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Two-photon stepwise excitation of an energy donor in a condensed medium of acceptors is con- 
sidered. The acceptors are in quasiresonance with the second (but not the first) excited electron 
singlet state of the donor. It is shown that quasiresonant excitation proceeding through two real 
donor levels is the leading process. The kinetic equations are obtained in the balance approxima- 
tion. They include terms representing relaxation, nonlinear donor photodegradation, migration 
of excitation over acceptors and its return to the donor, and attenuation of the incident radiation 
by donor absorption. A self-consistent solution of these equations is found for the evolution in 
space and time of the donor and acceptor populations, and the intensity of the exciting radiation. 
The main parameter of the theory that permits an analytic solution is the long lifetime of the first 
singlet state of the donor as compared with the other relaxation time constants of the system. This 
long lifetime is characteristic of organic-dye impurities in condensed media. Some applications of 
the theory, including sensitized selective photomodification of macromolecules, are examined. 

1. INTRODUCTION 

Energy transport phenomena in a system of donors and 
acceptors of excitation have been examined in detail, for ex- 
ample, in the monograph by Agranovich and Galanin' and 
in the review by Burshtein.' The usual approach is to consid- 
er the evolution in time of the initial state in which the entire 
excitation is localized on donors. This state can be "pre- 
pared" by a short (6-function of time) pulse of radiation that 
is absorbed by the donors alone.lv2 For problems that are 
linear in the radiation intensity, the convolution of the re- 
sponse to the 6-pulse and the excitation intensity I (t ) as a 
function of time gives the solution for arbitrary I (t ) (see Ref. 
2). This was noted by Galanin in relation to the description of 
phosphorescence  kinetic^.^ 

In this paper, we shall consider quasiresonant two-pho- 
ton excitation of donors in a medium of acceptors by an inci- 
dent light pulse of arbitrary shape. The attenuation of inci- 
dent radiation by donor absorption will not be assumed to be 
small and will be taken into account. The problem is nonlin- 
ear, so that the excitation kinetics at a particular point has a 
nontrivial dependence on the radiation intensity at preced- 
ing instants of time, and the intensity itself depends on the 
state of the donor subsystem at preceding (along the direc- 
tion of propagation of the exciting radiation) points in space. 
It follows that what is required is a self-consistent determin- 
ation of the state of the system and of the intensity of light 
both in space and time. 

Figure 1 shows the level diagram for a donor-acceptor 
pair and the processes that occur under excitation. Each of 
the singlet electron levels consists of a quasicontinuum of 
vibrational sublevels. The exciting radiation is quasireson- 
ant with both So+S, andS,+S2 transitions in the donor, but 
is not absorbed directly by the acceptor (in the one-photon 
process). The second excited singlet of the donor S2 is in 
quasiresonance with the acceptor level S (quantities refer- 
ring to acceptors will be indicated by the index M for medi- 

um). Two-photon step-wise excitation of the state S2 occurs 
with appreciable probability when the exciting intensity is 
high enough. Coupled ("simultaneous") nonradiative transi- 
tions in the donor (S2+So) and acceptor (S f+S p) are then 
possible and lead to the transfer of the two-photon excitation 
energy from the donor to the acceptor. We note that, in the 
dipole-dipole (Foerster) process, the S2-tS0 transition is the 
radiationless analog of two-photon excited fluorescence. To 
conserve parity, this process requires the participation of 
nonfully symmetric vibrational sublevels, which reduces its 
probability to some extent as compared with the fully al- 
lowed tran~it ion.~ 

We shall suppose that the density of donors is low 
enough to enable us to neglect energy transport over them. 
However, energy migration over the acceptors is important 
and will be taken into account because it facilitates the out- 
flow of excitation from the donor and thus prevents its re- 
turn to the donor and its consequent total loss. This results in 

FIG. 1 .  Donor (right) and acceptor (left, labeled M ) level schemes. See text 
for notation. 
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an increase in the number of events in which excitation re- 
mains in the acceptor subsystem. 

Let us examine some interesting systems that can be 
described by the above model. The donor can be a molecule 
of an organic dye. There are, in fact, many dyes in which 
absorption bands due to the So-+Sl and Sl+S2 transitions 
are found to overlap strongly (see, for example, Refs. 5 and 
6). This means that such transitions can be excited by quasi- 
monochromatic light. However, this is not fundamental and 
is introduced here only for simplicity. Actually, quasireson- 
ant stepwise excitation of a donor can always be accom- 
plished with bichromatic radiation (see Refs. 5 and 6). 

We may suppose that the acceptor medium is a molecu- 
lar crystal or a solution. The constituent molecules must not 
absorb the incident radiation, but should exhibit quasireson- 
ant absorption at twice the frequency (minus the Stokes shift 
at S,), which should lie in the range 250-160 nm in the UV/ 
VUV (when the incident radiation lies in the visible or near 
UV). There is an enormous number of moleucles that satisfy 
this condition. Naphthalene in benzene, anthracene (or its 
heterocyclic analogs, such as rhodamine and acridine) in 
naphthalene, and others are examples of possible donor-ac- 
ceptor pairs. 

