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The low-temperature properties acquired by a tunnel junction between two normal metals with 
an amorphous layer as a result of the presence of two-level systems (TLS) in the latter are consid- 
ered. A set of equations that describe the tunneling in this situation is derived. It is shown that 
besides the direct influence of the TLS on the tunneling electrons an important role may be played 
both by the reaction of these electrons on the TLS (which leads to disequilibrium of the latter) and 
by the interaction of the TLS with the electrons of the "banks," which is not accompanied by 
tunneling (and contributes to the relaxation of the TLS). The contribution is calculated of the 
inelastic tunneling with participation of the TLS; this contribution leads to nonlinearity of the 
current-voltage characteristic of the junction, a measure of this nonlinearity being the quantity 
d '1/dV2. It is shown that at low temperatures a nonlinearity of this type can predominate. The 
possibility of separating in experiment the contribution of a TLS group with a specified energy E, 
due to the effect of resonant saturation of the TLS in the presence of an alternating electric field of 
low amplitude and of frequency w = E / f i ,  is considered. The junction tunnel current and voltage 
fluctuations due to the presence of TLS whose spectral density is proportional tow-' are investi- 
gated. The relaxation phenomena that occur when the external voltage is turned off are consid- 
ered. It is shown that the dependence of the relaxation-phonon flux as well as of the junction 
voltage on the time acquires a nonexponential contribution proportional to t - '. 

The study of the low-temperature properties of glasses 
has lately attracted considerable interest. This is due, on the 
one hand, to advances in experimental techniques at infra- 
low temperatures, and on the other to the success of the 
model of two-level systems (TLS) with almost constant den- 
sity of states,'" which made possible an explanation of the 
main details of the behavior of glasses at low temperatures. 
The traditional research methods are in this case experi- 
ments on the interaction of glasses with microwave radiation 
as well as of with ultrasound (absorption and echo). 

It was recently observed that TLS are responsible for 
the unique properties of metallic glasses, in that interaction 
of the TLS with the conduction electrons leads to transitions 
between levels and acts as a source of rela~at ion.~ The exis- 
tence of this interaction gives rise to the interesting possibil- 
ity of using the disequilibrium in the electron system as a tool 
for the investigation of TLS. One of the systems in which 
such a disequilibrium is realized is a tunnel junction. It is 
well known that tunnel spectroscopy yields unusually abun- 
dant information on the properties of the electron and 
phonon subsystems and constitutes a rather well developed 
and accurate experimental technique. It is therefore of inter- 
est, in our opinion, to assess the feasibility of using this tech- 
nique to study the properties of TLS. An appropriate situa- 
tion can be realized, in particular, in a tunnel junction with 
"banks" of ordinary crystalline metal and with an amor- 
phous layer. Study of such a system is important also from 
the viewpoint that in real tunnel junctions the barrier (e.g., 
an exide layer) can have an amorphous structure, so that it is 
necessary to ascertain the extent to which TLS peculiar to 
the amorphous state can influence the observable character- 
istics of the junction. We note in this connection a recent 
experiment4 in which generation of monochromatic phon- 
ons was observed in a Josephson junction under conditions 

of the nonstationary Josephson effect, with the phonon and 
Josephson frequencies equal. One of the possible mecha- 
nisms proposed in Ref. 4 to explain this effect involves the 
assumption that the oxide barrier is glasslike and the TLS 
make a contribution. 

