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We have developed the theory of the electromagnetic radiation of ultrarelativistic electrons in 
motion in unclosed transverse trajectories in axial channeling. We have obtained general formu- 
las for the spectral and angular distributions of the energy of the radiation with allowance for 
precession of the orbits and nondipole nature of the radiation. We have shown that the precession 
of the orbits leads to appearance of a multiplet structure of the spectrum for each harmonic 
investigated. Here the spectral and angular distributions of the radiation do not depend on the 
azimuthal angle of the radiation. We have made a detailed calculation of the radiation spectra in 
the dipole approximation with use of a model potential of a crystallographic axis. 

INTRODUCTION 

The theory of the x radiation and y radiation arising in 
motion of electrons at small angles to the axes of a crystal has 
been discussed previously in a number of studies.'-7 Kumak- 
hovl in the first study of this radiation gave only estimates of 
the intensity and characteristic frequencies of the radiation, 
based on a certain analogy of the axial channeling of parti- 
cles of sufficiently high energy to their helical motion in a 
magnetic field. The quantum theory of the radiation of elec- 
trons in axial channel was developed by Bazylev, Glebov, 
and Zhevago.' It was shown that at relatively low electron 
energies (1-10 MeV) their motion transverse to the axes 
turns out to be quantized and calculation of the radiation 
spectra reduces to calculation of the matrix elements of the 
dipole moments of transitions between levels of the trans- 
verse energy. Concrete calculations of the transverse energy 
levels and dipole moments for electrons with energies from 
1.5 to 4.5 MeV channeled in a silicon crystal have been given 
in Refs. 8 and 9. At low electron energies the number of 
levels is small and individual radiation lines corresponding 
to the different transitions are observed e~perimentally.'~." 
With increase of the electron energy the number of levels in 
the transverse-motion potential well increases in proportion 
to the energy and at E=: 100 MeV can reach several hundred. 
There is a still more rapid rise of the number of different 
transitions between levels, which makes it practically impos- 
sible to analyze the radiation spectra of high-energy elec- 
trons on the basis of purely quantum-mechanical representa- 
tions of the transverse motion of the particles. In addition to 
the increase of the number of levels, at sufficiently high elec- 
tron energies, as was shown in detail in Ref. 12, the parame- 
tric dependence of the transverse-motion wave functions on 
the total energy of the particles can turn out to be important, 
and this also greatly complicates the theoretical analysis and 
concrete calculations. As a result it turns out that although 
the general results of the quantum theory2j5" formally retain 
their validity up to very high electron energies, it becomes 
more suitable in this case to make a theoretical analysis of 
the radiation spectrum on the basis of the classical trans- 

verse motion of the electrons. This method permits one to 
discover the general features of the radiation spectra at high 
electron energies and to obtain comparatively simple expres- 
sions for the spectral and angular distributions of the radi- 
ation with allowance for various effects (nondipole nature, 
longitudinal oscillations of the particles in the channel), 
which are suitable for subsequent numerical calculations. 

The theory of radiation by electrons during axial chan- 
neling in single crystals, based on a classical description of 
their transverse motion, was developed by the authors of 
Ref. 2, by Kumakhov and Trikal in~s,~ and by Baier, Kat- 
kov, and Strakh~venko.~ 

However, in all of these studies the transverse motion of 
the electrons was assumed to be periodic, which made it pos- 
sible to expand the radiation spectra in individual harmonics 
(with subsequent allowance for the Doppler effect as a conse- 
quence of the longitudinal motion of the particles along the 
axes). It is known, however, (see for example Ref. 13) that 
purely periodic two-dimensional motion occurs only in po- 
tentials of the form U ( p )  = - a / p  or U = pp2 ,  wherep is 
the distance of the electron from the axis and a and p are 
certain constants. Therefore the radiation theory developed 
in Refs. 2-4 is in essence limited to these dependences of the 
axis potentials. On the other hand, as was shown first by 
Kreiner et al.14 and subsequently by other authors15-l7 by 
numerical modeling of the transverse trajectories of the elec- 
trons in a more realistic crystal potential, the trajectories of a 
significant fraction of the electrons have an appreciable 
precession. This means that nowhere in the accessible region 
of variation of the distances of the channeled electrons from 
the axis can the actual potential be represented entirely by 
one of the dependences given above. In addition, it is clear to 
begin with that the singular dependence of the potential cr/p 
can lead to an appreciable distortion of the actual radiation 
spectrum if the channeling conditions are such that the re- 
gion of smallp is accessible for electrons. For these reasons it 
is necessary to generalize the existing classical theory of the 
radiation of electrons in channeling to the case of an arbi- 
trary axially symmetric field. In regard to superbarrier elec- 
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trons, departures of the actual potential from the model de- 
pendences given above do not lead to an important change of 
the unlimited nature of their transverse motion. Therefore 
the general formulas for calculation of the radiation of high- 
energy superbarrier particles obtained by Avakyan et aL5 
and by Akhiezer and Shul'ga6*' do not require any modifica- 
tions. 