The energy of the two-photon excitation of a donor (5-7 
eV) is sufficient to break chemical bonds in both donor and 
acceptor molecules, which may lead to their nonlinear pho- 
tochemical degradation. This effect will be taken into ac- 
count for donors because it is precisely this process that re- 
stricts the maximum number of acceptor excitation events 
whilst the exciting pulse is present. Because of the large 
number of acceptors, their degradation is of little signifi- 
cance for the kinetics of the process, and will not be taken 
into account. However, the photo modification of acceptors 
may itself be of applied interest. 

The method of two-photon affinity modification (TAM) 
proposed in Ref. 7 for the selective (at a given point in pri- 
mary structure) photomodification of macromolecules is 
based on precisely this process. The acceptors are then chro- 
mophoric groups of a macromolecule that are nonlinearly 
excited by a donor in the form of a dye molecule bonded 
("addressed") to a given segment of the macromolecule. We 
note that there are various ways of addressing the dye mole- 
cules to a segment of the macromolecules that are of applied 
interest. Some of them were discussed by the present author 
in Ref. 7 and by Rautian and the present author in Ref. 8. 

We note that, in approaches that were known prior to 
the publication of Ref. 7, the selective optical excitation of 
large polymeric molecules (macromolecules) encountered 
the fundamental difficulty that monomeric residues of a par- 
ticular type with practically identical optical properties are 
repeatedly encountered in different segments of the macro- - 
molecule. It follows that, even when it is possible to excite 
only the residues of a particular type, the excitation will still 
be distributed over the entire macromolecule. In the TAM 
method, this problem is solved by exploiting the fact that, in 
the one-photon process, the macromolecule does not absorb 
the incident radiation and the probability of direct (without 
donor participation) two-photon absorption as well as other 
secondary processes is small in comparison with the useful 

quasiresonant process (see Refs. 7 and 8 and Sec. 2). The 
energy is transferred to the macromolecule in the small 
neighborhood of the donor. For example, according to the 
estimate given in Ref. 7, the Foerster radius of DNA is 
R ,  = 3-5 A, and the radius is smaller still when transport is 
accomplished by the resonant-exchange mechani~m.~ In the 
case of DNA, estimates8 show that diffusion over the macro- 
molecular chain does not delocalize the excitation to any 
great extent. 

The physical foundations of the TAM method were 
confirmed by experiments with unaddressed1' and ad- 
dressed" dyes. Cleavages were found in the molecular 
chains of nuclei acids, induced by two-photon excitation of 
complexes of these molecules with different dyes. It became 
clear that TAM was of considerable applied interest. The 
theory presented below is directly applicable to the descrip- 
tion of this method. 

2. CHOICE OF MODEL AND BASIC EQUATIONS 

The essential assumption in this thoery is that the life- 
time of the ground vibrational sublevel in the first excited 
electronic state S, (but not in the higher S2) is long in com- 
parison with the lifetimes of the other sublevels that are typi- 
cal for dyes (see, for example, Ref. 12): 

riKroa, Fin, rzUr rZ, rlvM, (1) 
whereri is the rate of depopulation of the electronic state Si , 
r , ,  is the rate of relaxation over vibrational sublevels of the 
state Si ,  and the superscript M labels acceptor levels as be- 
fore (see Fig. 1). 

Since the ratio rl/r2 is small, the exciting intensity I 
can be chosen to lie in the range 

r i l ( T I O ~ I ~ r z / ( T z l ,  (2) 
where aV is the S, +Si absorption cross section. Inequality 
(2) indicates that the level S, can be saturated for a low popu- 
lation ofS,. Transitions from S2 to higher-lying singlets can, 
of course, be neglected under these conditions. By virtue of 
(1) and (2), the S,-S2 transition occurs from the state S, 
thermalized over the vibrational sublevels, i.e., practically 
from the ground vibrational sublevel S,. Transitions to the 
triplet state can also be ignored when the light pulses are 
short enough. Finally, assuming that 

rl<riM, ( la)  

we can also neglect transitions to higher-lying singlet states 
of the acceptors. Henceforth, we shall assume that ( I ) ,  (2), 
and ( la)  are satisfied, and this will enable us to confine our 
attention to five levels and the transition scheme shown in 
Fig. 1. 

We shall suppose that the donor and acceptor polariza- 
tions relax instantaneously on the scale of the above life- 
times. This is assured by the strong adiabatic broadening of 
the levels of large molecules, and the broad spectrum of the 
exciting radiation. As a result, we are able to use the balance 
equations for the populations. 

Let us illustrate the above relationships between the 
various relaxation lifetimes by considering the following ex- 
amples. For coumarin dyes (such as were used in a number of 
experiments1' with DNA), a,, = 3 x lo-'' cm2, 
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a,, = 5.5X 10-l7 cm2 (A = 337 nm); TI = 3.2X lo%-' 
(Ref. 5), To, = 8 x 10" s-' (T = 295 K) (Ref. 13); for phtha- 
locyanine dyes r1cx1O8 s-', r,, -T0,cx2X 10'' s-' (Ref. 
14); for rhodamine 6G, rl = 1.1 X 10' s-' (Ref. 5), 
r,, = 1.7X 10" s-' (Refs. 15 and 16); and for rhodamine B, 
rl = 2.7X 108s-' (Ref. 5 ) , r 1 ,  > 5 x  10" s-' (Ref. 16). The 
polarization relaxation rate T, for the electronically excited 
states of organic molecules is so high that it has been mea- 
sured in only very few cases. For example, for azulene, the 
rate constant for theso-S, transition i s r ,  = 3 X 10" s-' at 
T = 30 K and increases rapidly with increasing tempera- 
ture.'' The presence of well-defined hot fluoresence from 
nonthermalized vibrational sublevels at excitation energies 
of 5-6 eV shows that T2 2 T2, . It may be expected on the 
basis of the data reported in Ref. 6 that the magnitude of r y  
for acceptors at high excitation energies (5-7 eV) will lie in 
the range 101'-10'2 s-'. 