In this paper we consider, within the framework of the 
TLS certain phenomena that can occur in a tunnel 
junction (made up of normal metals) with an amorphous lay- 
er. We obtain first a system of equations for the interaction of 
the TLS with the tunneling electrons. We discuss also the 
interaction, not accompanied by tunneling, between the TLS 
and the bank electrons. It is found that this interaction is an 
additional source of TLS relaxation. The main result of this 
paper is an expression for the tunnel current in the system 
under consideration. We shall show, in particular, that the 
presence of TLS leads to the appearance of an additional 
contribution to the tunnel current, due to inelastic tunneling 
wherein the transition of the electron from one band to the 
other is accompanied by excitation or deexcitation of TLS. 
Such a phenomenon was considered earlier for the case of 
molecular excitations in a barriers; it was established that 
the corresponding contribution to the current is not ohmic 
and can be discerned by analyzing the d '1 /d V2 characteris- 
tics. We shall investigate this effect in detail as applied to the 
TLS situation, which has a host of peculiarities, and shall 
show that its experimental observation can yield informa- 
tion on a number of characteristics of the TLS. Although in 
the usual situation d '1 /d V as a function of V has no singu- 
larities, since there is no noticeable dependence of the TLS 
density of states on the energy, an interesting experimental 
possibility exists of separating the contribution of a group of 
TLS with a specified energy E. This possibility is due to the 
resonant saturation of the TLS in the presence of a small- 
amplitude alternating current of frequency w = E /% in this 
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case d 21/dV2 acquires a singularity at V = h / e .  A large 
number of phenomena can be caused by an important fea- 
ture of the TLS such as a broad relaxation-time spectrum. In 
particular, this circumstance manifests itself substantially in 
the current-fluctuation spectrum, and leads to an w- '  law 
for the spectral dens it^.^ We consider also relaxation effects 
that occur when the junction voltage is turned off, viz., the 
relaxation-phonon flux and the voltage relaxation, and shall 
show that the TLS gives rise to long-time nonexponential 
"tails" in the corresponding dependences. 

1. EQUATION SYSTEM THAT DESCRIBES A TUNNEL 
JUNCTION WITH AN AMORPHOUS LAYER 

We use the tunnel-Hamiltonian method which, while 
approximate, is known on the one hand to describe the tun- 
nel effects with sufficient accuracy, and on the other to pres- 
ent a lucid physical picture of the phenomena. Within the 
framework of this approach we express the total Hamilton- 
ian of the system as 

Here a +  and a are the second-quantization electron opera- 
tors, the subscripts I and r correspond to the left and right 
banks of the junction, Vis the potential difference across the 
junction. The subscript i labels khe TLSAwhich are de- 

by the spin operators S :  and S:.1-3 Next, Ei 
= [(Ai )' + (A oi )2]112, whereA andA oi are TLS parameters, 

the asymmetry of the two-well potential and the tunnel ma- 
trix element, respectively. The operator H, describes the 
interaction of the TLS with the phonons, as well as the inter- 
action, not accompanied by tunneling, with the bank elec- 
trons (diagonal in the indices a = I, r). The operator 

corresponds to the usual tunneling processes, and the opera- 
tor H ', to the tunneling with participation of the TLS. The 
operator includes the remaining parts of the total Hamil- 
tonian (the phonon Hamiltonian, the electron-phonon inter- 
action, etc.). 

Since our calculation is an estimate, we shall not ana- 
lyze further the influence of the disorder in the amorphous 
layer on the tunneling, and confine ourselves to an account 
of the TLS contribution. This simplification is legitimate 
since, on the one hand, the effects considered by us are con- 
nected just with the TLS and, on the other, Lifshitz and 
Kirpichenkov7 have shown that in the absence of resonant 
scattering (i.e., when the barrier contains no impurities with 
a level equal to the Fermi level of the metal), the disorder 
itself does not cause substantial changes in the character of 
the tunneling, and leads only to a certain renormalization of 
the transmittance of the barrier. 

The operator H ', is described by the expression (see the 
Appendix) 

A 

where J is a unit operator in "spin" space, and the matrix 
elements u and v satisfy the relations 

Here el is the kinetic energy of the motion parallel to the 
barrier, V,, and V,, are the Fourier components of the TLS 
in the barrier and correspond to the location of the TLS in 
the particular well of the two-well potential (and normalized 
to the unit-cell volume), and d is the layer thickness. 