In the present work we have developed for the first time 
a classical theory of the radiation during axial channeling of 
electrons in an arbitrary axially symmetric field, simulta- 
neously taking into account effects of precession of the trans- 
verse orbits, the nondipole nature of the radiation, and longi- 
tudinal oscillations. The general expressions obtained for the 
spectral and angular densities of the intensity of radiation 
with inclusion of these effects can be used directly for con- 
crete numerical calculations of the radiation spectra from 
high-energy electrons. In addition on the basis of the general 
formulas we have carried out further analytical calculations 
of the spectra of the dipole radiation by an electron for a 
sufficiently real potential. We have shown that a more cor- 
rect inclusion of the behavior of the potential at small dis- 
tances from the axis can lead to an important change of the 
spectrum in comparison with the spectrum which is ob- 
tained on the basis of the usually used a/p model. We discuss 
the relation between the classical theory which we have de- 
veloped and the quantum theory of the radiation in axial 
channeling of particles, and the limits of applicability of the 
classical approach to the problem. As a result we have shown 
that the description of the radiation spectra in terms of clas- 
sical trajectories is possible only for electrons of sufficiently 
high energies and with the additional condition of smallness 
of the energy of the radiated photon in comparison with the 
electron energy. 

1. GENERAL EXPRESSIONS FOR THE INTENSITY OF 
RADIATION WITH ALLOWANCE FOR PRECESSION 

The special and angular distribution of the energy radi- 
ated by a charged particle moving along a trajectory r(t ) with 
velocity v(t ) has the form (see for example Ref. 18) 

where w and k are the frequency and wave vector of the 
radiation wave, n = k/k, and do is the differential of the 
solid angle. 

In axial channeling in a crystal the electrons move in the 
field of atomic strings, averaged along the direction of mo- 
tion. The averaged potential will depend only on the distance 
p to the string. The motion in the plane orthogonal to the 
string is described by the equation 

E ~ = - V U ( ~ ) ,  (2) 

where E is the relativistic mass of the particle and c = m = 1. 
From the conservation of the longitudinal momentum 

of the particle it follows5 that the longitudinal component of 

the velocity of an ultrarelativistic particle changes with time 
according to a law 

v, (t) =l--1/2[E-2+ (p(t)j2]. (3) 

The square of the vector product (indicated by the 
square brackets) in Eq. (1) can be expressed in terms of the 
longitudinal componentjiz) and the transverse component j, 
of the Fourier components of the current j, : 

I [ nx  j.1 1 2 = 1  [nix j,] 12+lei"'-npjp12, (4) 

where n, is the transverse component of the unit vector of 
the wave vector and is expressed in terms of cos p, and 
sin p,, 0 and p, are the polar and azimuthal angles of the 
radiation, 

and v, r p  is the transverse component of the particle veloc- 
ity. The phase of the exponential in Eq. (1) can be represented 
in the form 

Instead of the Cartesian components of the transverse com- 
ponent of the current we shall introduce the linear combina- 
tions 

Let p( t  ) be the azimuthal angle of rotation of the elec- 
tron relative to the string. Then 

x(t) =p (t) cos cp ( t)  , 2=@ cos q-pip sin cp, 

y (t) =p ( t )  sin q-(t) , $=@ sin q+p@ cos cp. 

Substituting these relations into Eq. (6), we obtain .. a 

j ( * )=  exp[i(vli)  (n/2-q,) 1 J (~*ipip)~,, ($a) , 

---OD -0. 

I i o  
xexp ivcp ( t )  - --[ (ez+E-z) t+ J v; dt 

2 0 11,. 

I io  
xexp ivcp (t) - -[ 2 (eZ+E-z) t+S < dt I 1 

0 

Here we have used the relation 

exp io80pp = 2 1. (Opo) exp (iv[cp (t) -cp,+jd21), 
v--OI 

where J,, is a Bessel function of order v. 
In motion in a central field U ( p )  the distance of the 

particle from the axisp(t ) is a periodic function with a period 
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Tp , i.e.,p(t + pTp ) = p(t ), wherep is an integer. The quanti- 
tiesp and Q, are also periodic functions of time. At the same 
time as a consequence of the precession of the orbit the rota- 
tion angle is, generally speaking, a quasiperiodic function, 
i.e., it satisfies the equality 

9 (t+pT,) =rp ( t )  + (Arp+ 2n) P;  (8) 

here Ap is the precession angle, which for a given transverse 
energy E and an angular momentum of the particle with re- 
spect to the axis Mis calculated according to the formula (see 
Section 14 of Ref. 9) 

where p,, and p,,, are the perihelion and aphelion of the 
orbit. 

