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The dynamics of a crystal whose every unit cell contains a two-level center is investigated theore- 
tically. The interaction between the tunneling states and the vibrations of the crystal lattice is 
described within the simplest model. The ground state of such a crystal is studied and it is shown 
that depending upon the magnitude of the interaction constant g, two distinct types of ground 
states are possible. The interaction constant g is a bifurcation parameter. If g reaches a certain 
critical valueg, a change of the ground state and a rearrangement in the small-vibration spectrum 
will occur. Nonlinear properties of the quantum crystal are studied and one-parameter soliton 
excitations and their energy spectrum are described. It is remarked that algebraic solitons can also 
exist besides dynamical solitons. The Hamiltonian equations of motion are given for the solitons 
and their dynamics is studied. 

1. INTRODUCTION 

Phenomena caused by the quantum nature of atomic 
motions must play an important role in molecular crystals at 
very low temperatures. Occurrence of tunneling states in 
each unit cell of a molecular crystal could serve as a clear 
example of such phenomena. The ammonia molecule NH, is 
an often exploited (in both meanings of the word) example of 
a molecule with tunneling states. This molecule has two clas- 
sically equivalent states which differ in that the N atom is 
placed on symmetrically opposite sides of the plane defined 
by the three H atoms. The two states are separated by a 
potential barrier. Tunneling through this barrier leads to a 
splitting of the ground-state energy level. The two tunneling 
states arise in free NH, molecules and their energy difference 
is &,z e V z  1 K. Analogous tunneling states occur in 
N,, O,, CH,, and other molecules in which case the energy 
difference between the tunneling states is either comparable 
to or significantly smaller than the Ah, given for an NH, 
molecule. This means that the interesting effects caused by 
the tunneling states should occur at low or super-low tem- 
peratures. 

We shall study the long-wavelength, macroscopic exci- 
tations of a molecular crystal whose every unit cell contains 
tunneling states with two nondegenerate levels separated by 
the energy gap &,. In the theory of the interaction of a two- 
level system with an external field1 the states of a molecule 
corresponding to the energies E = 0 and E = Ah, are often 
considered as the eigenstates of the Pauli matrix operatot u3. 
Then, the characteristic Hamiltonian of a single molecule 
can be written as 

As a rule, the direct quantum interaction between the tun- 
neling states of molecules in the neighboring unit cells is 
small and it is not taken into account. An interaction is also 
mediated by electromagnetic and elastic fields. The coupling 
between the tunneling states and the long-wavelength elastic 
vibrations of the crystal lattice will be analyzed in the pres- 
ent work. 

A consideration of physical quantities averaged over 
volumes containing large numbers of molecules appears nec- 
essary in the long-wavelength approximation. We shall con- 
sider the operator a, as the corresponding component of the 
vector operator a (a,, a,, a,) and we shall denote by S the 
average value per unit volume of the operator a. This vector 
is usually called the energy spin and it is defined so that its 
square equals unity: SZ = 1. Thus, the self-energy density w, 
of the tunneling states which corresponds to the single-mole- 
cule Hamiltonian (1) is 

where n is the number of molecules per unit volume (n = 1/ 
a3, a3 being the unit cell volume). It is clear that the sum 
(S, + 1)/2 determines the relative population of the upper 
level. 

Within the simplest model, the energy spin interacts 
only with the isotropic crystal compression (or expansion) 
and the interaction Hamiltonian of a molecule and the elas- 
tic field is 

H i  ='/,goi div u, 

where u is the elastic displacement vector, g is the interaction 
constant (generally speaking, g < Ah,). This Hamiltonian de- 
scribes the transitions between the two quantum states. The 
energy density 

w i  ='/,gnS, div u (4) 

corresponds to the Hamiltonian (3). A deformation of the 
crystal lattice also inevitably influences the energy differ- 
ence &, between the two quantum states, as considered, for 
example, in Ref. 2. Although this effect can be easily taken 
into account, it does not lead to qualitative changes in our 
conclusions that the interaction between the elastic waves 
and the tunneling states in nonlinear. Therefore, when de- 
scribing nonlinear vibrations of a crystal with tunneling 
states we shall start from the expressions (2) and (4). 

