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The basis for fermion and boson twist-3 operators in quantum chromodynamics is constructed for 
deep inelastic scattering of electrons by a polarized target. In the calculations of the matrix 
elements for the operators, the quarks and gluons can be considered to lie on the mass shell, so that 
the helicity-amplitude technique can be used. A theoretical description of the process within the 
framework of the parton model calls for introducing a correlation density matrix expressed in 
terms of the product of wave functions with different numbers of partons. Evolution equations for 
the correlation density matrix are derived in the nonsinglet and singlet cases. The anomalous- 
dimensionalities matrix is found and its rank is shown to increase with the angular-momentum 
number. 

1. INTRODUCTION 

The study of deep inelastic processes involving polar- 
ized particles is of considerable interest as one of the meth- 
ods of verifying quantum chromodynamics, especially in 
connection with the possibility of separating the contribu- 
tions of the higher-twist operators in the expansion of the 
product of currents on the light ~ 0 n e . l . ~  The total probabili- 
ties of the processes, connected with the lowest twist-2 oper- 
ator, can be described in the leading logarithmic approxima- 
tion (LLA) in terms of the usual parton model [3,4]. It 
suffices here to introduce the inclusive probabilities D', (x) of 
observing partons in a hadron and D:(x) of observing ha- 
drons in a parton (x is the fraction of the energy of the parti- 
cle in question relative to the initial energy); these probabili- 
ties have also a dependence on In( - q2) (q is the momentum 
transfer) and this dependence is given by the evolution equa- 
t i o n ~ . ~ . ~  On the other hand, when considering quantities 
connected with higher-twist operators, such a description 
becomes impossible, since interference exists here between 
states with different numbers of partons. In particular, the 
structure functions of the deep inelastic scattering of a polar- 
ized electron by a polarized proton can be expressed in terms 
the matrix elements of twist-3 operators between the hadron 
states whose numbers of partons differ by unity. It becomes 
necessary then to introduce certain three-particle operators 
which are generalizations of the usual inclusive probabili- 

The present paper is devoted to consideration of this 
process in chromodynamics. In our earlier note7 are given 
results for the nonsinglet (in flavor in the t channel) part of 
the amplitude. Here we take into account also the singlet 
contribution connected with the possible pure gluon states in 
the t channel. In the derivation of the evolution equations 
that determine the dependence of the quantities considered 
on In( - q2) we use a helicity-amplitude technique that is 
simpler and more effective than the one previously em- 
ployed. The use of this technique is made possible by a felici- 
tous choice of an independent set of operators that become 
intermixed in the course of the evolution. For the operators 
we need, the partons can be regarded as being on the mass 
shell. A similar criterion for the choice of an independent 

system of operators was proposed in Ref. 8 for the problem 
of finding the powerlaw corrections to deep inelastic scat- 
tering of electrons by an unpolarized target. For our calcula- 
tion method, however, another system of operators, which 
differs also from that used in Ref. 9, is found to be more 
convenient. 

The differential cross section for deep inelastic scatter- 
ing of an electron by a nucleon with momentum p is deter- 
mined by the imaginary part n- W,, of the amplitude T,, of 
scattering a virtual y quantum with momentum q through a 
zero angle. If the target is polarized, the tensor W,, has an 
antisymmetric increment': 

where a" is the four-dimensional nucleon-polarization vec- 
tor and coincides in the rest system with the spin direction. 
The structure functionsg, (x,Q 2, andg,(x,Q 2, depend on the 
Bjorkenvariablex = Q 2/2pg, where Q = - q2. Forthe ten- 
sor T;,  in the leading logarithmic approximation, the use of 
the Wilson operator expansion for the T-product of electro- 
magnetic currents j, (x) and j, (0) leads to the equation'.' 

The operators R,  and R, have respectively twist 2 and 3 

The system of intermixing twist-3 operators includes also 
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the following operators for the nonsinglet channel2*' (we 
have here a full analogy with the Abelian t h e ~ r y , ~  the differ- 
ence being that color matrices are taken into account): 

where 

DP=d,+igtOA,", F,,=ta (dPA,"-d,A,"-gf"bCA~AVc), (Id) 

m and g are respectively the bare quark mass and the cou- 
pling constant. The symbols S and A denote symmetrization 
or antisymmetrization with respect to the indices under 
them, followed by subtraction of the traces over the symme- 
trized indices. 