Using the condition (8) and the properties of periodicity 
of the quantitiesp(t ),p(t ), and Q,(t ), the integration in Eq. (7) 
over the entire interaction time can be reduced to integration 
over the period of the radial oscillations. The result has the 
form 

i o  
xexp [-- Z ( 0 2 + ~ - 2 + ( ~ : ) )  ~ .n+iv~rpn 1 

where up = 21r/T, is the frequency of radial oscillations, 
f2 = Ap/T,, , is the frequency of precession, N+w is the 
number of radial oscillations during the interaction with a 
string, and S is the Dirac delta function. 

In substitution of the quantitiesj ( * ) andj  (') into Eq. (4) 
we can emit the phase factor exp[iv(.rr/2 - p,)] which is 
common forj  ( * ) and j ('I. As a result the spectral and angu- 
lar density of the energy of radiation in axial channeling of 
an electron per unit path in the crystal can be represented in 
the form 

~ ( ( 6 f i p Q )  I,,, (0po)  exp [ivrp-i(vQ+no,) t+iobz] dt, 

(12') 

j ( . )= C exp {iv (ni2-qr))  
,,=-m .,=-m 

i o  
Xexp [- -(~'+E-'+(v:)) Tpn+ivAqn 

2 I 

Here 

describes the longitudinal oscillations of the electron in the 
T channel.' We have used the relations 

x j  J. (epo) exp {ivp- ;[ ( 0 2 + ~ - 2 )  t+ J vd dt 
i 0 

P (To-t) = p  ( t )  p (To-t) = p  ( t )  
a 

9 (To-t) =2n+Aq-rp ( t )  , ip (To-t) =-@ ( t )  , 
Here 6z (Tp-t) =-6z ( t )  . 

In a number of cases Eq. (12) can be converted to a form 
which is more convenient for concrete calculations: 

represents the square of the transverse velocity of the parti- d3W 
-=- 

v 
cle, averaged over the period of the radial oscillations. do  do  dl e2m2c 2n 2 [ 1 j i l z + ( - )  I ~ ~ I ' ]  

n-0 v--m 
0 e 

The Cartesian components of the current (4) are related 
to the quantities1 * ) as follows: 

1 1 -vQ-nop 
j = - ( j (  + ) + j ( - I ) ,  jv = -(++I-j(-I). 
" 2 2i 

1 . The square of the double summations in Eq. (10) can be rep- j ,  = - (p+ ipb) J,' (Bop)exp[ivrp-i (vQ+ no,) t+io6z]dt, 
resented in the form T p  o 
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* =P - 
j' = - 00' J (k  -icp+i-\ I, (Bop) exp [ivcp-i ( v Q f  no , )  t 

T p o  
v  

where J :  is the derivative of the Bessel function with respect 
to its argument. 

The characteristic features of the radiation of electrons 
in motion along trajectories with precession are as follows. 
For a given harmonic with number n a multiplet structure of 
the spectrum appears, with a splitting of neighboring lines of 
the multiplet 

Radiation also appears at frequencies which are multiples of 
the precession frequency and which are shifted as a conse- 
quence of the Doppler effect. These frequencies correspond 
to the terms in Eq. (12) with n = 0. The spectral and angular 
distribution of the radiation (12) does not depend on the azi- 
muthal angle p, . This last result is a consequence of neglect- 
ing the interference of the radiation from the subharmonics 
with different values of v. This neglect is permissible for the 
condition of smallness of the width of the radiation line 
Sw = w/N, where the line arises in a finite path in the crystal 
(N is the number of radial oscillations in the entire length of 
the crystal), in comparison with the splitting Am. In other 
words, the precession angle must be sufficiently large: 
NAps2a. In the opposite case when the precession angle is 
zero, the spectral and angular distributions of the radiation, 
generally speaking, have azimuthal a ~ y m r n e t r y . ~ ~  It can be 
shown, however, that these results are applicable also to this 
caseifby the quantity d W/dodwdl we understand the spec- 
tral-angular density of the energy of radiation per unit path, 
averaged over the azimuthal angle p, of the radiation. 

A special case arises in motion with zero orbital angular 
momentum M = 0 with respect to the atomic axis. This case 
corresponds to planar trajectories of the channeled elec- 
t r o n ~ . ' ~  The expression (9) for the precession angle in this 
case leads formally to the result Ap = - n- (see Appendix I). 
Here p,, = 0, and therefore the frequency of the one-di- 
mensional oscillations a, is a factor of two smaller than the 
frequency of the radial oscillations 0,. Then we find that 
vf2 + nw, = (2n - v)wW Further, for one-dimensional mo- 
tion along the x axis in the formulas (1 3) we setp = x ,  p = x, 
C$ = 0,andp = OforO<t<T,/2andp = a fo r  Tp/2<t<Tp 
(we shall assume that at the initial moment of time the elec- 
tron is at its aphelion). In this case Eq. (13) takes the form 

1 = 
jl:nsvL - J;(t) I,,' ( o ~ z )  exp (-inuod+io6r) dt ,  

T 

x exp (- inoot+io6z)  dt, T=2n/oo .  (14) 

The expression (14), can be useful also in calculation of the 
spectral distribution of radiation in planar channeling of 
electrons and positrons. 

