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The energy spectrum of a group of eight bands in the vicinity of the extremal point H of the 
Brillouin zone is found by symmetry theory. Use is made of the fact that the tellurium space lattice 
is close to simple cubic and of the concept that the band states originate on atomicp-orbitals. 

1. The semiconducting tellurium and selenium chalco- 
genides have an anisotropic chainlike crystal structure. It is 
usually represented as an aggregate of helical chains packed 
in a triangular lattice.' The unit cell contains three atoms 
that lie on one turn of the helix. Such a space lattice, despite 
its rather complicated form, can be obtained by slight distor- 
tion of a simple cubic lattice. To this end it is necessary to 
displace the (1,1,1) atomic planes of the cubic lattice along 
the twofold axes U,,,,,  (Fig. 1) in such a way that the dis- 
placement vector of each is rotated through an angle 2r/3 
relative to the displacement vector of the preceding plane. 
As a result, the atoms that are closest to one another form 
helical chains (Fig. 1). To obtain the tellurium structure it 
suffices to stretch somewhat (to compress in the case of sele- 
nium) the initial lattice along the C3 axis." 

The displacement of the planes, which we shall call op- 
tical distortion, leads to triplng of the period and to a lower- 
ing of the symmetry to trigonal. The subsequent acoustic 
deformation does not change the symmetry. 

The degree of distortion of a simple cubic lattice can be 
assessed from the data listed in Table I. The relative value of 
the shift u/A = (2 - <)/3fl  A is expressed in terms of the 
distances between the nearest (r,) and next-to-nearest (r,) 
neighbors in the real chalcogen structures; A is the transla- 
tion period in a plane perpendicular to the trigonal axis. The 
relative change of the distance between plane on account of 
acoustic deformation is c = C /Co - 1, where Cis the period 
along the trigonal axis, Co = afi ,  a is the period of the initial 
cubic lattice. The value ofa can be determined from the unit- 
cell volume, a = (CA 2/2fi)113, assuming that there is no 
hydrostatic compression on going over to the tellurium lat- 
tice (this assumption is immaterial for the sequel, since the 
change of the specific volume does not influence the func- 
tional form of the dispersion law). It can be seen from the 
table that with increasing atomic number the crystal lattice 
of the chalcogens of the selenium-tellurium-polonium se- 
ries becomes close to cubic, so that polonium in its a modifi- 
cation already has a simple cubic structure. The dielectric 
gap c, of the electron spectrum is simultaneously decreased 
(see Table I), and polonium is a metal. This indicates that the 
dielectric character of the tellurium or selenium spectrum is 
due to the tripling of the simple-cube structure. 

A similar situation is realized also in semimetals of the 
bismuth group.3 Their space lattices are obtained by dou- 
bling of the period of the cubic "parent phase" and acoustic 
deformation along C,. However, whereas in the case of bis- 
muth the metallic character of the spectrum of the "parent 

phase" is obvious (odd number of valence electrons per 
atom(p3)), the "parent phase" of Te(p4) need generally 
speaking not be a metal. Nonetheless, even in this case the 
"parent phase" is metallic. This is evident from the existence 
of metallic a-Po. 

For substances with unfilledp shell it is difficult to un- 
derstand the metallic character of the "parent-phase" spec- 
trum if it is constructed with the aid of the tight-binding 
method out of locallized p-symmetry states ( p  m ~ d e l ) . ~ . ~  
Owing to the threefold degeneracy of thep level, the energy 
spectrum consists of three overlapping bandsp, , py , andp, 
(X, Y, and Z are the cubic coordinate axes, Fig. 1). These 
bands are degenerate at k = 0 (if no account is taken of spin- 
orbit interaction; k is the quasimomentum), so that all are 
partly filled if the number ofp electrons is less than six. If the 
bandsp, ,py , andp, do not interact (zeroth approximation of 
thep model), each of them is half-filled in the "parent phase" 
ofbismuth and 2/3 filled in that of tellurium. Dielectrization 
of the spectrum in semimetals and in chalcogens calls there- 
fore for respectively doubling and tripling of the period. The 
dielectrization itself is possible because the Fermi surface of 
the "parent phase" has, with sufficient accuracy, the con- 
gruence property (is "quasi~ongruent").~~~ The initial struc- 
ture is then realigned as a result of the Peierls instability (Ref. 
4).,' 