2. MATRIX ELEMENTS OF TWIST 2 AND 3 OPERATORS 

We begin with consideration of a nonsinglet channel. 
Weintroduce by definition the functionsE (P ),A (P ),, . . . . , a 
linear combination of which can be used to express the ma- 
trix elements of the operators R ,-R, referred to above: 

( h 
ij5y5Z(idoL) ( 3 . )  .-l) 1 h dp pn-lB (p) =aaLBn, 

PQ 

Here Ih ) is the state of a hadron with momentum p and 4- 
vector polarization a, (a2 = - 1, pa = 0); q' is a light-like 
vector: 

the symbol 1 means projection of a vector on a plane perpen- 
dicular t o p  and q', while a dot denotes convolution of the 
corresponding tensor with the vector q;/lpql). The quark 
fields $and $ are transformed in accord with the fundamen- 
tal representation of the color group; m is the current mass of 
the quark (different in general for different flavors); 

A, =A t ', where t" are color matrices. We use for the 
gluon field the axial gauge 

The cross section for deep inelastic ep scattering con- 
tains, if the initial particles are polarized, besides W,(x) and 
W2(x) also two additional structure functionsg,(x) and g2(x), 
which satisfy the following expressions in terms of the distri- 
butions introduced in ( 1 )  (see Refs. 6 and 7): 

9 

The subscript q, which was left out of Eqs. (1) for simplicity, 
labels the quark flavors (q = u,d,s . . .), and e, denotes the 
charge of the corresponding quark (in units of electron 
charge). The fact that Eqs. (4) contain only combinations 
that are even in x is due to the positive charge parity of the 
two-photon state in the t-channel. For the same reason, the 
evolution equations will contain only a charge-even combi- 
nation of the functions D, and D,: 

D (Pi, Pz )  ='/z[Di (pi, p z )  +Dz (Pz, Pi) I -  ( 5 )  

We note that the matrix elements B, D,, and D2 cannot be 
written in a gauge-invariant form; only the differences 
- (Dl):, (D2)L - (D2)k,(Dl)L + (D~): - 2Bn are invariant. 

We shall find it convenient to define the quantity 

whose moments yf, are connected with the matrix elements 
of gauge-invariant operators (see Ref. 6). 

The functions introduced in (2) are connected by two 
relations6: 

The first is the consequence of the equations of motion for 
the fields $(x). The second follows from the relativistic invar- 
iance: both sides of (8) are expressed in terms of matrix ele- 
ments of different components of one and the same twist-2 
operator. Eliminating B (P ) from (7) and (8) and using (6) we 
obtain the following connection between the gauge-invar- 
iant quantities introduced above: 

from which we see that the three functions E (P ), C (P ) and 
Y (P,$ ) can be chosen to be independent. When solving the 
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differential equation (9) for A (P), the integration constant We proceed to consider the singlet channel. In this case 
must be chosen such that A (B) = 0 at I > 1. If A (P) and account must be taken also of operators made up of gluon 
C (B ) are assumed to be continuous at the point p = 0 (this fields. There exists only one gluon twist-2 operator with the 
assumption is confirmed by the explicit form the evolution quantum numbers we need (Fig. lc): 
equations), we obtain from (9) the equality 

8w,.. v ~ =  s Tr Gpp, (iD,,J. . . (iD,,,,) Gpu, f dg A (B);E(B) =o. ( 10) ON., Vn (14) 

- I  where 

It is equivalent, when (4) is taken into account, to the Cot- 
tingham sum rule'' 

which reflects the fact that one of the operators in the expan- 
sion (namely the one whose matrix element reduces to the 
difference A, - En ) is absent at n = 0. (We note that in the 
scalar theory5 the Cottingham sum rule was violated, for 
thereA (B ) had adiscontinuity a t 0  = 0; this wasattributed to 
the presence of a subtraction term in the dispersion relation 
for g, + g, with respect to 2pq.) 