2. CORRESPONDENCE WITH THE QUANTUM THEORY 

We shall show that Eq. (12) for the spectral and angular 
density of the energy of radiation per unit path in axial chan- 
neling in the cylindrically symmetric field of a crystal axis 
can be obtained from the corresponding result of the quan- 
tum theory of radiation in axial channelinge2 With inclusion 
of the quantum nature of the transverse motion of the chan- 
neled particles, the authors of Ref. 2 [see Eqs. (20) and (21) of 
that article] obtained the following representation for the 
intensity of radiation of relatively soft1' photons (w(E ): 

Here&$ = E~ (E ) - E~ (E ) is the difference ofthe energy levels 
of the transverse motion of a particle with total energy E, 
and 

are the matrix elements of the transition current between 
transverse-motion states li) and [f), where i = (iV, /& c) is 
the particle velocity operator and V, = d /dp. 

We see at once that in the classical limit the argument of 
the S function in Eq. (15) coincides exactly with the argu- 
ment of the 6 function in Eq. (12). In an axially symmetric 
field the energy of the states is determined by the combina- 
tion of the radial quantum number n and the orbital angular 
momentum I. Thus, i = (n, I j, f = (n', I I ) .  In the classical 
limit all quantum numbers are large, and their differences 
are considered to be relatively small, i.e., Jn - n'J(n, 
11 - 1'1 (I. Therefore the quantum numbers can be consid- 
ered to be continuous quantities, and for the energy of the 
final state E,-(E ) we can use the approximate equality 

en. l l  ( E )  wenl  ( E )  - -(n-n') - -(l-1'). 
an d l  

The Bohr-Sommerfeld quantization condition for the energy 
of transverse motion has the form 

where p,,, and pmin are the aphelion and perihelion of the 
classical orbit of the particle in the field of the axis U (p) .  
Differentiating the two sides of Eq. (17) with respect to the 
parameters E, n, and I, we can obtain expressions for the 
classical analogs of the derivatives of the transverse energy 
of the particle with respect to the corresponding parameters. 
For example, as was pointed out in Ref. 2, for the derivative 
dcsf /dE in the classical limit we obtain 

where ) is the kinetic energy of transverse motion of the 
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particle, averaged over the period of radial oscillations. The 
derivation of this relation is completely analogous to that 
carried out in Ref. 20 for planar channeling. Differentiating 
with respect to n ,  we obtain 

The integral in (19) in the classical limit is equal to the half 
period T, /2 of the radial oscillations, and therefore 

denJdn=2n/T,. (20) 

Differentiation with respect to I gives the equality 

From this with use of Eq. (9) we obtain for the precession 
angle Aq, 

d ~ , , / d l =  (Acpf2n) /To.  (21) 

Thus, with use of the equalities (1 8)-(2 1 )  we obtain complete 
agreement of the dependences of the frequency and radiation 
angle in the quantum and classical cases. Here the harmonic 
number n corresponds to the difference of the radial quan- 
tum numbers n - n'  + 1 ,  and the harmonic number v corre- 
sponds to the difference ofthe orbital quantum numbers 1-1 '. 

In a similar manner we can show that in the classical 
limit the current matrix elements (16) go over to the Fourier 
components (12). For this purpose we shall take into account 
that in an axially symmetric field the wave functions of the 
transverse motion can be represented in the form 

$t (p ,  &-a) = (2n)-"e"'qp-'"~nrL. (p ,  E - o ) ,  

wherep, g, are the cylindrical coordinates of the particle. The 
radial wave functions in the quasiclassical limit have the 
form 

2 o ,  ( E )  ?'a 
~ n i  (PI E )  = (y) 

x [ 2 E  (e.1 (E) -U, j j (p )  ) I-" cos @(El n7 0 7  (23) 

where 

U.ff ( p )  = U ( p )  + (12- i /&) /2E~Z7 

Computing, for example, the z-component of the current 
(16), it is easy to perform the integration over the coordinate 
q, by means of the relation 

1 ~ x p ( - i ( A l p + o f 3 p  cos (9-0.) ])dip 
2n 0 

= exp 1-iAl (nI2-cp,) ] JAl  (w0p) , 

where q,, is the azimuthal angle of radiation of the photon 

andAl = I - I '. Then, taking into account that the phases of 
the quasiclassical wave functions are large, the integration 
over the radial coordinatep in the matrix element j!$can be 
carried out by the stationary-phase method. The difference 
of phases A@--@ (E, n, I ) @  ( E  - w, n', 1 ' )  which arises we 
shall represent in the form 

a@ d m  A@ =-(,)-- d (D 
(n-n') - -(l-1'). 

dE an dl 

We shall take into account also the relation 

As a result we obtain 

A@=o,(n-n'+l)t+Q(Z-1')t-o6z(t), 

and therefore the matrix element j g  in the classical limit 
coincides with the Fourier component j?). A similar corre- 
spondence is obtained for the components 1:; = j:) f 4;). 