These simple considerations explain the genesis of the 
electron spectrum and of the crystal structures of not only 
elements of the tellurium and bismuth group, but also of a 

FIG. 1. Atom displacements in the formation of the tellurium structure 
from a simple cubic lattice. Shown is only the optical distortion [thick 
arrows-shifts of the (1,1,1) planes] that lead to tripling of the period (it 
must be supplemented by a small stretching of the lattice along the C, 
axis). The atoms connected by thick lines form helical chains of the right- 
circular structure of tellurium. C and A,., are the new translation vectors. 
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Table I. 

number of compounds. These include IV-VI semiconduc- 
tors (doubling of the period on account of the difference 
between the constituent  atom^),^.^ compounds with cinnabar 
(HgS) structure (sextupling of the period), Bi2Te3 (quintu- 
pling of the period), and a number of more complicated com- 
pounds. 

We confine ourselves to a determination of the form of 
the energy spectrum of tellurium in the vicinity of the extre- 
ma1 points H, regarding the distortion of the cubic "parent 
phase" as a perturbation. One can expect the deformation 
method to apply better to tellurium than to selenium, in view 
of the smaller deformation. Since the spectrum near the H 
points is determined only by the symmetry of the basis func- 
tions, no approximations connected with the tight-binding 
method within the p-model framework will become neces- 
sary. At the same time, only thep model will yield the correct 
spectrum. The point is that at the H  points of the "parent 
phase" all the other levels are far from the Fermi surface and 
the correct spectrum cannot be obtained. 

In the case of bismuth the effectiveness of thep model is 
not as evident. Abrikosov and Fal'kovskii3 obtained the en- 
ergy spectrum by starting only from one irreducible repre- 
sentation. Certain difficulties, however, were found (nonsa- 
tisfaction of the Luttinger theorem, impossibility of 
explaining the observed values of theg factor); these could be 
avoided only after taking into account the threefold quaside- 
generacy, predicted by thep at the L point of the 
"parent phase." This quasidegeneracy is also extremely im- 
portant for the determination of the spectrum of IV-VI se- 
miconductors. 

2. The Brillouin zone that results from the tripling of 
the period is of the form of a hexagonal prism (Fig. 2). The 
extrema of the upper occupied and the lower free energy 
bands in tellurium are located near its vertices-the H  
points.1 In the initial cubic Brillouin zone these points lie on 
the diagonals of the cube faces such as to divide each diag- 
onal into three equal parts. In the Brillouin zone of theapar- 
ent phase" all the points H ,,,,, and H 1 , , 3  are nonequivalent. 
In the tellurium structure they are divided into two triplets 
H ,,,,, and H ;,,,, of equivalent points (the states Hi and Hi 
are connected by time-reversal transformation). 

The wave functions pi in a cubic crystal are trans- 
formed in accordance with the irreducible representations of 
the small group C,, of the point Hi. For the point H ,  (Fig. 2) 
this group contains the transformations of rotation of C2 
around the Z, axis and of reflection in planes passing 
through the X, and Y, axes. All the irreducible representa- 
tions of the C,, group are one-dimensional: A, (z, 1, B, (x ,  ) , 
A,  (x, y,) , B, ( y, 1 (the braces contain type of basis function; 

FIG. 2. Brillouin zone of the tellurium structure. Outer cube-Brillouin 
zone of initial cubic lattice. Owing to the acoustic deformation, the entire 
picture should be slightly compressed along the [l ,  1, 11 axis. The symme- 
try elements of the small group C,, of the point H, in the initial simple 
cubic structure are shown. 