The spectrum of small (harmonic) crystal vibrations 
will be discussed in Sec. 2, and it will be shown that in the 
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presence of the tunneling states a gap in the frequency (ener- 
gy) spectrum appears. The size and the place of the gap de- 
pend on the parameter g. If this parameter is sufficiently 
small the gap will deform the acoustic (phonon) spectrum of 
the crystal only slightly. However, for certain values ofg the 
deformation of the spectrum is so significant that a change in 
the crystal ground state is necessary: a spontaneous defor- 
mation of the crystal occurs and with it a finite population of 
the upper level of the tunneling states. It appears that the 
parameter g takes the role of a bifurcation parameter whose 
different values correspond to different ground states of the 
crystal. 

Nonlinear soliton excitations which affect both the elas- 
tic deformation of the crystal and the population of the up- 
per level of the tunneling states are analyzed in Sec. 3. These 
are the one-parameter solitons whose dynamics is character- 
ized by only one quantity, their speed, which determines the 
magnitude and the degree of localization of the excitation. 

The dynamics of one-parameter solitons is studied in 
Sec. 4, where a dependence of the soliton energy on its mo- 
mentum is found and it is shown that the solitons can be 
treated as collective excitations of the crystal. The soliton 
energy spectrum occupies the energy interval forbidden for 
the harmonic vibrations of the quantum crystal. 

2. GROUND-STATE BIFURCATION AND THE SPECTRUM OF 
WEAK (LINEAR) EXCITATIONS 

The equations of motion for the components of the en- 
ergy spin vector S can be obtained by averaging correspond- 
ing operator equations for the Pauli matrices, 

Elementary calculations lead to the equations 

as1 -=- 
as, 

0 1 IVU, o o ~ , ,  -=a S - - S  d' 
a t at f i  

-=- as, S, d ivu .  
at tt 

The equations (5) are analogous to the Bloch equations for 
the magnetic resonance spin prece~sion.~,~ We shall supple- 
ment them with the equations for the crystal lattice vibra- 
tions in the long-wavelength limit. 

a2u 
-= 

a 2~ g 
c,2 - f (el2-c:) grad div u f  - grad S, ,  (6) at2 dxkZ 2m 

where x,,  k = 1, 2, 3. are the spatial coordinates, c ,  and c ,  
are the speeds of the longitudinal and transverse acoustic 
waves, respectively, and m is the mass of the unit cell. It is 
clear that the system of equations (6) separates into two sys- 
tems, one of which describes the longitudinal elastic vibra- 
tions, 

d2 (div  U )  , dZ(d iv  U )  g dZSi 
at2 

= C1 +-- 
d a 2  2m axk" (7) 

while the other describes the transverse elastic vibrations, 

d2 (rot U )  a2(r0t U )  

at= 
= C, 

axk2 ," 

(8) 

Since in the given model the transverse elastic vibrations do 
not interact with the tunneling states, we shall not consider 
them in the following. In that case, the elastic energy density 
can be simplified, 

we, =l/,p ( a d a t )  2 + i / z p ~ 2  (d iv  U) 2, (9) 

wherep = mn=m/a3 and c = c ,  is the speed of the longitu- 
dinal acoustic vibrations. Hence, we shall represent the total 
energy of a vibrating crystal with the tunneling states as 

1 
E = - n J {boo ( S , + i )  +gSi div u )  d3x 

2 
1 d u  

(10) 
+ p J { (--) +c2(div  a)'} d3x. 

Clearly, the energy (10) is invariant with respect to a simulta- 
neous sign change in S,  and div u. 

Equations (5) and (7) contain the trivial solutions 

div  u=O, S,=S,=o, s,=-I, (11) 

corresponding to the absence of a lattice deformation and to 
all two-level centers being in the ground state. The energy of 
such a state is E, = 0 .  

There is another static (equilibrium) solution of the 
equations (5) and (7): 

g S1 = - S3 div u ,  Sz=O, S3=const, div u=const. (12) 
ti00 

The solution (12) is consistent with (7) if 

where = 2mc2h,. Essentially, there are two solutions of 
the type (12), one of which corresponds to a static expansion 
of the crystal (div u > 0), while the second corresponds to a 
compression (div u < 0). The states (12) are possible only for 
sufficiently large values of g, 

Igl >gc=c (2mfioo)".  (14) 

The energy of the crystal in the states (12) equals 

where N is the number of sites of the crystal lattice. The sign 
of the parameter g does not influence the existence of this 
state-it only determines the relative sign between div u and 
s,. 