We define the tunnel current as I = - AdN,/dt, where 
N, = 8, f, , and fp I are respectively the density and the dis- 
tribution function of the electrons on the left bank of the 
junction, and A is the junction area. To calculate the current 
it suffices therefore to find&, . To obtain the corresponding 
kinetic equation, as well as equations for the spin compo- 
nents Si that describe the TLS, we use the correlation-uncou- 
pling method, regarding the operator H ', as a perturbation. 
This approach is justified because the perturbation contains 
an essential small quantity (due to the low transmittance of 
the barrier) and the lowest approximation is sufficient. 

Following the indicated standard procedure we obtain 
for the mean value f, , = ( papl  + a,, ) (6 is the statistical 
operator of the system (cf. Ref. 8): 

AiAoi 
+(S,OC-IKI'(I-~~~) ln I I - ,  

( 
, 

Ei' 
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Here 

n - ( I - 2  n,+='l2 (1+2<Sz i>)  

are the occupation numbers of the TLS levels; the notation 
[ . . . ] indicates that we have taken into account only that 
change of fp , which is due to tunneling with participation of 
TLS; E, is the Fermi energy. The first sum in (6) has the form 
of the usual integral of the inelastic collisions that are accom- 
panied by transitions to TLS. The second sum is the contri- 
bution of the processes not accompanied by transitions to the 
TLS, i.e., it is the increment to the usual "elastic" tunneling. 
It does not introduce a nonlinear dependence I ( V )  and is 
small compared with the contribution of ordinary tunneling. 
Nonetheless, its allowance can be significant in the analysis 
of the tunnel-current fluctuations, which will be discussed 
below. Finally, the last sum in (6) contains the contribution 
of the spin components (S, ) and (Sy ), which take into ac- 
count the coherence of the TLS states. Effects connected 
with these components can be substantial only in the pres- 
ence of a certain coherent excitation of the TLS. Since (S, ), 
(S,, ) a exp(iEi t / f i ) ,  a contribution to the stationary current 
can appear here only in the next order in the corresponding 
perturbation. 

Since the inelastic tunneling of interest to us depends 
substantially on the TLS states, the question can arise: To 
what degree can the reaction of the tunneling on these states, 
namely, the excitation of TLS by the tunneling electrons? To 
answer this question, we derive also a system of equations for 
the spin components with allowance for their interaction 
with the electrons. Proceeding as before, we obtain within 
the framework of the correlator-splitting method, 

n A,? 
dt 

PP' 

po=P (Ei=O) . 
The terms IS), describe the TLS relaxation due to their 
interaction with the phonons and electrons of the banks, and 

also (in the case ofS, or Sy ) with other TLS9 (i.e., the contri- 
bution of the operator His ). We note that in the derivation of 
(7) there appear, besides the terms proportional to S func- 
tions, also contributions of the principal values of the inte- 
grals. It can be shown that the appearance of these contribu- 
tions is equivalent to introducing into the Hamiltonian of the 
noninteracting TLS a term of the order of 

where 

i.e., to renormalization of the initial assummetry of the wells 
A,  by the amount a +P. In the situation considered this 
renormalization can be regarded as small to the extent that 
the tunnel transmittance is small. At any rate, we shall as- 
sume below that this renormalization has already been taken 
into account in the initial Hamiltonian. 

We discuss, finally, the question of the interaction, not 
accompanied by tunneling, of a TLS with the bank electrons 
in a dielectric. Such an interaction can serve as an additional 
source of relaxation, and an estimate of the corresponding 
contribution is thus necessary for the analysis of the pro- 
cesses connected with the disequilibrium of the spin system 
S .  Several mechanisms of such an interaction can be indi- 
cated. The first-"contact"-is due to the fact that the elec- 
tron wave function is not equal to zero at the location of the 
TLS. It is easily seen that an additional small factor - IK I /  
E~ appears here compared with the estimate of the interac- 
tion typical of metallic glasses. This mechanism can be de- 
scribed by equations of the type (7) by putting in them V = 0. 

