness of the threshold distribution func- 
tion f "'(6 ), leads to the condition 

If (24) is compared with the condition for a pure semi- 
conductor 

Pr2f'0"o)-11=1, p-1, 
it can be seen that doping leads to another factor (1 + 2y,, / 
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yph )'I2, which generally speaking lowers the threshold. In- 
deed, 0 can now be less than unity (P- yph /y,, (I), or at a 
givenP we need a smaller value off "'(0) and a corresponding- 
ly smaller threshold current. 

The physical reason is the following. Impurity scatter- 
ing increases the interaction-coherence-loss probability 
more strongly (ay,,)  than broadening of the transition 
function ( a y::). The latter is connected with the absence of 
damping of the imaginary part of the density matrix on ac- 
count of pure impurity scattering. 

3.3 Electron distribution 

The kinetic equation (23) for a pure semiconductor was 
investigated in detail in Ref. 2. It was shown that at large 
pump currents and accordingly in strong fields the distribu- 
tion differs substantially from that at the threshold f 'O' and 
behaves as follows. Near the energy withx = 0 there appears 
a dip ("hole burning" due to saturation) of width pph , and the 
right-hand limit (x < 0) shifts towards positive energies. A 
hump appears thus in the distribution at x > 0, and its area 

i 

I =  j f ( x ) d x  
0  

increases with increasing pump current. 
The situation is similar in combined scattering, only the 

width pph must be replaced by 7 = (Tpph)112. At sufficiently 
strong currents, when ii)p, Eq. (23) can be simplified in the 
energy region 1x1 < p and an analytic solution can be ob- 
tained. Indeed, it is permissible under these conditions to 
neglect in (df /at )ph the second term (departure), which is of 
the order of 7. In addition we leave out the terms that de- 
scribe recombination (since rph (T,) and the pump that acts 
in the region of large x. The last terms can easily be calculat- 
ed exactly, but they do not change the qualitative picture. 

As a result we arrive at an equation for f (x): 

the solution of which is 

f (x) goes over at y,, = 0 into the expression obtained in Ref. 
2. It can be easily seen that f (x) at x = 0 a dip whose width is 
(Tpph + a 2/ii). In a weak field, when 

2 X 2 / a " < V p h  Or h 2 ~ y p h / ~ p h 7  v7) 
the dip width turns out to equal and to increase 
with increasing y,, as (y,, yph )'I2 when y,, Byph. 

It must be emphasized that the criterion (27) does not 
contain the impurity densities. 

If the field becomes strong, the width of the dip begins 
to depend on the field and is equal to 

(Xz/a")'"=h ( ~ ~ h / 2 . t i m + ~ p h )  '". 
Thus, impurity scattering increases the width of the dip 

in a strong field by a factor ( T , , T ~ ~ ) ' / ~  compared with the 
width (-A ) in a pure semiconductor. 

3.4. Field generated by a semiconductor laser 

Let us find the laser-generated field as a function of ii 
and of other parameters. Substituting f from (26) in Eq. (22) 

for the field, we obtain the sought dependence 

At y,, = 0 we get from (28) an expression first obtained 
for A, in Refs. 1 and 2 by another method: 

h=a" (B2-1 )  " / 2 T P h .  v9) 
IfP) 1 and ii = 1, the field reaches the limiting value cited in 
the Introduction: 

h o = P / 2 ~ p h  (30) 
We obtain the limiting field in a doped semiconductor 

for the case p) 1 and rim (rph from the general expression 

Thus, doping increases the limiting field A oi a 1/& 
(and correspondingly the power Po a l/ri,). 

This important result explains why a stronger field is 
obtained in one mode in doped semiconductors. It is con- 
firmed also in studies devoted exclusively to this question. It 
was observed in Ref. 8, for example, that the one-mode re- 
gime exists right up to J/Jth = 2 in lasers doped to a density 
1019 ~ m - ~ .  In weakly doped lasers (7 .  10" cmP3), at the 
same time, a multimode regime is observed at an insignifi- 
cant excess over the threshold current Jth . 

A curious dependence ofA on ii (i.e., on the pump cur- 
rent) is predicted by Eq. (28) at P < l and rim <rph : 

It is easily seen that when the condition 

is satisfied the A '(5) dependence becomes nonmonotonic and 
reaches a maximum at 

- B2%h 
U m a x  = - B" , h2 (a",.,) = -7- 

2 T i m  8 ~ i m  

The physical reason is that a growth of yph = ii/rPh 
means an effective increase of the threshold current (see 
above). At ii > ii,,, the influence of yph becomes predomi- 
nant and the field decreases with increasing ii. This behavior 
was observed in experiment many times. It is usually attri- 
buted to overheating as the threshold current increases. 
There are, however, experiments (see, e.g., Ref. 4) that seem 
to demonstrate realization of the described mechanism in 
pure form, since there is no overheating in them and the 
nonmonoticity is observed at small P. 
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