Comparing the energies of the two equilibrium states of 
the crystal, (1 1) and (12), we find 

E,<Eo. for Igl+~,, (16) 

in which case the equality of the energies is possible only in 
the case where lgl = gc. The inequality (16) is consistent with 
the condition (14) for the existence of the second equilibrium 
state. 

Therefore, for small values of the interaction param- 
eter, lgl <gc, the ground state is the undeformed lattice (div 
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u = 0) withS3 = - 1. As the parameter JgJ  exceeds the criti- 
cal valueg, a second (competing), doubly degenerate equilib- 
rium state with a uniform deformation of the lattice (div 
u = + E,) and S, = - (gc/g)2 occurs. In this fashion we 
have clarified that the interaction parameter g is a bifurca- 
tion parameter and that its value Ig( = g, is the ground-state 
bifurcation point. After the bifurcation point Igl = gc the 
ground state is the state with a spontaneous deformation of 
the crystal lattice. 

By linearizing (5) near the ground states (1 1) or (12) we 
obtain equations for the small vibrations which realize the 
states of the weak excitations of the crystal. The relationship 
between the frequency w of an elementary excitation and its 
wave vector k is given by the dispersion law 

where E, is given by the expression (13). 
Let us analyze the dispersion law (17). For g = 0 we 

would have independent longitudinal vibrations of the crys- 
tal with the dispersion law w = ck and an excitation of the 
two-level systems with the frequency w = w,. The inclusion 
ofthe interaction between the phonons and the eigenmodes 
of the two-level molecules leads to the dispersion law (17). 
For w(w0 we have w = c. k where c. = c[l - (g/g, )2]112, 
while for maw, we have w = ck. For w -a,, as a result of the 
coupling between the phonons and the two-level states, a 
significant rearrangement of the spectrum occurs. A new 
characteristic frequency w, = w,[l - (g/gc)2]112 appears in 
the system. The formation of a gap in the frequency spec- 
trum for the harmonic crystal vibrations occurs as a conse- 
quence of the interaction between the elastic vibrations and 
the two-level molecules. For small values of the coupling 
parameter, JgJ <gc , the gap Am = w, - w. increases with g 
from the value Ao = 0 for g = 0 to its maximal value 
Aw = w, for Jgl = g,. A plot of the dispersion law (17) is 
given in the left-hand portion of Fig. 1. As follows from the 
reality of the frequency w., the dispersion law (17) can be 
realized only for Igl <gc . In this interval w. is always smaller 
than the eigenfrequency of the two-level states. 

If the bifurcation parameter g takes the value IgJ = g, , 
then the dispersion laws (17) and (18) degenerate into 

FIG. 1. The dispersion law for small vibrations of a quantum molecular 
crystal: c, = c [ 1  - (gc/g)4] 'I2. 

Consequently, the low-frequency branch of the longitudinal 
acoustic vibrations disappears. This means that in the linear 
approximation with respect to the deformations the crystal 
offers no resistance to isotropic compression (expansion), 
which is being compensated by the appearance of a uniform 
deviation of the vector S from its equilibrium direction. In- 
deed, for (gl = gc a static change of the full energy density 
for S2 = 0 and S,( 1 can be written as 

i 1VU w='lZ{Ao, (S3+1) +gS d' 

+mc2 (div u ) ~ )  = l / l { ( h o O )  lhS, * ( 2 m ~ ~ ) ' ~ d i v u ) ~ .  

(201 
I t  follows from (20) that for arbitrarily small div u a defini- 
tive value ofS, can be determined such that the crystal ener- 
gy is unchanged (w = 0). Of course, the corresponding possi- 
bility of populating the upper quantum energy level follows 
also from the consideration (in the linear approximation) of 
the equations (5) and (7). 

Let us now consider the dispersion law (18) which is 
realized for JgJ  >g, (its plot is shown in the right-hand por- 
tion of Fig. 1). Characteristic frequencies w, and w, are de- 
termined by the relations w, = wo(g/gc )2, w: = w: - w;. 
The frequency w , is greater than the eigenfrequency w, of the 
two-level states for all values of lgl > g, . The width of the gap 
Aw = w, - w2 decreases with an increase ing and for Ig(%g, 
we have Aw =: (wo/2)(g, /g)2. 