Generalizing the above and other experimental data 
(see, in particular, Ref. 12 and the references cited therein), 
we may conclude that typical values of the above parameters 
are 

IS,,, IS,,-~O-'~-IO-~' cm2, rl-108-109 S- l, 

These values show that the inequalities adopted above were 
realistic. In particular, (2) can now be rewritten in the nu- 
merical form (in units of power) 

10 M W / C ~ ~ ~  5 ~ 1 ~ 1 0  G W / C ~ ~  . (24  

Such intensities are readily attainable if we use pulsed nano- 
and picosecond lasers. 

In addition to the "useful" process shown in Fig. 1, 
other two-photon transitions proceeding through virtual 
levels of the acceptor are possible in this level scheme. In 
particular, direct two-photon excitation of the acceptor 
without the dissipation of the donor is obviously a parasitic 
effect (which disturbs selectivity). We must now estimate the 
probability per unit time Wl of the primary excitation of the 
acceptor for different processes, assuming optically nonsa- 
turating excitation and using the usual perturbation theory 
for the S-matrix. 

In the useful process 

where the upper line corresponds to the donor and the lower 
(with index M )  to the acceptor, we show the number of each 
state, the primes designate the vibrationally excited states 
over which summation is implied, the wavy lines represent 
the external field due to the exciting radiation (assumed to be 
quasistationary in approximate estimates), the broken line 
represents the matrix element of the interaction responsible 
for the excitation transfer (dipole-dipole, to be specific), and 
a cross represents the amplitude for relaxation over vibra- 
tional sublevels. Since this relaxation leads to the loss of 

phase memory, the probability (4) splits into a product of 
probabilities: 

where v, is the probability of energy transfer from the donor 
state S2. In introducing the second factor in (5), we assumed 
that the amplitude for excitation transfer was independent of 
the particular vibrational sublevel, which is not fundamental 
but produces a substantial simplification in calculations and 
will be used henceforth. In the process described by (5), the 
energy received by the acceptor is Ea , = El + &, where w 
is the frequency of the exciting radiation and El is the energy 
of the thermalized level S, (in practice, the ground vibration- 
al sublevel). 

There is another possible process of two-photon excita- 
tion of the acceptor through its virtual state in which the role 
of one of the two photons is played by excitation transferred 
radiationlessly from the donor level S, while the donor level 
S2 takes no part in this process at all [cf. the transition from 
(4) to (511: 

where the nonresonant inner line 2 corresponds to the vir- 
tual intermediate state S y of the acceptor, d S;: is the matrix 
element of the dipole transition to this state, and Am is the 
detuning ofw from the acceptor state S Y. The process repre- 
sented by (6) is not, strictly speaking, parasitic (it does not 
lead to the delocalization of excitation over the acceptor me- 
dium), since Wy' in (6) and WY) in (5) have the same depen- 
dence on the distance r between the donor and acceptor, 
which determines the transfer probability v, [v, (r) a r-6, ac- 
cording to Foerster]. The energies transferred in (5) and (6) 
are equal. However,the probability of process (6) is very 
small in comparison with (5); see below. 

For the direct two-photon excitation of the acceptor 
without the participation of the donor (such processes have 
been examined in detail in the literature; see the re vie^,^ 
which is parasitic in this problem, we have 

(7) 
where is the spectral width of the S :-Sf transition. 
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Let us compare the probabilities (5)-(7). Assuming that 
all the corresponding optical dipole matrix elements d are of 
the same order of magnitude, and that the spectral width y of 
the different transitions is also of the same order, and recall- 
ing that a- Id j2w/(&y), we find that 

The numerical estimates in (8) were obtained for the follow- 
ing realistic parameter values: w - 1016 s- ' (near-UV), Am/ 
0-0.5, r25 1012 s-I, r15 10" s-', and y/w-0.1; 
u, - (d  I2/fi4yr6 was estimated in Ref. 7 as being 
u, -r2- 1012 s-' for r- 5 A. We note that processes of the 
form of (4) and (6) but without relaxation of the populations 
of the vibrational sublevels of Sl have the small factor TI/ 
r,, - lop3 in the probability W,, whereas those proceeding 
without relaxation of polarization via the So-tSl transition 
contain the factor r1/T, as compared with the corre- 
sponding processes1' (4) and (6). 

Thus, process (4) [or (5), which amounts to the same 
thing]' that proceeds through the two levels S, and S2 of the 
donor is the dominant process and we shall confine our at- 
tention to it. 

Let n, be the population of the i-th electron level of the 
donor, where n = no + nl  + n,. It follows from (2) that 

n,<n, (9) 

so that the kinetic equations for the populations can be writ- 
ten in the form 

where t is the time, WT is the donor photodegradation rate 
for the level Si ,  uol is the stimulated emission cross section 
for the level S, at frequency w, r12 is the S,+Sl spontaneous 
transmission rate, F is the excitation exchange integral for 
the acceptor medium, and r is the acceptor position vector 
measured from the donor. 