If the mass m of the current quarks is negligibly small 
(C( 1) and the gluon-containing wave-function component is 
not large (Ydl), we obtain from (9) and (4) an approximate 
connection between the structure functions g, and g,: 

are the gluon-field tensors; Tr stands for the trace over the 
color indices, and S for symmetrization with respect to the 
Lorentz indices under it (with the traces separated). In ana- 
logy with (1) we can introduce a function 2Y (B): 

1 
(h18Ls1h)=,,(hlG;, ( , n - a  id) G,Ih) 

It follows from the identity of the gluons that @?, = 0 at odd 
n, so that the physical results can include only an odd combi- 
nation of 2Y(B) - @?( - 0). We shall assume that 

In analogy with (12), the function $(B) is represented by a 
gluon vertex without integration over 0: 

which corresponds to allowance for only twist-2 operators in 8($).= ~ ( i ~ a g l G a a ) ,  P Q I  ~ap?  = 7 1 ~apTbql'pb. 
the operator expansion. aq PQ 

(17) 

In terms of Feynman diagrams, the quantities E (B), Turning now to twist-3 operators made up of gluon 
A (P ) ,B (B ), and C (B )arerepresentedby vertexparts (Fig. la) fields, we note first that in the non-Abelian theory there are 
with the integration over the fractionp of the quark energy three-gluon operators that have positive charge parity: 
removed: 

R:,. = ifab&$. (id.)'-' (- ig) G:. Gi., 
Y (18) 
n 

(12) Z\(l,<n--I . . 

(we have written out only the tensor components that we . .. 
shall need hereafter). These operators are analogous to the 

where the brackets (0) denote convolution of the vertex 0 operators (lc) R,  and R, for a nonsinglet channel. In addi- 
with the block in Fig. la at a fixed valuep = kqf/pq'. Corre- tion there exist two-gluon twist-3 operators [of type (14)l; 
sponding to exactly the same functions is the three-particle their matrix elements can be expressed with the aid of a for- 
diagram, Fig. lb, with removed integration over p, and &: mula of the type (12) and (17) in terms of the vertex function 

a (pi, 13.1 =-(* y5&i.aL) , ( 0  ), where the current 0 is a linear combination of two 
PQ tensor structures: 

A A A A  We shall presently see, however, that two-gluon operators 
cannot be considered. The point is that, in analogy with Eqs. 
(7) and (8) for a nonsinglet channel, there are two relations 

b d that connect the matrix elements of two- and three-particle 
FIG. 1. vertices in a singlet channel. One of them is the consequence 
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of the equation of motion for the gluon field (Maxwell's 
equation): 

just as Eq. (7) follows from another (Dirac) equation of mo- 
tion. The second relation is an analog of Eq. (8) and follows 
from the connection, due to relativistic invariance, between 
the matrix elements of the different components of the ten- 
sor (14): 

The left-hand side of (21) is expressed in terms of the afore- 
mentioned two vertices (19). Thus, two-gluon vertices can be 
eliminated with the aid of the relations indicated above and 
can be reduced to the three-gluon contributions (18) and to 
the matrix elements of a twist-2 operator. 

We note that by virtue of the Bose statistics of the 
gluons not all operators (1 8) are independent. Namely, accu- 
rate to quantities that are total derivatives and make no con- 
tributions to the matrix elements between hadron states with 
equal momenta, the following relations hold: 

The last equation of (22) can be obtained with the aid of the 
identity 

We introduce in analogy with (13) the function 

which corresponds to diagram d of Fig. 1. Since the gluons 
are identical, this function has the symmetry properties 

The matrix elements R, and R, (1 8) are expressed in terms of 
this function as follows: 

The evolution equations discussed below (Sec. 4) will con- 
nect, in a singlet channel, the function H (P1,PZ) (23) with the 
previously introduced function D (p1,P2) (5). It is convenient 

here to introduce in lieu of H (Pl,fiz), in analogy with (6), a 
function L (P1,,B2) defined by 

3. PARTON REPRESENTATIONS OF STRUCTURE 
FUNCTIONS 

To derive the relations that express the structure func- 
tions in terms of the quark-number densities we must trans- 
form in the matrix elements of type (1) to the interaction 
representation, expanding the fields $, $, and A in the free- 
particle creation and annihilation  erato tors.^.'^ Neglecting 
the quark mass, we choose as the wave functions for the free 
quark and antiquark spinors that correspond to states with a 
definite helicity 1 / U  = + 1/2: 

t%u(" (k) =0, y5u(') (k) =-AU(') (k) ; 