the notation for the representations is in accord with Ref. 7). 
To identify the particular representations that give rise to 
the H  terms of tellurium, we turn to the p model. In the 
absence of interaction between the bandsp, ,py , andp, , two 
of them are degenerate at the points H  (e.g.,p, andp, at the 
point H,). The third band is separated downward by a dis- 
tance 3c0/2- 5 eV, wherelo is the width of the allowed band 
in the metallic "parent phase." The random degeneracy of 
the bandsp, andp, is lifted by the cubic-symmetry crystal 
potential. The doublet is split into levels with energy + W 
and wave functions 

ly1)- ( P ~ + P U ) ~ V Z  I&)= ( P U - P % ) / v z  

which are transformed respectively in accord with the repre- 
sentations B, and A,. The wave function of the separated 
band Ix,) = p, is transformed in accord with the representa- 
tion B,. Since 2/3 of each of the unrenormalized quasi-one- 
dimensional bands is filled, the Fermi surface of the "parent 
phase" at the point H  passes near a doublet. The forbidden 
band is therefore formed between sets of levels that stem 
from the representations A, and B,. 

After the tripling of the period, the points Hi (i = 1,2,3) 
become equivalent and the representations A (,"and B that 
correspond to them must be combined. This results in the 
unrenormalized triplets ZA, and ZB2,, (Fig. 3). 

The wave functions In, ) (n = z, y, x) serve as the bases of 
the irreducible representations ZA, , ZB2, and ZB, . The 
latter break up into irreducible representations of the small 
group GH of the point H in the tellurium lattice 

%a,=H,+H,, % B 2 ( B , ) = H Z + H 3 ,  (1) 
where the representations H  ,,, are one-dimensional and H3 
is two-dimensional.' To verify the validity of (I) ,  it is neces- 
sary to construct a table of the characters of the representa- 
tions ZA, and ZB,,,2,  after subjecting the functions Ini) to 
transformations from the GH group. This group contains a 
threefold screw axis and two twofold axes combined with 
partial translations along C3 (Ref. 8). Recognizing, however, 
that the Ini ) are defined as Bloch functions in a cubic lattice, 
we find it convenient to choose a C3 axis passing through the 
"parent-phase" lattice sites (Fig. 1). All the partial transla- 
tions included in the elements of the GH group are then sim- 
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FIG. 3. Evolution of the tellurium spectrum from the energy levels A ,  and 
B, of a cubic crystal after tripling of the period and turning-on the spin- 
orbit interaction. The termsf2 ,,, ando,., pertain to thevalencebands, the 
others to the conduction bands. 

ple combinations of the basis vectors a,,,, of the cubic lat- 
tice, and their action on the functions In,) reduce to 
multiplication by the phase factors exp( f i7~/3). The two- 
fold axes U,,,,, can then be chosen respectively along the 
directions [ - 1, 1,0], [O, - 1, 1] and [1, 0, - 11 (Fig. 1) such 
as to make up together with the C, axis the point group D,. 
In the upshot, the elements of the group GH take the follow- 
ing form: (C31ay), (C:l-a,) ,  (U31ayJ, [U21-ax),  
(U,(O), the unit operator E, the translation 
T3 = (&(a, + a, + a, ), and the products of T3 by all the pre- 
ceding elements.,' 

All the projective representations of the point group of 
the directions D, of the group GH are projectively equivalent 
to the vector representations, i.e., to the usual D, representa- 
tions (Ref. 9). It suffices therefore to determine the transfor- 
mation of the functions (ni) under the action of the opera- 
tions D, and then compare the result with the characters of 
the irreducible representations A ,,, and E of this group,' 
which assume the role of the representations H ,,, and H, of 
the G, group. 

According to (I), the unrenormalized triplets are split 
by the optical-deformation potential A (r) into a singlet level 
and a doublet level. The spin-orbit interaction splits the 
doublet H,, and since there is no inversion center, it is par- 
tially lifted and the Kramers degeneracy [the representa- 
tions are one-dimensional for the double group H , ,  and 
two-dimensional for H, (Fig. 3)].' It follows from relation (1) 
that the symmetry function H, that pertains to the edge of 
the valence band can be made up of functions that transform 
in a cubic crystal in accord with any of the possible represen- 

tations of the group of the wave vector of the point H. This 
means that, confining ourselves to some definite initial re- 
presentations (A ,  and B,) we construct a function H, of parti- 
cular form. This leads to additional (compared with the usu- 
al k*p method) selection rules for the matrix elements of the 
k.p Hamiltonian and makes it possible to characterize the 
dispersion of the eight bands at the point H by a relatively 
small number of parameters. 