The foregoing analysis shows that the parametric de- 
pendence of the levels of the transverse energy of the electron 
on its total energy in the classical limit leads to an effect 
which can be treated as a change of the average longitudinal 
velocity of the particle under the action of the averaged po- 
tential of the axis, which results in a Doppler shift of the 
frequency of the radiation. In a similar manner the parame- 
tric dependence of the wave functions of the transverse mo- 
tion in the classical limit reduces to the effect of the longitu- 
dinal oscillations of the particles on the formation of the 
frequency and angular distributions of the radiation." All of 
these effects are important at sufficiently high energies of the 
channeled particles, when the condition E U 2  m2c4 is satis- 
fied.12 The description of the radiation of channeled parti- 
cles in terms of trajectories is possible for the condition that 
all quantum numbers of the states of the transverse motion 
are large, only transitions with relatively small change of the 
quantum numbers are effective for the radiation, and the 
energy of the radiated photon is substantially below the elec- 
tron energy (%(E ). The latter condition is characteristic for 
channeled particles just as a consequence of the parametric 
dependence of the transverse energy levels and the wave 
functions on the total energy of the particles. If this condi- 
tion is not satisfied, then the expansions of the final-state 
energy E , . ~ .  ( E f )  and of the phase difference of the quasiclassi- 
cal wave functions A@ in powers of w/E  are no longer valid, 
and this does not permit the characteristics of the radiation 
of sufficiently energetic photons (k - E ) to be expressed in 
terms of trajectories. In regard to other similar forms of par- 
ticle radiation in undulators or in the field of an intense elec- 
tromagnetic wave, in these cases the parametric dependence 
which we have noted is not present and the radiation spectra 
apparently can be expressed in terms of classical trajectories 
of the particles even for % - E  (see for example Ref. 4). 

3. THE DIPOLE APPROXIMATION 

Let us consider the case of relatively low electron ener- 
gies, when the inequality &E((mc2)' is satisfied; here 
E = Ep2/2  + U ( p )  is the energy associated with the trans- 
verse motion of the electron. Then we can neglect the depen- 
dence of the longitudinal velocity on the time, i.e., the second 
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term in the square brackets of Eq. (3). As a result in the 
argument of the exponential in Eq. (1) we can set 
k, v, - wtz(w/2)(0 + E -2)t, where 0 is the angle between 
the crystallographic axis and the wave vector. Then, for the 
condition ~ E < ( r n c ~ ) ~ ,  which means also that the angle of de- 
flection of the electron by the field of the string is small in 
comparison with the effective angle of the radiation 
0,, zmc2/E, we can use the dipole approximation. In the 
argument of the exponentials in Eq. (12) in this case we can 
omit the term iwSz, and in the argument of the S function we 
can neglect the quantity (v i  ). In addition, in the case consid- 
ered the argument of the Bessel functions in Eq. (12) turns 
out to be small: 0wp(t )( 1, and therefore in the sum over the 
parameter Y in Eq. (12) the main contribution will be from 
terms with Y = 0 (for j(,: )) or with Y = 1 (for j(,L). Then we 
shall use the approximate formula for Bessel functions 

J ,  (x) x (212) "lv!. 
As a result in the dipole approximation the spectral-angular 
distribution of the radiation energy per unit length with 
allowance for precession takes the form 

After integration of (24) over solid angle we obtain the 
spectral distribution of dipole radiation 

where 
(*) - w, -no,*S2, f (x) = (1-2x+2x2) q (1-x), 

~ ( x )  is the Heaviside step function, and y is the Lorentz fac- 
tor. 

It is evident from the above relations that in the dipole 
approximation for a given harmonic with a number n # O  a 
doublet structure of the spectrum appears, with a splitting 

Aw=452/ (0'4- E-'). (26) 
Let us consider in more detail the case of planar trajectories 
of the channeled electrons with zero orbital angular momen- 
tum M = 0, when Ae, = - T. In this case 

.: m i * )  =mO (2n71), 
in which w, = w, /2 is the frequency of the one-dimensional 
oscillations. Dipole radiation occurs in the odd harmonics 
k = 2n + 1 (n = 0, 1, 2, . . . ), as must be the case in one- 
dimensional transverse oscillations in a symmetric potential 
well. 