3. NONLINEAR LOCALIZED EXCITATIONS. ONE- 
PARAMETER SOLITONS 

In addition to the quasiparticles with the dispersion 
laws (17) and (18), excitations of another type are possible 
within the studied system. These excitations are the solitons 
which are spatially localized, traveling, nonuniform distri- 
butions of the vectors S and u. 

We shall seek localized solutions to the equations (5) 
and (7) in the form of functions which depend only on one 
coordinate (x) and the time ( t )  through the difference 
6 = x - Vt, where V is the propagation velocity of the exci- 
tation. Note that at infinity the energy spin vector and div u 
take on their equilibrium values. Since different equilibrium 
states (1 1) and (12) can be realized in the studied system de- 
pending on the magnitude of the bifurcation parameterg, the 
following analysis must be conducted separately for the 
small (Ig( <g, ) and the large ((gl >,gc ) value of g. 

We begin with the case Igl >g, . Then, S, = S2 = 0, 
S3 = - 1, and div u = 0 at infinity. By taking this into ac- 
count, integration of the equation (7) gives a simple relation 
between S, and E = dux /ax: 

2m 
S1=- - (c2-V2)&. 

g 
(21) 

Equations (5) and (21) imply the nonlinear equation 

B % / B ~ ~ - ~ ~ E + ' / ~  ( g l ~ ~ )  2 ~ 3 = ~ ,  (22) 

where 
oo2 vZ-c*2 

.2= -( -) . 
V 2  c 2 - v  
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Localized solutions of the equation (22) are the functions 

~=*2fi  1 V Ixlg ch xE, (23) 

while the corresponding soliton solutions to the equation (5) 
are 

2(V2-c.Z) 00 2 (VZ-~.2)  sh xg 
s , = r  , s2=* 

~ I V l ~ o ~ c h x E  coZ ch2 XE ' 124) 

Since the localized solutions are possible only for a real 
x the speed of the solitons must lie in the interval 

In this way the soliton speed is necessarily greater than the 
maximal phase velocity of the "slow" linear elastic waves, 
but it is smaller than the speed of the longitudinal sound in 
the crystal. 

We observe that the phase of a harmonic plane wave can 
always be represented as 

kz-ot=k(x-ok-'l) = k ( x - v ,  t ) ,  

where the phase velocity V, = w/k determines the slopes of 
the rays passing from the origin of Fig. 1 to the dispersion 
curve for the linear vibrations. These rays pass either below 
the straight line w = c, k or above the line w = ck, avoiding 
the "forbidden" region between them. Possible soliton 
speeds fill this region. As a result, the set of collective excita- 
tions of a crystal is enlarged and the elementary motions 
excluded from the linear theories are taken into considera- 
tion. 

The structure of the nonlinear equation (22) is such that 
the solutions which vanish at infinity can have either sign. 
Either a compression wave (E <O) or an expansion wave 
(E > 0) is possible. The choice of the sign is determined by the 
boundary condition at infinity for the component u, of the 
displacement. Indeed, it follows from (23) that 

u,=* (2fil Vllg) arctg sh (xEl2) +'lzuo, 

where u, = const. We shall consider an uncompressed crys- 
tal at x = + and a soliton traveling from left to right 
(V> 0). Then, 

The function (26) describes a kink which travels with the 
speed Vand which sharpens rapidly as the limiting value c is 
approached. Such a nonlinear wave gives rise to a quite spe- 
cific displacement at x = - w ,  namely 

u o = ~ ( - w )  =T (Znfilg) V. (27) 

The sign of this displacement chooses one of the possible 
solitons. 

The long-wavelength approximation which we em- 
ployed requires the inequality xa(1, which is equivalent to 
the condition 

[ (Vz-c,') l (eZ--V2) V/aoo. (28) 

However, precisely because of this long-wavelength approx- 
imation it is necessary that a(w,JV)(l, so that the condition 
(28) does not bring additional essential limitations on the 
soliton speed. The only condition is that the speed Vshould 
not be too close to c. 

The dependence of S3 (population of the upper state) 
upon the soliton speed is interesting. For the minimal speed 
V = c. the soliton is completely delocalized (S3 = - 1, 
x = 0). For intermediate speeds (25) S3(0) + 1 
= 2( V2 - C: )/c; at the center of the soliton. In principle, 

the maximal value S3(0) = 1 is reached for V = c. However, 
we have seen that a soliton resulting from the equations in 
the long-wavelength approximation cannot have such a 
speed. 