3. Neglecting the split-off bandB,, we obtain the matrix 
of the k-p Hamiltonian in the representation of the functions 
ji = ( yi  IT,^), ii = (zi ( ( 1 , ~ )  (here t and 1 are spin functions, 
while ji and ii are spinors). To this end it is necessary to 
make up invariants of the basis functions and of the vectors 
k, , reckoned from the points Hi of the spin-orbit interaction 
operator 2,  of the tripling potential A (r), and of the strain 
tensor E ~ .  

The quantity A (r) is invariant to transformations of the 
group GH, and the tensor E~ takes in terms of the axes X,, Y ,, 
and Z, the form 

All the diagonal components E~~ are invariants of the 
group C,, . Therefore the diagonal matrix elements of the 
acoustic deformation are expressed in terms of linear combi- 
nations of E,,,~, and E : 

These invariants, together with the crystal potential of the 
cubic "parent phase," contribute to the splitting 2 W of the 
states ( yi ) and (zi ) that are degenerate in the zeroth approx- 
imation of the p model. They can therefore be taken into 
account by simply redefining the quantity W. The off-diag- 
onal elements cii make it possible to set up only a second- 
order invariant ( y, (&,,, y, k,, (zl)=p, k,, , which leads to a 
weak dependence of the longitudinal (along C,) momentum 
matrix element on E. The smallness of this invariant is due 
also to the fact that it stems from the split-off band Ix,) and 
contains a large energy denominator. 

We confine ourselves to invariants that are linear in A ,  
E,  and A, since all these quantities are of the same order of 
smallness. Therefore when setting up the invariants that 
contain theAspin-orbit interaction operators it can be as- 
sumed thai A has cubic symmetry. The nonzero matrix ele- 
ments of A are equal to ( yi l i l  lzi ) = - iAu,,, where for 
i = 1, 2, 3 the values of the index of the Pauli matrices a,, 
coincide respectively with the indices of the cubic axes 2, X, 
and Y (Fig. 

By virtue of the translational symmetry, only the poten- 
tial A (r) has matrix elements between the functions Ini ) and 
Im,. ) that belong to the different points H.  The symmetry 
properties of the functions Ini ) are illustrated in Fig. 4. The 
states In2,, ) are obtained from In,) by successive rotations 
about the C, axis. Therefore by applying the operators 
( C: I - a, ) and ( C3 la, ) from the GH group to the wave 

1338 Sov. Phys. JETP 59 (6), June 1984 Volkov eta/ 1338 



where K and K ,,,,, are the following matrices: 

FIG. 4. Symmetry of basis functions (shown by arrows) in the point sub- 
group of the directions of the small group G,. - ihGi 4- pkvi f pEkxi 

-W + azlcfi 
] . (4) 

functions, we obtain 

(n,lA~m,>=eq(n,~A~m,>=e-'q(nt~A~m,>, 

where p = 2n/3. With the aid of the operation { U ,  10) it is 
easy to show that the matrix elements that are diagonal in n 
are real, (n,lA In,) = (n,lA In,) and obtain the relation 

(n,lAlm,>=-(n,lAlm,> (nzm).  

The potential A (r) can be represented in the form 

A(*)=- C Y R v v ( r - ~ ) ,  
R 

where the summation is over the sites of the simple cubic 
lattice, v(r) has cubic symmetry, and the shifts of the atoms 
upon tripling of the period are 

u ~ = ' / ~ u  (et+ie2) e - i q R + ~ . ~ . ,  q= (2n13) (1, 1, I ) ,  

el and e, are unit vector along the axes [ - 1, 1,0] and [ - 1, 
- 1, 21. For the matrix elements given above we have then 

At=~yz~A~y3)-u2,  A2=(z2~A~z3)-uZ, 

6 4 y 2  I A I zs>-uz+icul, 

where u ,,, is the projection of the displacement vector u, = , 
on the axes e,,, . 

Arranging the basis functions in the sequence j , ,  i , ,  j,, 
P,, j,, i,, we write down the matrix of the Hamiltonian: I 

The parameters A ,,, and a,,, are real (recognizing that the 
basis states stem from the functions IF, ) and Ip,, ) of the 
cubic parent phase, it is easy to show also thatil,p, andp, are 
real). All the elements of matrices (4), which contain no Pauli 
operators, are multiples of the unit operator in spin space; k,  
are the projections of the vector ki on the axes Xi, Y,, and 
z, . 