4. TRAJECTORIES OF THE CHANNELED ELECTRONS 

The averaged potential of an atomic string U ( p )  can be 
represented with sufficient accuracy in the form 

where the parameters a, U,, 8, and U, are chosen from the 
condition of best agreement of the model (27) with the more 
exact potential. Values of a for various axes and crystals are 
given, for example, in Ref. 5a. The value of U, is chosen in 
such a way that the potential (27) vanishes at half the dis- 
tance to the nearest axis D /2. Here the depth of the potential 
well, which is equal to U, + U,, must coincide with the 
depth of the real potential well (see Ref. 5a). The remaining 
parameters ,B and p ,  are determined from the conditions of 
continuity of the potential (27) and its derivative at p =p, 
and have the form 

In Fig. 1 the solid curve shows a computer-calculated 
potential for the ( 11 1) axis of a tungsten crystal, averaged 
over the thermal vibrations of the atoms. Here the Moliere 
approximation was used for the potential of an individual 
atom, and the thermal vibrations of the atoms were taken 
into account in the framework of the Debye model. The 
dashed curve shows the model dependence (27) with the pa- 
rameters a = 65 U, = 50 eV, p = 28460 ev/A2, and 
U, = 885 eV. 

In the general case the trajectory of a particle in the 
potential (27) can be broken up into two portions, one of 
which lies in the region p ,  < p  < D /2, and the other in the 
region p <p,.  For p > p ,  the transverse motion of a chan- 
neled electron is determined by the equations (see for exam- 
ple Refs. 2 and 3) 

FIG. 1. Potential of an atomic string in tungsten (1 11). The solid curve is 
a Moliere potential averaged over the thermal vibrations and the azi- 
muthal angle. The dashed curve is the potential (27). 
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2'1 
x=a (e+cos a),  y=a (I-e2) '" sin 6, t = -(6+e sin 6), 

2n 

where 
(28) 

Here a is the transverse energy of the channeled electron, E is 
the total energy, and M is the orbital angular momentum 
with respect to the axis. The initial conditions in Eq. (28) are 
chosen in such a way that at the initial moment t = 0 the 
electron is at the aphelionp,,, = a ( l  + e). 

In the region p <p,  the transverse motion of the elec- 
tron is determined by harmonic dependences of the coordi- 
nates on the time of the form (see Ref. 13, Section 23) 

x(t) =x, cos [a (t-t,) +lrpi] , 

Y (t) =Ym cos [a  (t-t,) + ~ z ] ,  

where6 = (2P /E )'I2c and the parametersxm ,ym , p,, andp, 
are found from the conditions of continuity of the coordi- 
nates x( t  ), y(t ) and the velocities x(t ), y(t ) at the moment of 
transition t, from the region p >p ,  to the region p <p,.  By 
means of Eq. (28) we find 

where 

For the parameters of the orbit (29) we obtain 

2,= (~ ,~+v~ i "a"  "", ym= ( y ? + ~ ~ ~ ~ / a ~ ) ' ~ (  

cpi=-arcsin (v,,/x,o), q2=-arcsin (u,,/y,@), (3 1) 

= (2/3/E) '"c. 

Here we have used the following notation for the coordinates 
and velocities at the moment of time t,: 

in the region p > p ,  and consequently at all times has the 
form (28), i.e., it turns out to be closed. On the other hand, if 
the quantityp,,, = a ( l  + e) turns out to be less thanp,, then 
the trajectory lies entirely in the regionp <p,  and at all val- 
ues of t it is determined by Eqs. (29) and (31), where the 
quantitiesx,, y,, v,, , and v,,, now have the meaning of initial 
transverse coordinates and velocities. In this case the trans- 
verse component ofthe trajectory also turns out to be closed. 

The period of the radial oscillations in a field of the form 
(27) can be represented as 

where t, is the time of motion over the portion of the trajec- 
tory from the pointp, to the perihelion: 

The formula (9) leads to the following expression for the 
precession angle Ap in the field (27): 

A~ = {arcsin r: - -(I+E)] ty 

(34) 
here the perihelion of the orbit is 

For closed trajectories the precession angle vanishes. In 
the general case the angle Ap  (34) turns out to be negative. In 
particular, for zero orbital angular momentum the preces- 
sion angle approaches the value A p  = - n-, which agrees 
with the general derivation (see Appendix I). 