The described behavior of S3 is reminiscent of the order 
parameter behavior of the "dark soliton" which arises in a 
nonideal Bose gas.5 

Let us turn to the case Igl >gc where the boundary con- 
ditions at infinity correspond to the equilibrium states (12) 
and (13). To be specific, we shall choose the upper sign and 
we shall introduce the new variables which go to zero at 
infinity: 

The relationship 

si=- (2m/g) (c2-Vz) 1; 

is preserved for the variables determined in this fashion. 
Nevertheless, a nonlinear equation obtained from (5) and 
(29) is different from (22). Namely, 

where 

Equation (30) has two types of localized solutions (soli- 
tons): 

Henceforth, the upper and lower signs will be associated and 
the first and second soliton types, respectively. 

Solitons are usually characterized by an exponential de- 
cay of the corresponding dynamical field far from the center 
of the soliton. Nonetheless, the appearance of algebraic soli- 
tons is possible for Igl > g, . Indeed, if the limit x -+ 0 is taken 
in (31), then the solution of the first type ( + ) disappears 
while the solution of the second type ( - ) changes into 

This is a power-law soliton. We see that the power-law soli- 
tons disappear in the limit Igl + g, . 

Solutions of the equation (5) which correspond to the 
solitons (3 1) are 

4mfi (cZ--VZ) I Vlx 
si=- 

g2 (qf (1+q2)'" ch xg) ' 
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It is easily seen that the equation (30) and the solutions (3 1) 
and (33) go over into the equation (22) and the solutions (23) 
and (24), respectively, as the bifurcation parameter reaches 
the value lgl = gc . However, in contrast to the small g case, 
the soliton solutions are now not symmetric with respect to 
the equilibrium state (Fig. 2). The difference in the ampli- 
tudes of the two types of solitons given by the solutions (3 1) is 
4&,. 

The interval of the allowed soliton speed for Igl)gc is 
found from the reality condition for x :  

As in the previously considered case, the rays w = Vk fall 
into the "forbidden" region for the rays which connect the 
origin with the dispersion curve for the linear vibrations 
(Fig. 1). 

Behavior of the upper level occupancy S, = s, + Sy 
differs from the case /g /  <gc only in that the magnitudes of 
the extremal values of S,(O) do not exceed (gC/g)'. 

4. SOLITON DYNAMICS 

Fundamental characteristics of a soliton, viewed as a 
collective excitation of a crystal, are its energy and momen- 
tum. The soliton energy can be calculated with the help of 
the expression(l0) and the solutions (23) and (24) or (3 1) and 
(32). Such calculations are very similar in all considered 
cases so that we shall give only the results for the case 
lg l QC. 

A calculation gives 

for the energy per unit area perpendicular to the x axis. 
A soliton motion is connected with an actual mass 

transport so that it is accompanied by a momentum. The 
momentum of the molecules in an elastic wave, calculated 
per unit area perpendicular to the direction of the soliton 
motion, is 

OD 0. a U ,  au. 
Pm,= J p-ax=-pv J -dr=-pV[u,(')-u*(-') 1.  

- m 
d t - m 

ax 

(35) 
Substituting (27) into (35), we obtain 

However, it is convenient to characterize soliton dynamics 
not by the momentum of the molecules (36) but by a quantity 
which stems from crystal homogeneity with respect to a dis- 
placement of the long-wavelength excitations, i.e., by the 
field momentum of a soliton. We emphasize that a soliton is 
an excitation of the vector fields u and S .  When determining 
a field momentum it is convenient to start from the Lagran- 
gian density for corresponding fields. To this end, it is con- 
venient to introduce angular variables 8 and p: 

S,=sin 0 cos 9, S2=sin 0 sin rp, Ss=cos 0. 