The diagonal elements of the matrices K, (4) do not de- 
pend on the projection of k an the C, axis, since the vectors 
Zi are coplanar (Fig. 4). Therefore, were we to confine our- 
selves only to some one initial representation, the Hamilton- 
ian matrix (3) would contain no dependence whatever on the 
longitudinal component k (in the approximation linear in k), 
and the corresponding effective mass would become infinite. 
The finite value of this mass is due to the off-diagonal ele- 
ments of (4) and is connected with the quasidegeneracy of the 
initial levels A ,  and B,.  

We subject the matrix (3) to the unitary transformation 

which effects a transition to basis functions that transform in 
accord with the irreducible representations of the group G, 
[according to (I)]. As a result we get 

2A+ + (4 + akll~x e-i(~A e-ivA+ 
S*HS = - A+ + (n+7) t ~ k l l ~ x  A 

eiTA A+ - A++ ( K T )  f akllzx 

where 

and the vector T = (7, , T,, , 7, ) is made up of Pauli matrices 
that act in the two-dimensional space of the functions I y )  
and lz) . In Eqs. (6) and (7) are defined in this space the opera- 
tors T and A, while a + and all are the spin operators 

The vector n and n + have the following components: 

n= (0, ho1,/1/3, W+2A-) , 

.n,= (*6,v$ hT/F~6~1/6  W-A-) , 
(9) 

\here S, and S, are the imaginary and real parts of the 
matrix element S [see (4)], and A . = (A, + A ,)/2. The coef- 
ficient of k I I  in (6) is a = ( p f l  + p , ) / f i .  Finally, the longi- 
tudinal and transverse components k and k,  of the quasi- 
momentum are connected with ki as follows: 
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where k, and k, are the projections of the quasimomentum 
on the mutually perpendicular axes el and e, that lie in a 
plane perpendicular to the C3 axis. 

We introduce the spin variable explicitly into the Ha- 
miltonian (6) (the spin quantization axis is along C,). With 
the aid of Eqs. (8), following an hermiticity-conserving rear- 
rangement of the rows and columns, we have 

where 

The matrix A -  is obtained from A +  by replacing the indices 
t and + of the vectors n with their inverses 1 and - ; 
Y = (2/3)'I2R; KL is the matrix that enters as the second term 
in (7). The spin index of the vectors n and n , means that it is 
necessary to replace all in (9) by + 1 for its T value and by 
- 1 for J. 

It can be seen from (1 1) that at k, = 0 the matrix of the 
Hamiltonian breaks up into three independent blocks. The 
first in the lower right corner describes the levels a, (see Fig. 
3) and the two remaining blocks the levels wj . The determin- 
ation of the roots of the secular equation for the matrix (1 1) is 
substantially facilitated by the fact that the operators ( n ~ )  
are easily diagonalized by rotating the vector T along n. At 
k = 0 the roots a, are determined exactly: 

$=-A+*Q*, (12) 
where the four possible combinations of the signs corre- 
spond to the four roots j = 1 to 4, and the * are equal to 

All the roots a, are nondegenerate and pertain to two one- 
dimensional representations H4 and H, of the binary group. 
On the contrary, the terms wj pertain to the two-dimension- 
al representations H, and are doubly degenerate. This can be 
seen from (1 I), since the two corresponding diagonal blocks 
have identical roots. They cannot be diagonalized exactly 
because of the nondiagonal spin-orbit interaction yry. In the 
absence of this interaction the level energies are 

Numerical analysis shows that the level pairs that interact 
strongly through VT,, are mainly my), w(,O) and wy), w$". In this 
approximation we get 

More accurate values of w, are obtained by a numerical iter- 
ation procedure. 