The rate of exchange of excitation between the donor 
and the medium is 

I (r) =nzwe (r) -nIM (r) wd(r), (13) 
where nr(r)  is the population of the acceptor level S Fat  the 
point r, w,(r) is the probability density for the transfer of 
excitation from the donor to this particular acceptor, and 
w, (r) is the probability density for the reverse process. When 
the energy-transfer rate is independent of the vibrational 
sublevels participating in the process (which is assumed), we 
have w,(r)/w,(r) = const. The value of this constant de- 
pends on the ratio of T,, and u, . When r,, due , exchange 
will, clearly, occur between excited vibrational sublevels 
that are in resonance with one another (S,, and S 7, as shown 
in Fig. 1) and 

In the other limiting case, the first stage is thermalization 
over the vibrational sublevels ofS, and SF ,  followed by exci- 
tation transfer, and 

where T is the temperature and AE is the effective (averaged 
over vibrational sublevels) difference between the energies of 
the conjugate S,.-S,. and Sf-Sy transitions. We note 
that the linearity of (13) in the population numbers ensures 
that the latter are small in accordance with (I), (2), (la), and 
(9). The specific form of we (r) for different types of interac- 
tion is well known.'p9 For example, for the Foerster (dipole- 
dipole) transfer 

w e  (r) =p (r) ( R ~ l r )  6, 

where p(r) is the acceptor density at the point r. 
The general form of the continuity equation for the ex- 

citation of the acceptor medium is 

[a/at+riM (r) +div j] p (r) niM (r) =f (r)  , (16) 
where j is the linear (in general, integro-differential) operator 
for the excitation current and r r ( r )  is the rate of relaxation 
of the acceptor state Sr at the point r. The range of validity 
of the continuous-medium approximation [for whichp(r) is a 
continuous function] and of the diffusion approximation for 
the excitation current 

where D is the diffusion coefficient, is known in the case of 
ordered systems. We note that the possibility of the diffusion 
description of excitation migration in unordered media is 
highly nontrivial, and has frequently been examined. It was 
reliably established for (quasi)stationary migration (see the 
review by Burshtein.l9 The solution of (16) will be examined 
below in relation to this particular case. Hopping migra- 
t i ~ n , ~ '  which we hope to investigate in the future, is an alter- 
native and more realistic mechanism. 

Let us consider acceptor media [and problems for (16)] 
of different dimensions. In particular, let us examine quasi- 
one-dimensional chains (for example, linear macromole- 
cules such as DNA and RNA), quasi-two-dimensional sys- 
tems (for example, thin films, planar macromolecular 
structures such as the proteinp-layer, crystals with a special 
plane of fast diffusion1), and three-dimensional media. To 
avoid unimportant complications, we shall consider that the 
acceptor media are homogeneous (r D andp independent 
of r) and isotropic (the diffusion coefficient D will be as- 
sumed to be a scalar). 

We turn now to the radiation transfer equation. It will 
be convenient to work in terms of macroscopic coordinates 
X, Y, Z (not to be confused with the microscopic coordinates 
r, measured locally from the position of each of the donors). 
Suppose that the exciting radiation propagates in the direc- 
tion of the Z axis. We shall neglect reabsorption of the flu- 
orescence, assuming that the Stokes shift of the fluorescence 
and absorption frequencies due to the S,3S2 transition is 
sufficiently large and the cross section of the exciting beam is 
sufficiently small. We shall also assume that superfluores- 
cence is absent. This is usually assured by the absorption of 
fluorescence photons in the S,+S2 transition, or it can be 
achieved by introducing an impurity that absorbs at the flu- 
orescence frequency. Neglecting retarded effects, we can 
write the continuity equation for the intensity I of exciting 
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radiation as a function of Z in the form (C is the volume 
density of donors) 

Equations (10)-(12), (1 6), and (1 8) form a closed system 
for the populations n(t,Z ), n ,(t,Z ), n,(t,Z ), n y  (r,t,Z )and the 
intensity I (t, Z ) .  The system is nonlinear and does not split 
into independent subsystems, which means that all these 
quantities must be determined in a self-consistent manner 
(cf. the Introduction). 

3. ELIMINATION OF RAPIDLY-RELAXING VARIABLES 

We shall suppose that the exciting radiation is a pulse 
whose duration rp must be smaller than, or of the order of, 
the lifetime of the state S,, so that we can avoid large excita- 
tion losses through the relaxation of the donor from this 
state. By virtue of (1) and (la), T, may, however, be much 
longer than the S, and S y relaxation times: 

i/rZ, I I ~ ~ ~ K T ~ G I I ~ ~ .  (19) 
Assuming that (19) is valid and neglecting the time deriva- 
tives in (1 1) and (l6), let us solve them and thus eliminate the 
variables ny(r) and n,. We note that the condition of stability 
of the donor against single-photon degradation, W  T C , ,  is 
assumed satisfied and, by virtue of (19), enables us to neglect 
this degradation and take W :  = 0 in (12). 