The frequency of the radial oscillations, the precession 
frequency, and the parameters of the orbits of the channeled 
electrons are determined in the last analysis by two integrals 
of motion in the field of the axis: the transverse energy E and 
the angular momentum M with respect to the axis. For a 
specified energy - U ,  < a < 0 the region of allowable angu- 
lar momenta is bounded above by the value M,,, which is 
determined by equality of the energy of the transverse mo- 
tion to the minimal sum of the potential energy U( p )  and the 
centrifugal energy M 'c2/(2Ep2) (see Ref. 9, Section 14). For 
the potential (27) we obtain 

Equations (30) and (3 1) are valid for those energies E and The transverse trajectories of electrons with angular mo- 
angular momenta M for which the transverse trajectories of mentum M,,, (E )  are circles. For other angular momenta 
the electrons pass through the region p <p,  near the axis, with the same value of a the trajectories are shown in Fig. 2. 
i.e., when the inequality p' <p,  <p,,, is satisfied. The dependence of the precession angle (34) on the angular 

If the quantityp' = a( l  - e) turns out to be larger than momentumM forvarioustransverseenergiesisillustratedin 
p,, then the trajectory of the channeled electron lies entirely Fig. 3, in which 
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FIG. 2. Most characteristic trajectories of electrons in an axial channel of 
tungsten in the transverse plane. 

5. SPECTRA OF THE RADIATION OF CHANNELED 
ELECTRONS AS A FUNCTION OF THE TRANSVERSE 
ENERGY AND THE ORBITAL ANGULAR MOMENTUM 

From the known form of the trajectories of electrons in 
the field (27) found in the preceding section, we can compute 
the quantitiesp(,') which determine the frequency and angu- 
lar distribution (24) and the frequency distribution (25) for 
the dipole radiation of channeled electrons. The result has 
the form (see Appendix 11) 

- 

K,'*'=-a ym ~ g l f '  + m) -s sin [ (g?' + m )  6 1  1 

i+g,(*' 
G:"=x. [ s ,  cos (? E1-!-'pl+%) 

FIG. 3. Precession angle A p  as a function of the angular momentum M for 
various transverse energies E which are greater than - (1/3)(U, - U,): 
1-E = 0, 2-E = - 0.1 U1, 3-E = - 0.23U1, LE = - 0.32UI. The 
value of M, is given by Eq. (36). 

1+gd*' * ym [s, sin (T ~ ~ + 9 2 + V ~ )  

I-&(*) +s, sin (---- 
2 s 1 + r p 2 - c p 3 ) ]  7 

Here the values of a, T,, and e are determined by the formu- 
las (28); t,,pl, and 6, are determined by the formulas (30); x ,  , 
y, , p,, p,, and 5 are given by the formulas (3 1); t, and 2 are 
given by (33); the period of radial oscillations T, and the 
precession angle Ap  are determined by Eqs. (32) and (34). 

In the limiting case of motion along ellipses of the form 
(28) in the regionp >p ,  we have 

Acp=O, t2=0, T,=T,, 6,=n, 

gd+)=g,'-) =n, o?' =a:' =2xnlT,. 

In the sum over rn in Eq. (38) we are left with terms having 
m = - n. The second term in the square brackets of (37) 
disappears as a consequence of the inequality p ,  <p'. As a 
result the spectral density of the energy radiated by an elec- 
tron per unit path in a crystal (25) takes the form 

(40) 
where i3 = 2n-/TI is the period of motion in the elliptical 
orbit. This result3' coincides with Eq. (36) of Ref. 2. 

In the other limiting case of motion along the elliptical 
trajectories of the form (29) entirely in the region p < p l  we 
obtain 

Without loss of generality we can assume p, = 0, p, = ?r/2 
(which corresponds to the aphelion of the orbit at the initial 
moment of time). The first term in square brackets in (37) 
disappears, sincep, >p,,, . The second term turns out to be 
nonzero only for the first harmonic (n = I), in which case we 
obtain 

This formula agrees with the result obtained previously for 
radiation in axial channeling of positrons [see Eq. (30) of Ref. 
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21, which was derived for the case of channeling in a parabol- 
ic potential. 

In the general case of precessing orbits, the results of the 
calculation of the spectral distribution of the energy of radi- 
ation by an electron per unit path during channeling in the 
field (27) are given in Fig. 4. Here the spectra 1, 2, 3, and 4 
correspond to the trajectories shown in Fig. 2. The spectral 
density of the radiated energy per unit pathlength is mea- 
sured in units of 

where d is the distance between atoms in the string, Z is the 
charge of the nucleus, and a, is the Thomas-Fermi radius. 

In one-dimensional motion (Fig. 4) M = 0, Aq, = - r ,  
and the maximum intensity of the radiation occurs at the 
frequency R = wp/2 of the zeroth harmonic. With increase 
of the angular momentum M the intensity of the radiation in 
the zeroth harmonic decreases. The contribution to the radi- 
ation from the Fourier components p',+ ) also decreases [see 

Eq- (3711. 

6. DISCUSSION OF RESULTS 

Comparison of the radiation spectra of channeled elec- 
trons (24) and (37) obtained with allowance for precession of 
transverse orbits with the similar spectra (40) in which 
precession is not taken into account shows a number of sub- 
stantial differences between them. These differences are 
most noticeable at relatively small orbital angular momenta 

dZw 1 .105 
dwdz W, 

FIG. 4. Spectra of radiation of electrons in tungsten ( 1 1  1 )  corresponding 
to the trajectories shown in Fig. 2. 