It is convenient, as will be seen later on, to use the following 
normalization of the spinors u and v: 

,('J (k) y,u"x) (k) =T('l' (-k) y,v('z) (-k) =2Bk,61,A,, 

B=kq'lpqr. (28) 

When calculating the matrix elements of the currents E, B, 
and C (12), the quarks with momentum k (Fig. la) can be 
regarded as being on the mass shell. Indeed, the numerator 
of each of the quark propagators can be written ifi the form 

the term proportional to @' can be discarded since q" = 0, 
whereas the remainder is a projector on physical states with 
helicities 1 / U  = + 1/2: 

For the E (p ) vertex, for example, we obtain then 

+0(-P) [q+(-P) +Q-(-P) I ,  (31) 
where q * ) and ij * ( - p ) are the number densities of the 
quarks and antiquarks respectively with helicities + 1/2 in 
the hadron. From this, taking (4) into account, we obtain the 
known parton representation for g,." 

To obtain the corresponding representation for the 
function g, it is necessary, according to (4), to consider in 
similar fashion the vertex A (12). Here, however, a complica- 
tion arises because the quarks of Fig. l a  can no longer be 
regarded as located on the mass shell. Indeed, the second 
term of the right-hand side of (29) does not vanish in this 
case, so that the numerators of the quark propagators cannot 
be written in the form of projectors on physical states. (This 
circumstance was not taken into account in Ref. 5, and Eq. 
(38) of that reference is not a parton representation.) This 
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difficulty can be circumvented by using the following identi- 
ty for y matrices 

which is equivalent to relation (7). The factor (L - rn) in the 
last two terms cancels the denominator of one of the neigh- 
boring quark propagators for the current 0 = y,y', on Fig. 
la, and the nearest quark-gluon vertex "is drawn" into the 
two-quark current vertex 0, forming thereby a local three- 
particle vertex. It is significant that in the right-hand sides of 
(32) and (7) both the two-particle vertices B and C and the 
three-particle ones D ,,, contain the factor g', owing to which 
the second term of (29) can be omitted and the quarks on 
Figs. l a  and lb  can be regarded as real. It is easy to verify 
that the last conclusion is valid also for the gluon on Fig. lb. 
Indeed, let us write the numerator of the gluon propagator in 
the axial gauge (3) in the form 

qafqB' 
AaB ( k )  =-has + kaq,'+k,qal = A,, (E) + - 

kq' (kq.)'  k27 

L2 (33) 

Just as in the analogous expansion (29) for a quark, the last 
term proportional to q; q; in (33) drops out on convolution 
with the vertices (13), and the remainder is a projector on the 
physical states of the gluon: 

Here e c  ) are the polarization vectors of a gluon in states with 
definite helicity A = + 1 and satisfy the equations 

(35) 
and the normalization condition 

Thus, after using Eqs. (32) we can assume the partons on 
Figs. la and lb to be on the mass shell; A (B ) is expressed with 
the aid of (7) in terms the other functions (12) and (13). The 
quantity B (B ) has a parton representation similar to (3 1): 

+ 0( -B)  l!7+ (-I% k*) -?-(-I4 k l )  I )  (37) 

except that the last expression contains the parton distribu- 
tion densities not only over the longitudinal but also over the 
transverse component of the momentum. (We note that the 
following correlation is possible here 

s"(B, k,) -h (ak , ) f  (k,', B )  , 
so that B (B )does not vanish.) The remaining functions Cand 
D ,,, , however, cannot be similarly expressed in terms of the 

density of the number of partons; it is necessary to introduce 
more general quantities, viz., parton correlators that are not 
diagonal in the parton states. Thus, if the two-quark correla- 
tor (ijq)*3*2 (x) is defined by the relation 

the quark or antiquark number density is given (apart from a 
factor) by its value at A ,  = - A,, whereas the function C ( x )  
can be expressed in terms of this correlator at A, = A,: 