Under the above conditions, the solution of (16) has the 
form 

pniM (r) =nz GL (r, r') we (rl) L', (20) 

where GL is the Green function of the operator 

L=div j+riM+vd (r) , vd (r) =wd (r) lp. (21) 

We now integrate (16) term by term with respect to r. The 
contribution of the term containing div j is then found to 
vanish, so that, using (21), we obtain 

F=n2W1, Wt=riY J f (r) w. (r) dr, (22) 

where W = const has the significance of the renormalized 
(due to the return of excitation to the donor) probability of 
transfer of the excitation to the acceptor medium (in the ter- 
minology of Ref. 19, W is the rate of migrationally-acceler- 
ated stationary quenching of S,) and the function GL (r) is 
given by 

gL (r) - J G L ( ~ ,  rl)  C., (23) 

and satisfies the equation 

LgL (r) =I. (24) 

In deriving (22)-(24), we used the symmetry property of the 
Green function of the Hermitian GL (r,rl) = GL(r',r). It is 
precisely this property that has enabled us to reduce our 
migration problem, in which the source and sink densities 
w e  (r) and e,  (r) have the same shape, to Eq. (24) with a con- 
stant source density (unity on the right-hand side). 

When the current is taken in the form given by (17), Eq. 
(24) assumes the form 

[-DA+riM+vd(r)] gL(r) =I ,  P4a) 

which is well-known from the diffusion theory of the capture 
of excitons by traps.,' However, in our problem, we have to 
deal with the integral of& (r) in (22), whereas the zero-order 
moment of this function was considered in Ref. 2 1. 

Let us now eliminate n, from the above equations. It 
follows from (1 1) and (22) that 

Substituting this in (10) and (12), we obtain a set of equations 
for the populations n and n, in the final form: 

where 

The quantities defined by (28) can be interpreted as the cross 
sections for absorption (through the S,-tS, transition) ac- 
companied by the following processes: 5,-depopulation of 
the state S,, a,,-transition to So, a,*, -photochemical deg- 
radation of the donor, and a:, -transfer of excitation to the 
medium (return of excitation to the donor is taken into ac- 
count and eliminated). We note that Eqs. (26) and (27) have 
the same form as in the absence of exchange of excitation 
with the medium. However, the last process renormalizes 
[according to (22) and (28)] the coefficients of these equa- 
tions. When degradation is neglected (n = l), Eq. (26) has the 
same form as the previously known equation5 for the step- 
wise two-photon excitation of an isolated chromophore. 

Let us now examine the main observed quantities (per 
donor per pulse). The number of events in which excitation is 
transferred to the medium and is not returned to the donor, 
N = JFdt, can be transformed to the following form with 
the aid of (22) and (25): 

Since the states, is short-lived, the entire fluorescence of the 
donor is emitted from the level S,. The total number of flu- 
orescence photons is 

where Q5 is the quantum yield of unsaturated fluorescence. 
Finally, the number of photons absorbed by the donor can be 
written in the form [see (1 8)] 

The quantities given by (29)-(3 1) are not independent. 
In fact, integrating (26) term by term and using the condition 
that n, = 0 for t = - cc and t = CO, we find that the rela- 
tionship between them is 

where ef and Q' are, respectively, the quantum yield of flu- 
orescence and of excitation of the medium, and the constant 

Qst=azit/ ( 0 ~ ~ + 1 3 ~ - - a ~ ~ )  - Wtl [2 (I?,+ Wt) -rizl (33) 
has the significance of the limiting (for saturating radiation 

53 Sov. Phys. JETP 60 (I), July 1984 M. I. Stockmann 53 



intensities) excitation quantum yield of the medium. From 
(32) and (33) we obtain the rigorous inequalities 
Q ' < Q < 1/2, the second of which is obvious a priori: at 
least two absorbed photons are lost in each medium-excita- 
tion event. Equation (32) reflects the fact that the transfer of 
excitation to the medium is accompanied in the donor by the 
transition S2+So and, consequently, the depopulation of S,, 
as well as a proportional reduction in fluorescence. 

To conclude this section, let us consider the renormal- 
ized probability W of excitation transfer, given by (22). 
When the migration of excitation over the medium is unim- 
portant, we may omit the div j term from (22) and use (22) 
and (24) to show that 

wt=r,l Jw. (r)  [ I . , ~ + V . ( I )  1 - 1 ~ .  (34) 

When the rate of return of excitation is small Tr>v, ,  
we find from (2 1) and (24) that & (r) = 1/T r = const, and 
the renormalized transfer probability is equal to the original 
probability, as expected: 

Wt=We, We= J lo. (r)  dr. (35) 

When migration and return of excitation (rr 5 v,) are 
important, we must provide the specific form of the current 
operator j. Henceforth, we shall use the diffusion approxi- 
mation (17). We shall examine the case of strong exchange (rr(u,) and simultaneous strong diffusion [(D /ry)ll '%a, 
where a is the radius at which excitation exchange occurs; 
a-R, for the Foerster transfer]. It is then reasonable to 
assume that the scale of the solution is much greater than the 
radius a, so that the shape of the functions we (r) and wd (r) is 
unimportant and can be represented by the 8-function: 

we ( r  = W e  r )  , ( r )  - 6  ( 1 ,  Wd= jrur(r) dr. 136) 

Taking the Fourier transform of (24a), we find from (22) that 

I +  wdp-' ( I ' , ~ + ~ ~ D D )  -' (2n) -"dk ] - I ,  (37) 

where N is the dimensionality of the diffusion problem. 
For a linear medium, it follows from (37) that 

Wf=W,  [1+Wd(21'lMH,)-'h] -I ,  (38) 

where HI = 2Dp2 is the average hopping frequency (in the 
case of diffusion transfer) between neighboring acceptors for 
N =  1. 