The other-"long-range9'-mechanisms are due to the 
fact that the TLS (which has the properties of an electric and 
elastic dipoles) produces in the medium an electric field and 
a strain field, both of which fall off with distance and reach 
the metallic banks. For an order-of-magnitude estimate of 
the contribution of the strain interaction we recognize that 
the strain f produced by a TLS at a distance r from it can be 
estimated at 

Herq = Ca3, where Cis the elastic modulus, R is the strain 
potential of the TLS, and a is the lattice constant. Neglecting 
for simplicity the difference between the elastic properties of 
the metal and the barrier, we write down the energy of the 
interaction of the TLS with the electron at a point r in the 
formA ( p)f (r), whereA ( p) is the strain potential of the elec- 
trons and depends on the momentum p. This interaction can 
be taken into account by introducing into the Hamiltonian 
the term 

ha3 A ( k )  uU, - -5 d " - - - $ k * ( . ) h ,  ( r ) .  e r3 
(9) 
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The integration in (9) is over the half-space occupied by the 
metal. We have taken into account here the fact that in the 
analysis of the processes not connected with tunneling an 
important role can be assumed by the deviation of the wave 
function k of the electron in the half-space from a plane wave 
(in the case of specular reflection from the barrier, the index 
k corresponds to ( pll , (p, I ) ,  where pll and p, are respectively 
the momentum components in the barrier plane and in the 
plane perpendicular to it). We assume in addition that the 
distance ro that separates the TLS from the bank is compara- 
ble with the barrier thickness, so that the conditions pr>fi, 
I p - p' 1 gp are satisfied in (9). 

We turn now to the contribution of the electric interac- 
tion. Inasmuch as in a metal the electric field is screened at 
distances -fi/p,, its influence on the electron reduces to a 
certain modification of the surface energy barrier. The char- 
acteristic value of the increment to the potential inside the 
metal (an increment localized near the surface) is of the order 
of g,(fi/p,), where 8, is the field in the dielectric. Esti- 
mates show that the contribution of the interaction of the 
TLS with the electrons, due to such a surface potential, con- 
tains in comparison with the contribution of the strain inter- 
action, at any rate, an extra small factor a/ro. We note that at 
nonzero spin components (S, ) and (S, ) the TLS excites 
around itself likewise an alternating electric field having a 
frequency Ei/fi and capable of penetrating into the metal to 
a large (skin) depth. In this case, however, an additional 
small factor appears, (Ei /&T)"~, where u is the conductivity 
of the metal. We shall therefore neglect hereafter the contri- 
bution of the electric interaction of the TLS with the bank 
electrons. 

On the basis of (9), the electron contribution to the TLS 
relaxation can be reduced to the form 

where 
AZh2a3Ei 

Tei  - P,  Q, Po= (P, Q, Po) I v=o. C2&p2r03fi ' 

Estimates show that at r,-a the time T, is comparable in 
order of magnitude with the corresponding value for metal- 
lic glass: At Ei - 10-l6 erg and ro-a we have(.r,)-'- lo9 
sec-I. At Ei 5 0.25.10-I6erg, therefore, even at ro- 10a, the 
contribution of the bank electrons to the TLS relaxation can 
exceed the phonon contribution, which is equal to 

where s is the speed of sound. 
We can now estimate the disequilibrium created in the 

spin system by the tunneling electrons. It cna be discerned, 
first, that in the stationary situation (S, ), (S, ) = 0. Indeed, 

the vanishing of the right-hand side of (7c) ensures also the 
vanishing of the right-hand side of (7a), since the nonequilib- 
rium increments to (S, ) enter both in like fashion-via the 
combinations Q and 0. At equilibrium we have 

(5';) (1-2Fo (Ei)  ) ='I2 th ( -Ei /2 ) .  