For the functions D ,,, it is necessary to introduce a three- 
particle correlator N that connects the states of a hadron 
with a different number of partons: 

(a, are the color indices). The arguments xi of the correlator 
N, which are connected by the condition Bx, = 0, can be of 
either sign, and accordingly Eq. (40) covers six different 
kinematic regions. Depending on the sign of xi,  the corre- 
sponding particle is in an initial (xi > 0) or final (xi < 0) state, 
and in the latter case the correlator corresponds to creation 
of an antiparticle with momentum - xip and helicity-l/ 
Ui . In each of the six regions one can write for N an integral 
representation in terms of a product of parton wave func- 
tions with unity difference between the number of the par- 
tons. The relations for the functions D, and D, are 

Equations (41), (39) and (37) yield via (4) and (7) a parton-like 
representation for g,(x) + g,(x). 

An expression similar to (41) can be obtained also for 
the three-gluon function H (23) by introducing the three- 
gluon correlator 

= J dx, dx2 dx3 6 (z x i )  ed."' ( z i p )  

As for the two-gluon function 29 (17) that corresponds to 
twist 2, it has the usual parton representation of type (3  1) in 
terms of the number of gluons, which we shall not write out 
here. 
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4. EVOLUTION EQUATIONS 

To find the dependence of the structure functions on 
In( - q2) we must construct evolution equations. The general 
method of obtaining these equations is known3s4 and was 
described in detail in the preceding  paper^.^.^ 

We differentiate expressions of the type (13) and (17) 
with respect to the logarithm of the ultraviolet cutoff param- 
eter A which limits the integrals over the virtual transverse 
momenta. The dependence on A systems from two sources. 
First, the ultraviolet divergences are contained inside the 
blocks of Fig. 1. If all the tails of the blocks correspond to 
real particles, such divergences are singled out on account of 
the renormalization invariance in the form of a factor 
4 z,!'~, where zi is the renormalization constant of the 
Green's function of the ith particle (the block includes the 
two-particle Green's functions of the quarks and gluons in- 
teracting directly with the external current). The case of vir- 
tual tails, in which the analysis of the renormalizations in the 
axial gauge (3) becomes considerably more c~mplicated,~ 
can be disregarded if (7) is used to exclude the two-particle 
vertex A (p). A similar procedure can be applied to the two- 
gluon vertex (19); the analog of identity (32) is here the rela- 
tion 

The second source of the dependence on A in the vertex 
functions of Fig. 1 is connected with the logarithmic diver- 
gence of the integrals over the transverse momenta of those 
particles that interact directly with the external current. To 
find this dependence, it is necessary to expand in part the 
blocks of Fig. 1 after separating in explicit form the loop 
diagram that leads to this dependence. Figure 2 shows such a 
separation for the case when the vertex contains initially an 
operator with a quark-antiquark pair. The shaded blocks 
denote the total gauge-invariant sum of the Feynman dia- 
grams for the corresponding processes in the Born approxi- 
mation (see Fig. 3). We note that the diagram 2d is responsi- 
ble for the mixing of the quark and strictly gluon operators. 
A similar group of diagrams is shown in Fig. 4 for the case 
when the initial operator is strictly gluon. 

We emphasize once more that the partons correspond- 
ing to the inner lines of Figs. 2 and 4 can be assumed, in the 
operator basis chosen by us, to be on the mass shell. This 
allows us to find, as an intermediate stage of the calculations, 
all the two-particle scattering amplitudes, corresponding to 
the processes in Fig. 3, for physical particles. However, the 
equations of motion (7) and (20) [or their corrolaries (32) and 
(43)], with the aid of which we succeeded in excluding the 
"poor" operators, make it necessary to include in the calcu- 

FIG. 3. 

lations the last terms of the numerators of the virtual-parti- 
cle propagators (29) and (33). After the denominator is can- 
celled out, these terms lead to the already mentioned effect of 
"drawing" one chromodynamic vertex into another. In Fig. 
3, slashes are drawn through the lies in which only the 
"drawing" effect operates. We note that it is possible, with 
equal accuracy, to set these lines in correspondence with a 
total propagator, since the contribution of the first terms in 
Eqs. (29) and (33) can be shown to vanish in the indicated 
diagrams after averaging over the directions in the k, plane. 