For N = 2, the integral in (37) diverges logarithmically 
as k + ~ .  Since the approximation defined by (36) ceases to 
be valid for r 5 a, integration must be cut off at k- l/a and 
[see (3811 

Wt=n',[1+'/LWdH2-i ln ( I ~ , / v , I ' , ~ )  I-', (39) 
where H2 = ?rDp2 is the mean hopping frequency in the two- 
dimensional case and 

is the mean number of acceptors within the exchange radius. 
It is clear from (39) that, when N = 2, the renormalization 
ratio W /  We is largely determined by the ratio W, /Hz, and 
the dependence on the rate of loss of excitation r y  in the 

medium is only logarithmic. 
In the three-dimensional case, we have an essential di- 

vergence in (37). Consequently, the assumption that all the 
characteristic scales of the diffusion solution are much 
greater than the exchange radius a for N = 3, which was 
used in justifying (36) (and, strictly speaking, for N = 2, as 
well), is not self-consistent. 

To determine W in a closed form for all N, let us re- 
place v, (r) with a rectangle of radius a and equivalent power: 
v, (r) = v,O (a - r), v,= W, /v, . From (22) and (24a), we then 
have 

where @, for N = 1,2, and 3 is respectively given by 

O l = x 2 [ x , + ~ 2  cth x'] -'; (404 
@ 2 = 2 ~ 2  [x2Jo ( % , ) / I i  ( x i )  + xiKO ( x z ) l K i  ( x z ) ]  -' (40b) 

@,=3(1+x2) ( x l  cth x,-1) [?cl  (x1+xz cth x i ) ] - ' ,  ( 4 0 ~ )  
where 

[ ( r l M + V o )  ID] Ih, x2=a ( r i M / D ) "  , 

and I, (x), Km (x) are the modified cylinder functions of or- 
der m. 

We now proceed in (40) to the limit of strong diffusion 
(x,( 1) and strong exchange (vo%ry) at constant total prob- 
ability W, of return of excitation, i.e., to the limit in (36). 
From (40) and (40a) (N = I) ,  we then obtain the exact expres- 
sion given by (38), which is independent of a. From (40) and 
(40b) with N = 2, we then have 

Wt=W.2[x,Zo(xl) /I ,  ( x , )  +x12 In (2/yaxz)]-' 

(yE -- 1.78 is the Euler-Mascheroni constant), which is as- 
ymptotically identical with (39). For N = 3, we find from 
(40) and (40c) that [see (38) and (39)] 

W t =  (We/  W d )  4npaD, 
i.e., the normalized probability W is independent of r r o r  
the primary transfer probability We [it depends only on the 
ratio We / W, which is equal to unity and eAE'= for (14) and 
(15), respectively], and W is determined by 4rpaD which, 
according to the Smoluchowski formula, is the rate of diffu- 
sion-controlled trapping by black spheres of radius a. 

4. KINETICS OF EXCITATION BY A SHORT PULSE 

Let us now consider the most interesting case rp (T; 
[see (19)] in which the loss of excitation by relaxation in the 
donor is, of course, at a minimum. We may then neglect the 
term T,nl in (26) and obtain the solution of (26) and (27) 
subject to the initial conditions n,(O) = 0 and n(0) = 1: 

n, ( J )  =ol, (NO+-o-) -' [exp (-o-J) -exp (-o+J)] , (41) 
n (J) = (o+-o-)-' [o+ exp (-o-J) -0- exp (-o+J)] , (42) 

where J i s  the photon number density in the pulse (integrated 
"power"): 

We note that, for a donor that is stable against two-photon 
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photochemical degradation, 

0 2 1 * ~ 0 1 0 t  0 2 1  

and as a consequence 

0-<0+, 0 + " 0 l o + C f l ,  ~ - = ~ z 1 * 0 1 0 / ( 0 1 0 + ~ 1 ) .  (46)  

To solve this space problem, we transform in ( 1  8)  to the 
variable J and hence obtain 

c-i (auaz) =-N," ( 1 1 ,  
(47)  

Nla(J) = [ I - n ( J ) ]  (oz l+~l-ool ) la2 , '+nl  ( 4 ,  
where n , ( J )  and n ( J )  are given by (41)  and (42)  and Nf ( J )  is 
given by (31) .  The variables in (47)  are separable, and the 
required solution J, d (2 ) can be found from 

J o  

CZ= ~ ~ J / N ~ ' ( J ) ,  Jo=J(0).  (48)  
J z  

Using (41)  and (42) ,  the number of excitation events (29)  
can be written in the form 

N:=o,,' b i d ] =  [ i - n  ( I )  ] o , ' / ~ ~ l * .  (49)  
0 

From (48)  and (49) ,  we find that the number of excitation 
events and the excitation quantum yield Q' in the entire vol- 
ume V are respectively given by: 

where S is the cross section of the irradiated volume. The 
case of an optically thick layer corresponds to J, = 0 in (50)  
and (51) .  