At V #O the degree of disequilibrium is defined by the ratio 

We note that we always have v <  1, since T;', generally 
speaking, includes a contribution of the "contact" interac- 
tion with the electrons, of the order of(Ei /fi) (K /E,)'. If v( 1, 
the TLS system can be regarded as at equilibrium when cal- 
culating the tunnel current. The nonequilibrium increment 
to ( S , )  can be obtained by substituting in Q the relation 
(S, ) =So.  At T= 0 it can be estimated at 

2. CONTRIBUTION OF INELASTIC TUNNELING TO THE 
TUNNEL CURRENT 

To calculate the contribution to the tunnel current by 
the inelastic tunneling we shall use Eq. (6),  in which we sub- 
stitute, in accord with the foregoing, (S,  ), (S, ) = 0. Inte- 
grating with respect to d 3p we have 

where 

The quantity 

has the meaning of the cross section for electron scattering 
by the TLS potential"; G = dj,/dV, where jo is the tunnel- 
current density in the absence of the TLS. Transforming to 
the TLS distribution function in the parameterlop = (Ao/ 
E )', we have 

where 5 is the mean value and P ( p)  = (1 - p)-1'2p-1. w e  
assume that ui does not correlate with Ei and A oi. To esti- 
mate this contribution, we compare it with the ohmic cur- 
rent I, = GVA of the junction. At d - 3 ~  lo-' cm, 
5- lo-'' cm2, V - 3 ~  V, and p- e r g - l - ~ m - ~  
(Ref. 1 1) we have I '/Io - lop4. 

It is important that the contribution I, is not ohmic. For 
its second derivative we obtain the expression 

1306 Sov. Phys. JETP 59 (6), June 1984 V. I. Kozub 1306 



Thus, by studying the derivative d 'I/dV2 we can estimate 
the TLS density. Moreover, it can be seen from (14) that if the 
distribution P (and hence the function 3) contains a certain 
dependence on E, it manifests itself directly in the depen- 
dence of this derivative on V, so that tunnel spectroscopy can 
be used to study the possible deviation of the TLS density of 
states from a constant. 

We compare now the considered contribution to d ' I /  
d V2 with the contributions of the other possible mechanisms 
of nonohmic origin. First of all, the inelastic tunneling can be 
due also to phonons. An estimate of the corresponding con- 
tribution to the current yields2' 

where 8 is the Debye temperature. It can be seen that the 
I ( V )  dependence turns out to be substantially stronger than 
in the case of the TLS, owing to the rapid decrease of the 
phase volume of the phonons that participate in the consid- 
ered processes with decreasing V. The phonon contribution 
then becomes comparable with that of the TLS at eV on the 
order of several degrees. Another source of deviations from 
Ohm's law can be the energy dependence of the tunneling 
probability. As shown in Ref. 12, the contribution to the 
conductivity is determined in this case by the parameter 
(e Vxd / w,)~ and is negligible at small V. Furthermore, a con- 
tribution of this type should not depend significantly on the 
temperature at eV 5 T, in contrast to the TLS contribution. 

Finally, there exists in our opinion one more possibility 
of experimentally isolating the TLS contribution ( 12)-( 14) to 
the current-voltage characteristic of the junction. This possi- 
bility is connected with a unique feature of the TLS-equal- 
ization of the populations of the levels in the case of resonant 
interaction with an alternating perturbation (sound or elec- 
tric field) of rather small amplitude (saturation). Assume, 
thus, that besides the constant voltage V there is applied to 
the junction also an alternating signal Vm cos(wt ) with fre- 
quency w -eV/fi. The direct interaction of this field with the 
TLS is described by introducing into the Hamiltonian the 
terms 

where pi is in the TLS dipole moment. Proceeding in stan- 
dard fashion (cf. Ref. 11) we can show that the presence of 
this perturbation leads to the following expression for (S, ): 