The contribution of the diagrams of Fig. 3 can therefore 
be constructed in full accord with the Feynman rules, thus 
ensuring gauge invariance of the calculation results. 

To find the four-point amplitudes shown in Fig. 3 it is 
convenient to use the states of particles with definite helicity, 
which were introduced in the preceding section. This meth- 
od is similar to that used in Ref. 4 to study the evolution 
equations for quantities connected with twist 2, but there it 
sufficed to use amplitudes without transfer of momentum 
and color to the t-channel. Here, however, we must calculate 
these amplitudes for the more general case. We note that the 
results enable us to write, without great difficulty, the evolu- 
tion equations for operators with higher twist (4 and more), 
since it can be shown that in this case only pair interactions 
are significant in the LLA, but the investigated current ver- 
tices must contain a large number of external lines. We write 
down explicit expressions for the spinors u(' ) and u(" ) and for 
the vectors e(') satisfying Eqs. (27) and (35): 

q P r  
( k )  = pe;" ( p )  - (k,e(') ( p )  ) , e("* ( k )  =e(-') ( -k)  

Pq 
Here u(' ) (p) and e(' ) (p) are solutions of the following equa- 
tions: 

y5u'" ( p )  =-Xu'" ( p )  , pu'" ( p )  =O; 
( I )  iepre:" ( p )  =hep(') ( p )  , p,e, (p )  =q,'e,"' ( p )  =O; 

(45) 

a b c d 

FIG. 2. 
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with normalization conditions compatible with (38) and (36), 

ucX) ( p )  r,u(i') ( p )  =2p,6,,., e cX) ' (p )  e"" ( p )  = - ~ A A . ,  

e(W.(p) = - e ( - L )  
(46) 

( P I .  
These equations yield the following expressions for three- 
particle vertices of interaction of particles with definite heli- 
cities (the helicity is marked + or - on the diagrams): 

=-ifataSS.2p12 (Ke (+ '  ( p )  ), 

We supplement them with the following rules: 
1) helicity is conserved along a fermion line; 
2) the sign of the helicity for any gluon line can be re- 

versed if the arrow is simultaneously reversed; 
3) if the helicities of all three particles reverse sign, the 

form of the vertex remains unchanged, but e'+ '@) is replaced 
by e'-'p and vice versa; 

4) a three-gluon vertex is zero if the helicities of all parti- 
cles remain the same when all three arrows are rotated in- 
ward or outward; 

5) a factor l/,!3k2 should correspond to each internal 
quark line and a factor 1/p ' k  to each gluon line. 

By applying these rules it is easy to find the four-point 
vertices (Fig. 3). A significant simplifying factor in their cal- 
culation is the averaging over the directions of the vector k,. 
It is important here that the transverse momenta of the parti- 
cles are of different order of magnitude in the logarithmic 
kinematics considered by us: they are small for the two lower 
particles of the four-point diagram and large and approxi- 

mately equal for the two upper ones ((k,, I = Ik,, I ) Jk,, I - (k,, I). The averaging results in a convolution of the two 
vectors e(* @), which is eliminated with the aid of the ortho- 
gonality relation (46). 

We present explicit expressions for the four-point dia- 
grams in the case when the color structure in the t-channel is 
a triplet and an octet: 

(k,+ k l )  

(p2+p3)  kil"saiPipz 1 
= - CV?~BA [, 

kih 

(Pi+B4)ki12 - 2 
( k t f k 4 )  pi," 
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k i L 2  
+ ~ a ~ P ~ p ~ ~ ~ & p ~ ~ l - 2 P , ~ ~ ,  + 2 p i p 2  ( P i + P Z )  ( P 3 - t P 4 )  - 

pi," 

In these expressions k, = k, - k, , p, , = Pi - Pj , k, = a, 
q1+Pip+k, ,  s =2pqf, C, = ( N 2 -  1 ) / ( 2 N ) ,  Cv =N,  
N = 3 is the number of colors, and nf is the number of fla- 
vors. To derive the evolution equations it is necessary also to 
calculate the matrix elements of the three-particle vertices 
(13) and (24) between the helicity states of the partons. With 
the aid of (44)-(46) we get the following results: 