The integrals encountered in (48) ,  (50) ,  and (5 1 )  cannot 
in general be expressed in terms of tabulated functions. We 
must therefore begin by considering limiting cases, and then 
numerical results. In the absence of optical saturation 
( a , d o < l ) ,  and if we use (32) ,  we obtain 

J z = J o  exp (-Coi0Z),  (52)  

Qt=l / loz l t  ( J o + J z ) ,  Qf=Qof  [ l - l / ~ ( ~ Z l + ~ l - o o l )  ( J o + J z ) l .  
(53)  

It is clear that, as the pulse power J ,  increases, the quantum 
yield Qt grows in direct proportion to it, whereas ef falls 
linearly. 

In the case of saturation (oldz > 1 ) ,  we find from (47)  
and (48)  that 

Jz=a--' In { I f e x p  (Co,Z) [exp (0-1) -11 ), (54)  
where the saturated absorption cross section is given by 

o,=01o(021+Cf1-o01)/ (010+0,). (55)  

For photostable donors [i.e., when (45)  is satisfied], and 
when the layer thickness is not too large, there is a range of 
moderate pulse power 

J , ~ l / o , , ,  J0< I / O ~ ~ * ,  (56)  

for which saturation is present but photodegradation is still 
relatively unimportant. Equation (54)  then assumes the 
simpler form 

J z = J o  exp (-Co,Z), (57)  

but with the cross sections a ,  instead of the a,, of (52) .  We 
also note that a, in (55)  can be either greater or smaller than 
a , , .  For the range defined by (56) ,  it follows from (51)  and 
(32)  that 

where the saturated optical density is I = Ca, R ,  and R is the 
geometric thickness of the system. According to (58) ,  Qt 
eventually reaches its limiting value, whereas ef is inversely 
proportional to J,. 

Finally, complete degradation of donors throughout 
the volume occurs in the limit of high power and finite thick- 
ness of the optical layer (for J z ) l / a F , ) .  We then have 
Q' -Q:, as before, but the total yield N' given by (50)  re- 
mains finite and is determined by the total number of effec- 
tive donor excitation cycles prior to donor degradation: 

Figures 2 - 4  show the results of numerical calculations 
for a - / a +  = 0.01, where 

Figure 2 shows the transmitted pulse power Jz as a function 
of the incident power J,, obtained by numerical solution of 
(48)  for four sets of parameter values. These calculations 
have confirmed that the absorption law given by (5 l ) ,  valid at 
low power, takes the form given by (57)  for moderate power. 
Finally, in accordance with (54) ,  photodegradation even- 
tually produces complete transmission. When the optical 
thickness is large ( 1  = 3), the difference between these ab- 
sorption regimes is not very clearly defined because they 
coexist in different parts of the system. 

Figure 3 shows calculations of the excitation and flu- 
orescence quantum yields Qt and ef obtained from (5 1 )  and 
(32) .  These calculations confirm the formulas given by (53)  
and (58)  for limiting cases, and describe intermediate regions 
as well. The behavior of Q* and ef as functions of J ,  for 
layers of different optical thickness is in general similar, but 

FIG. 2. Transmitted pulse power as a function of the incident pulse power 
(on a double logarithmic scale). Dashed line corresponds to zero absorp- 
tion. The parameter values are: 1--a = 0.5,1= 1;  2--a = 0.5,1= 3; 3- 
a = 2 , 1 =  1 ; k = 2 , 1 = 3 .  
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FIG. 3. Transfer and fluorescence quantum yields as functions of the 
incident pulse power. The parameter values are: l - a  = 0.5, 14 1; 2- 
a = 0.5, 1N1; 3-a = 2, 141; 4-a = 2,1%1. 

for a thin layer saturation sets in much more rapidly, as ex- 
pected. 

In contrast to Q' and Q', the absolute excitation yield of 
the medium, N (Fig. 4), calculated from (50) for an optically 
thin layer, is found to reach a constant for J,,--t w as a result 
of the nonlinear photodegradation of donors, in accordance 
with (59). At the same time, for an optically thick layer with 
J,-+ w , the yield N grows without limit because the region 
of effectively absorbing molecules moves inward into the 
system without limit. 

5. CONCLUDING DISCUSSION 

Let us now briefly summarize the main results of this 
paper. We have succeeded in finding the exact (for rp (T, I )  

solution of the nonlinear set of equations given by (18), (26), 
and (27) for the populations [Eqs. (41) and (43)] and by (48) 
for the intensity. The solution is expressed in terms of the 
resultant pulse "intensity area" by analogy with the "ampli- 
tude area" used in the case of coherent pulses, for example, 
in self-induced transparency. Equations (50) and (51) [to- 
gether with the general relation given by (32)] provide us 
with formulas for the main observed quantities. 

The basic parameter that has enabled us to eliminate 
medium variables, and then solve exactly the nonlinear set of 
equations for the populations and intensity, is the rate of 
relaxation from the first electronic level of the donor, which 

FIG. 4. Absolute yield of excitation of the acceptor medium as a function 
of the incident pulse power. The normalizing constant No was taken to be 
SQr/u+. The parameter values are: l - a  = 0.5,1,1; 2 - a  = 2,1>1; 3- 
14 1 (independent of a). 

is small compared with the other relaxation rates. When or- 
ganic dyes are used as donors, the relative difference between 
these rates amounts to three orders of magnitude [see (3)], so 
that we are dealing with a satisfactory parameter. 