M. In particular, analysis of the asymptotic behavior of the 
I at large n and M = 0 shows that the spectral 

density of the energy radiated falls off inversely in propor- 
tion to the number of the radiated harmonic. At the same 
time according to (40) without precession this falloff would 
occur much more slowly as a result of the corresponding 
behavior of the Bessel function J, (n). Thus, a more accurate 
inclusion of the behavior of the potential of the axis at small 
distances lead to a substantial change of the spectrum in the 
region of relatively high frequencies. In the region of the low 
harmonics, taking into account precession leads as a whole 
to a broadening of the spectrum as the result of splitting of 
harmonics and a corresponding decrease of the spectral den- 
sity of the radiated energy, which must be taken into account 
in analysis of the measured radiation spectra in axial chan- 
neling of electrons. 

In calculation of the spectral and angular characteris- 
tics of the radiation from a beam of channeled electrons, the 
spectra obtained above must be averaged over all possible 
trajectories of electrons in the field of the crystal axes. This 
averaging is carried out with a distribution function f (s, M, I )  
over the transverse energies E and the orbital angular mo- 
mentum M at depth I from the crystal surface; this function 
satisfies a kinetic equation of the Fokker-Planck type.21 
Here in general it is necessary to take into account the contri- 
bution to the radiation from superbarrier electrons (s > 0).5-7 
This averaging leads as a rule to a significant smoothing of 
the resulting spectrum, even when the spectrum of radiation 
from individual electrons has a nonmonotonic nature. In 
spite of this, in an experiment22 carried out with good resolu- 
tion in photon energy a fine structure of the spectrum was 
observed in the region of the intensity maximum. The ap- 
pearance of this structure can be explained by the contribu- 
tion from channeled electrons which have an appreciable 
precession of the transverse orbits. These effects should in- 
crease on introduction of additional collimation of the y-ray 
beam which is radiated. 

APPENDIX I 

For the case M-0 we havepmin -0 and the main con- 
tribution to the integral is from the region nearp = pmin -0. 
The perihelionp,, of the orbit is found from the condition 

Hence at smallp,. we have the approximate equality 

Here the denominator in Eq. (9) can be represented in the 
form M @,: - p-2)1'2, and the upper limit can be extended 
to infinity. Then, after elementary integration we obtain 
A p =  - r .  

APPENDIX II 

The integral over a half period in Eq. (26) can be broken 
up into two integrals with integration limits (0, t,) and (t , ,  
Tp /2). The first integral corresponds to the contribution to 
the radiation from the portion of the trajectory withp >p,. 
This is shown by the arc AB in Fig. 3. The second integral 
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corresponds to the contribution to the radiation from the 
part of the trajectory withp <p,. This contribution is shown 
by BC in Fig. 3. The expression (39) for the contribution to 
the radiation for motion in the region p <p ,  is obtained di- 
rectly after substitution into (26) of the equations of motion 
(29) and simple integration over the region (t,, T, /2). 

Let us consider the calculation of the contribution to 
radiation from the portion of the trajectory with p >p,.  In 
the integrand of Eq. (26) we transform to integration over 6, 
by means of the relations (28); then the integral over the 
segment (0, t,) goes over into an integral over the segment (0, 
81): 

61 

K.'*' =a Irn {I (sin 6 ~ i ( l - e ' ) ' ~  00s 6) 
0 

xexp[-ig,!*' ( 6 f  e sin 6) 126 1 , (Al)  

wheregLk) = a',* )/5, 5 = 21r/T,. 
In the first term of the integrand in Eq. (Al )  we convert 

from sin S and cos 8 to their exponential representation. In 
addition, we represent the second exponential in the inte- 
grand in the form 

(*) exp (-ig. r sin 6) = f, I .  (g,!" e) erp (-im6). 

After a simple integration and straightforward manipu- 
lations in Eq. (Al)  we obtain, separating the imaginary part, 

K,(*' 

o 
a -1* (1-e2)" 

=-- J- (C' e) { g':'+m+l sin[ (g, +mfl)bi]  
2 

m=-OD 

This formula is most convenient for calculations by comput- 
er. By means of the recurrence relations for Bessel functions 

and trigonometric conversions, Eq. (A2) goes over into Eq. 
(38). 

"Generalization of the results to the case in which the photon energy o 
can be comparable with the particle energy E is carried out in Ref. 5a 

"In the work of Kumakhov and Trikalinosz this effect was not taken into 
account, which makes their results inapplicable at high energies of the 
electrons. 

"Equation (3.12) of Ref. 3 as the result of a misprint gives a result which is 
a factor of two too large. 
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