We obtain now the dispersion of the bands along the C, 
axis for the 0, terms. Account of the interaction a k  7, 

between the nearest valence bands R ,,, must be exact, and 
the coupling viaak with the levels0 ,,, should be treated by 
perturbation theory. As a result we have 
a132(k , l )+A+ = - [ a3 ,4 (k I l )+A+]  and 

(16) 
where 

The dispersion of the bands my) is given by Eqs. (14) and (1 5), 
in which n + must be replaced by the k -dependent vectors 
n(k ) and n, (k I I  ), which are obtained by adding the term 
a k  to the x components in Eqs. (9). From (14) we get 

The two signs of a k  in (19) correspond to the solutions of 
the two conjugate blocks (upper and middle) of the matrix 
(1 1). It can be seen from (20) and (1 5) that the shift of the band 
extremawf" from the point H (see Fig. 3) is due only to their 
interaction, via. v'ry, with the "two-hump" bands 0 2 , 4  (k ) 
(19). This shift, however, hardly influences the effective 
mass, which can be determined directly from (20). 

The dependence of the energy on k, for all bands can be 
easily determined from (1 1) by perturbation theory. 

4. It is known from experiment1 that the dispersion of 
the valence band a,(k 1 1  ) (16) has a characteristic double- 
humpform(Fig. 3 ) . T h i s c a l l s f o r ~ ~ l ( O +  -a-)A/F21 < 1 
(at 6 > 1 the band has a standard parabolic form). The experi- 
mentally determined value of 6 for t e l l~ r ium '~  is 0.764. 
From optical measurements we now also the energy gaps (at 
4.2 K) w3 -azz&, = 0.334 eV, a, - a, = a+ - a- 
= 0.126 eV (Refs. 1 and 8) and a, - w2z0.035 eV, 

w, - w, ~ 0 . 2 1 3  eV (Ref. 11). 
According to (12)-(IS), the locations of the eight energy 

terms at the point H is determined by the six parameters A , , 
W, andR. Experience with the use of thep model or IV- 

VI  semiconductor^^.^ and for group-V semimetals6 shows 
that the spin-orbit constant R is close to its value for the free 
atom. This constant can either be gotten either from the cal- 
culation tables" or from an analysis of the fine structure of 
the atomic terms.I3 For tellurium R = 0.18 eV. The remain- 
ing five parameters can be determined from the value of 6 
and from the four energy gaps. (We note that it follows from 
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(13), (17), and (18) that l z f i /~  /3S, if it is recognized that 
10, - 0- 140 * .) As a result we obtain the following set of 
parameters for tellurium (in eV): 

The sign of W cannot be obtained from the experimental 
data on the dispersion law. It determines the order in which 
the levels A, and B, follow. The situation shown in Fig. 3 
corresponds to the case W< 0 (at W> 0 the level A, would be 
lower than B, and accordingly H, lower than H,). Favoring 
the choice W< 0 are numerical calculations of the levels at 
the point H without allowance for the spin-orbit interaction, 
according to which the level H, lies above H2.14 If the abso- 
lute value of W is compared with the likewise numerically 
~alculated'~ distance W0--,0.05 eV between levels A, and B, 
in the cubic "parent phase" of tellurium, it becomes clear 
that the main contribution to W is made by acoustic defor- 
mation. The coefficient a of k can be obtained from the 
experimentally known1 parameters A ~ 0 . 3 8  X 10- l4 eV.cm2 
or F 2 z 0 . 6 ~ 1 0 - 1 5  eVz.cm2. It follows from (18) that 
a = (2(A ()1'2(0 + + 0 - ) ' I 2  ~0.64.10-' ev-cm. If instead of 
thevariable k II we use the dimensionless quantity k a, where 
a-3.24 A is the period of the cubic lattice of the "parent 
phase," the role of the coefficient a is assumed by the quanti- 
ty a/a =:2 eV. It is curious that if this quantity is calculated 
by using the tight-binding parameters fOz3.5  eV and 
<, - 0.9 eV for the unrenormalized bandsp, andp, of the 
"parent phase,",' we obtain a / aZpf i / f iZ ( lo  - l , ) /2  
~ 2 . 2  eV [(without allowance for the contribution ofp, (7)]. 