The least expected feature of the problem is that the 
transitions to the second excited donor singlet S, has an im- 
portant influence on the kinetics of the process, despite the 
low population of this level [see (9) and (25)l. In fact, transi- 
tions to S, give rise to the transfer of excitation to the medi- 
um, a change in the absorption of the radiation, a reduction 
in the population of S,, and a corresponding fall in fluores- 
cence, as well as the photochemical degradation of donors 
(even when they are absolutely stable in S,; see Ref. 22). 
These effects are deterined by the corresponding cross sec- 
tions given by (28), and the main quantities (41), (42), (48), 
and (5 1) [see also (32)] are expressed in terms of these cross 
sections. 

The transfer of excitation to acceptors is reflected in the 
nonzero value of the probability W given by (22). This effect 
reduces to an essential renormalization of the cross sections 
in (28), and influences the solution through them (see above). 
Migration of excitation over the acceptors has an important 
effect on W and, consequently, on the transfer of energy to 
the acceptor medium [see (33) and (5 I)]. The effect of migra- 
tion has a radical dependence on the dimensionality of the 
medium [cf. the values of W given by (40)-(40c), and their 
asymptotic behavior]. 

Let us now consider some applications. The processes 
examined above must be taken into account in the descrip- 
tion of powerful dye lasers. In fact, the working medium in 
such lasers is the dye in the so-called neutral solvents (i.e., 
solvents that do not absorb the laser or the exciting radi- 
ation). These solvents can, however, act as acceptors of two- 
photon excitation which appears as a result of the absorption 
of a photon of either the laser or the exciting radiation by the 
dye molecule in the working laser level S,. As indicated 
above, energy transfer to the solvent leads to the depletion of 
the level S, [see (41)], i.e., to reduced inversion and hence 
reduced laser power. 

The chemical modification resulting from absorption of 
energy transferred by the donors ensures that the acceptor 
subsystem becomes a medium that records transfer events, 
and this can be exploited in studies of donor excitation kinet- 
ics, optical information storage, and so on. 

We now return (see also the Introduction) to one of the 
most interesting (from our point of view) areas of application 
of the above theory, namely, the photomodification of the 
molecules of nucleic acids at a particular point in their pri- 
mary structure (to be specific, we shall speak of DNA al- 
though our discussion will also apply to RNA). It is impor- 
tant to note that there are no direct experimental data on 
excitation exchange with DNA or on the relaxation of high- 
ly-excited states of DNA chromophores at energies of 5-7 
eV. The estimates given below are therefore based on analo- 
gies and are tentative in character. We also note that energy 
transfer from the higher-lying electronically-excited singlets 
of dyes to surrounding acceptors do not appear to have been 
observed directly (see Refs. 1, 2, and 9), so that experiments 
with DNA1&" may be regarded as the first indirect confir- 
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mation of this type of transfer. 
DNA-breaking experiments both with addressing1' 

and the earlier experiments without addressing'' made use 
of the so-called interacting dyes, i.e., planar chromophoric 
molecules capable of inserting themselves (intercalating) 
between the planes of neighboring DNA-base pairs of the 
Watson-Crick double helix. It is clear from the geometry of 
the intercalation complexes23 that the overlap of P-electron 
shells of the dye molecule and the neighboring DNA bases is 
quite considerable in these complexes. It is therefore prob- 
able that we are dealing with strong exchange (We ) ry )  and 
that excitation transfer to the two nearest base pairs occurs 
by resonant exchange or by the inductive mechani~m.~ By 
virtue of (3), it is also probable that We exceeds the rate of 
vibrational relaxation. If this is so, then (14) is valid and 
We = Wd . We note that, according to the estimates given in 
Ref. 7, the dipole-dipole mechanism will also ensure strong 
exchange at distances r-5 A: We - 10" s-'. 

For the migration hopping frequency HI ,  we shall take 
the usual value for singlet excitations in molecular crys- 
t a l s , '~~  i.e., HI- 10" - 1013 s-', which in DNA corre- 
sponds to reasonable values of the excitation diffusion coeffi- 
cient: 0- lop4 - lo-' cm2/s. Comparison of Tr [see (3)] 
with H,  leads to the conclusion that in the case of strong 
exchange in DNA we can have both weak (H,(Ty) and 
strong (Hl)Tr) migration. Combining (34) with (38), we 
obtain the following universal (in migration rate) estimate 
for strong excitation exchange: 

Wt= [riM.max (2H,, va2riM)] "-4.10"-3 10i2 S-l, (60) 

where Y, = 4 (two base pairs). We note that the renormal- 
ized probability W (60) does not depend on the primary 
probability We (saturated sink2). From (33), we then obtain 
the following expression for the saturated excitation quan- 
tum yield (as usual,5 we assume that r 2 z r , , ) :  

Qst-'1, (l+'/,r,/Wt] -I-072-0:4. (61) 

This numerical estimate has been made for the least favor- 
able value T2 - 10" s-'. Consequently, the magnitude of Q :. 
will be more than sufficient for the observation and utiliza- 
tion of excitation in DNA. The above estimates favor the 
interpretati~n'~." in which the observed DNA chain breaks 
are a consequence of sensitized two-photon excitation. 
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