Then, the equations of motion (5) are reduced to the two 
equations 

a0 
-=-- g sin q div u, 3 =ao- - ctg 0 cos tp div u. (37) 
dt fi d t tz 

The Lagrangian density which gives rise to the equa- 
tions (37) and to the equation of motion of the elastic medium 
(7) can be written as 

1 1 
\ r 

-- ng sin 0 cos rp div u - - nho, (l+cos 0) .  
2 2 

The field momentum (per unit area) is, by definition, 

dL du °° dL drp p=- 5 -- ax- j --dl, 
d ;  dx ax 

where the dot indicates differentiation with respect to t. 
Therefore, in our case 

Let us write the field excitation energy, which depends 
on a single spatial coordinate, in terms of the angular varia- 
bles: 

We shall consider E = div u, 8, and p to be functions of a 
single variable f = x - Vt and we shall calculate changes in 
the soliton energy (41) and momentum (40) for small varia- 
tions in the functions u, 8, and p. Tedious but in principle 
simple computations lead us to the following result: 

FIG. 2. Profiles of the soliton solutions of the two types for /gl >g,. 6E=ViiP. (42) 
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Equation (42) indicates that the Hamilton equation 

is valid for the studied solitons in crystals. 
Let us analyze the dependence E = E (P) when V> 0. 

Substituting the solutions (23) and (24) into (40), we find 

The dependence of the soliton energies on the momenta is 
determined by a comparison between the relations (34) and 
(44). Near the boundary of the allowed values of the speed we 
have 

E=c.P, V- tc , ;  (45) 

E=c (P-Po)  , V - c ,  (46) 

where Po = mfi. 
The fact that the soliton momentum can be comparable 

to nfi is consistent with the long-wavelength approximation. 
A similar situation occurs in the theory of magnetic solitons6 
and reduces to the following. The soliton can be considered 
as a bound state of a large number of elementary excitation 
of the upper tunneling level. Therefore, it is necessary to 
require that the average momentum per excitation of the 
ground state be small in comparison to nfi. The total number 
N, of molecular excitations per unit area can be determined 
as 

DO 

~ . = n  (&+I) d5. (47) 
- m 

Substituting the solution (24) into (47), we obtain 

The maximal value of N, corresponds to V2 = (c2 + C: )/2 
and equals 

Since by assumption c/wo)a,we have N y) 1. In this way 
the region of validity of the long-wavelength approximation 
determined by the requirement aP(fiN, can extend com- 
pletely over the region of the momenta P-Po. 

Should we consider a one-dimensional elastic chain, 
then the soliton energy would be a2E and its energy a2P, 
where a is the molecular separation. Then it is reasonable to 
compare quantities a2E and a2P with the energy and the mo- 
mentum of the phonons and to show in a single plot the 
dispersion laws for the solitons and the elementary harmonic 
excitations. Such a plot is schematically given in Fig. 3. We 
see that the soliton dispersion curve covers the energy inter- 
val AE = fi(wo - w.) in which the small vibrations cannot 
exist. Consequently, it is once more confirmed that the non- 
linear solutions of the dynamic equations enlarge the set of 
collective excitations of a one-dimensional crystal. 

In conclusion, we shall discuss the possibility of excit- 
ing the described solitons mechanically. At the creation of a 
soliton at the crystal's left-hand surface (x = - a), the sur- 
face layer of the molecules is displaced by an amount uo 
expressed in terms of the soliton speed by the relation 
uo = 2nJiV/g. This displacement has to occur during the 
time which the soliton needs to traverse its own length: 

In order that the soliton be formed, a momentum (36) must 
be transmitted to the molecules of the crystal. This can be 
provided by an initial disturbance which would create a 
pressure 

Solitons which are described in the long-wavelength ap- 
proximation must have a speed close to c. (which is, in turn, 
of the same order of magnitude as c: V2 - C: (c2). In order 
to excite the solitons it is sufficient to create on a crystal 
surface a pressure p((wofi/g) for a time duration At ,  l/wo, 
where G = p ~ 2  is the compression modulus of the crystal. 
For certain values of the bifurcation parameter g these crys- 
tal excitations can be fully realized. 

Note added inproof (May 11,1984 ): By limiting the elas- 
tic crystal energy to the form in (9) and (10) we have lost a 
contribution from the transverse acoustic vibrations. There- 
fore, the speed c, of the transverse sound is absent from all 
subsequent expressions (formally c, = 0). Taking into ac- 
count the energy of the transverse acoustic vibrations does 
not change the results pertinent to the soliton excitations but 
it changes substantially the conclusions contained in the for- 
mula (19). At the bifurcation point, the limiting speed c. of 
the waves associated with the lower branch turns out not to 
be equal to zero but to take the minimal possible value for the 
speed of the longitudinal sound, 2c,/&. 

FIG. 3. Soliton dispersion law for Igl <g, (curve 1). The curves number 2 
correspond to the dispersion laws for the harmonic vibrations of the crys- 
tal. 
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