Consequently, the contribution of the acoustic defor- 
mation~, to the matrix element of the momentum a is about 
10%. Similar estimates for the coefficients of the matrix k, 
yield 

a,, z/a=-13 (go-&) /4'1/2~-0.8 eV and p/21/3x0.8 eV . 
Knowing the numerical values of the parameters (21) 

we can calculate the energies 0 ,, and w, of the upper terms 
of the conduction bands. No experimental data on the loca- 
tion of these terms are known so far. With the aid of (13) and 
(15) we obtain f l 3 - -w ,~1 .6 ;  0 ,-0,=0.126;  
w, - 0, = 0.08 eV. It must be noted that these numbers, as 
well as the values given above for the constants (21), are ap- 
proximate. The reason is that the experimental data used by 
us on the distances to the valence bands wlPz can not yet be 
regarded as fully reliable. In addition, the value of R can 
differ somewhat from the spin-orbit constant for the free 
atom and should also be determined from a comparison of 
the calculated spectrum with experiment. 

5. The developed deformation theory makes it possible 
to describe with a small set of parameters the dispersions of 
eight relatively close-lying bands. It suffices to use the ex- 
perimental data on the dispersion of the upper valence band 
and several energy gaps.5' We obtain simultaneously the 
connection between the wave functions of the different 
bands, which are expressed in terms of the two initial sym- 
metry functionsA, and B,. It is possible therefore, within the 
framework of the given scheme, to calculate the optical ab- 
sorption and to determine the intensities of the transitions in 

a group of eight bands. As seen from matrix (1 I), dipole tran- 
sitions between levels of type wi (Fig. 3) are possible for both 
longitudinal and transverse polarization of the light (relative 
to the C, axis); the transitions ai +Oj are allowed only for 
longitudinal polarization, while the transitions wi*4 are 
allowed for transverse. This agrees with the experimentally 
established" selection rules. 

In the traditional k-p approach8 one considers usually 
only the group of terms 0 ,,, and 0, which appears as the 
result of a spin-orbit interaction R of order E, and can in no 
way be regarded as small compared with the distance to the 
band w,. If, however, the k.p Hamiltonian is constructed 
using the basis functions of representations of the binary 
group (the method of invariants1'), the full leeway in the 
actual form of the functions makes the number of indepen- 
dent parameters very large. In essence, this is the results of 
an exaggeration of the accuracy since, as shown above, the 
wave functions of different terms are not independent but 
are constructed from functions of a cubic "parent phase." 

Deformation theory can also be used to calculate the 
electronic structure of extended defects, e.g., dislocations. 
To this end it is necessary to introduce a coordinate depen- 
dence of the optic and acoustic distortions. 

We note in conclusion that our calculation confirms the 
adequacy of the concept of the cubic "parent phase," which 
was demonstrated earlier with IV-VI s emicond~c to r s~~~  and 
bismuth6 as examples. This concept is apparently effective 
for a large group of substances in which the valence bonds 
are made up mainly of atomic orbitals. The parameters of the 
energy spectrum of the "parent phase" (lo, l , ,  Wo) for differ- 
ent substances turn out in this case to be close enough. 

"The proximity of the structures of tellurium and selenium to cubic was 
noted already long ago (see, e.g., Ref. 1). It was characterized as a rule, 
however, by the geometry of a configuration of six atoms closest to a 
definite site (they form a distorted octahedron).' This description of the 
structure, although equivalent to the one given above, is extremely awk- 
ward for the determination of the electron spectrum. 

"The stability of a-Po is probably due to the tremendous spin-orbit inter- 
action that destroys the quasicongruence of the Fermi surface of the 
"parent phase." 

"We have actually listed here the elements of the factor group of the space 
group D :  of right-helix tellurium. The small group of the point H con- 
tains, besides these elements, translations by periods A, and A, in thejl, 
1, 1) plane. But to find the substantially different representations of G,  
the factof group is sufficient.' We therefore do not distinguish between 
G, and G,  . 

4)The quantities &o and 6, define the bands E , , ~  (k) = &,cos k , , a  + &,(cos- 
ky,,a + cos k,,, a)  (Ref. 5 ) .  The numerical values cited for them are prac- 
tically universal for all IV-VI compounds5 and for semimetals of the 
bismuth group.6 

5'Only the parameters of the upper valence band were determined reliably 
enough in experiment. The conduction band was little investigated, 
owing to the absence of n-type tellurium. 
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