3, 

The formulas presented enable us to write the equations 
for the three-particle functions D pl$,) and H $I1,&). In the 
calculation of the logarithmic integrals it is convenient to use 
relations of the form 

etc., where k k,, = max(k : ,k ); some relations for the func- 
tions J: ,,,,* ,..., Dk)  are contained in Refs. 5 and 6. The 
resultant equations are quite cumbersome; they can be sim- 
plified somewhat by changing from the functions D and H to 
the functions Y and L in accord with Eqs. (6) and (261, and 
are given here in the latter form: 
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In these relations 

(the permutation f11++f12 in (48) applies to the entire right- 
hand side). The infrared divergence at the lower limit of the 
integral I (P) is actually cancelled by a similar divergence in 
other terms of the equations. Equations (47) and (48) were 
written for a singlet channel; in the case of a nonsinglet chan- 
nel only the first of the equations remains, and furthermore 
its last term containing L drops out. 

The right-hand side of (47) includes a term that contains 
C (PI) and takes into account the nonzero mass of the quark. 
To find this term it is necessary to calculate in the diagrams 
of Fig. 5 the contribution linear in mass. It suffices for this 
purpose to replace the numerator of the quark propagator in 
the loop by the quark mass. It is likewise easy to obtain an 
equation for the function C (PI) itself, which has a "ladder" 
form similar to the case of twist 2 

FIG. 5. 

We present also equations for the functions E and %' 
which are connected with the twist 2 (see Ref. 4): 

6 

-- a ('I - PC,[ -E ( p )  j dx P2+x2, 
8 E o P 2  (B-x) 

(Equations (5 1) pertain to the case P > 0; at P < 0 J; dx must 
be replaced in them, as well as in (50), by st, dx.) Together 
with (9) and (4), Eqs. (47)-(5 1) determine in principle the de- 
pendence of the structure functions g, and g, on In (A ,/ 
mZ) = In (Q ,/m2). 

Taking in the evolution equations (47) and (48) the La- 
place transforms with respect to the variables 6 and trans- 
forming from the functions A,  Y, L, and C to their moments: 

[see also Eqs. (I), (6), and (15)], the equations become alge- 
braic: 

(ni-1) An=En+nC. 4- (n-k) Ynk, (53) 

(n-k) ( n - k t  1) 
+'v (n-L) (n-l+ji) (k-1) 

k = l  
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k=l n-k 

k= 1 

For the sake of completeness we present also the equations 
for the matrix elements of the twist-2 operators 4: 

The notation in (54)-(57) is 

where N is the rank of the gauge group (N = 3 for quantum 
chromodynamics). In the case of a nonsinglet channel the 
evolution equations coincide with (54) and (57) with nf = 0. 

The number of equations in the system (53), (54) in- 
creases with increasing n, and with it also the degree of the 
secular equation that determines the anomalous dimension- 
alities vi. At n = 2 Eq. (53) takes the form 

from which we have an anomalous dimensionality 
v = - 137/12, nf = 4, which coincides with that obtained 
in Ref. 2. At n = 4 we have 

where NS denotes the contribution of the nonsinglet chan- 
nel': 

The dependence of the structure functions g,(x) and 
g,(x) on 6 is given in the case of a singlet channel by the 
equations 

where vi are the anomalous dimensionalities of the twist-2 
(i = 1,2) and of the twist-3 (3<i(2n + 2) operators; we have 
neglected the contribution of the operator C, whose matrix 
element is proportional to the current-quark mass. To deter- 
mine the coefficients Ci from experiment one must measure 
the moments grf,, at 2n + 2 values of the momentum trans- 
fers. It would be of interest to obtain these coefficients by 
rigorous theory using the quantum chromodynamics sum 
rules or from nonrelativistic quark models (cf. Ref. 2). 

If experimental data are available for the 2n + 2 mo- 
ments at different values of Q 2:Q ,...,Q i, m > 2n + 2, Eq. 
(61) can serve as a self-consistency check. 

We note that the formalism developed above can be 
used to obtain equations similar to (47) and (48) above for 
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twist4 matrix operators. 
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