Vrn Aoi 

Here rl and r2 are respectively the relaxation times of the 
longitudinal (S, ) and of the transverse (S, ) and (S,, ) spin 
components.9 It can be readily seen from (15) that in the 
resonance case w = E, /fi the decrease of (S, ) begins at very 

small Vm - ~ L = [ ( ~ / d f i )  ( r r 2 ) l 2 ]  at p- 10-l8 
erg'12.cm3'2, r,r, - 10-l4 sec2, and d-  3 x lo-' cm we have 
VI1, - loF6 V. We note that so low an alternating voltage in 
the absence of TLS does not influence substantially the sta- 
tionary tunnel current. Estimates show that the correspond- 
ing corrections to the ohmic part of the tunnel current con- 
tain the small quantity (V, / & D ) ~ ,  and the contribution 
nonlinear in Vis - VL (+~AE) - ' ,  where AE is the character- 
istic scale of the change of the density of states (cf. Ref. 13).3' 

As a result, at V, > Vz the quantity (S,) and hence 
the occupation numbers n+ and n- acquire as functions ofE 
strong singularities at Ei = h, viz, n+(E, 
= lio) = n - = 1/2. The width of these singularities is deter- 

mined by the quantity (AE ), - (W7-2) ( Vm /VO,). Substituting 
the obtained distribution in (12), we can show that at T = 0 
the derivative d 21/dV2 vanishes at eV = lio. Thus, in the 
absence of thermal broadening the presence of a weak alter- 
nating signal manifests itself for the value of this derivative 
in the form of a strong steep negative peak of width 
A V = (AE )Je against the background of the smooth plot of 
(14); its "depth" is determined by the right-hand side of (14). 
It can be easily seen that at finite temperatures T >  (AE ), the 
peak broadens, A V- T, and its amplitude decreases by a fac- 
tor T/(AE),. In this situation the peak amplitude can be 
reached by increasing the energy width AE of the TLS satu- 
ration band, say by broadening the spectrum of the saturat- 
ing signal Aw. To preserve the saturation efficacy, this 
broadening should, naturally, be accompanied by an in- 
crease of the integral signal intensity c- V0,2dwr2. 

It seems to us that observation of such a peak, suitably 
related to T, Vm , and V, could serve as experimental proof of 
the presence of TLS, and its study would allow the isolation 
of the contribution of the TLS against the background of the 
possible masking effects and obtain information on such pa- 
rameters as p, r2, and r,. 

3. EFFECTS AT LARGE BIAS 

We have discussed above the case when the junction 
bias is small, on the order of the TLS level spacing. It is 
known that theTLS model was originally suggestedls2 by the 
notion that glass contains two-well potentials with random 
parameters. Besides the "ground" levels in the wells that 
make up the TLS there exist also excited ones. These, in 
particular, can lie above the barrier, so that the transition 
from one well to another does not call for tunneling. 

Strictly speaking, as shown by Gurevich and Parshin,14 
at sufficiently high excitation energies, exceeding Eo-(1% 
30).10-l6 erg, the TLS model itself becomes invalid and a 
rigorous theoretical analysis of the phenomena connected 
with such energies is difficult. Recently, however, Parshin 
and Karpov15 proposed an approach that constitutes, in es- 
sence, a generalization of the Anderson model and its exten- 
sion to include higher energies. This approach permits, in 
particular, discussion of the properties of glasses at relative- 
ly high temperature 10-50 K, and the predictions of the the- 
ory are in qualitative agreement with the existing experimen- 
tal data. 
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It seems to us that experiments on inelastic tunneling 
through an amorphous layer might yield additional informa- 
tion on the distribution of "soft" interatomic potentials, as 
well as on their structure (particularly on the location of the 
third level). Such data would be of great value for a compari- 
son with the predictions of the theory15 and for the determin- 
ation of the parameters of the theory. Although in our analy- 
sis we used essentially the two-level model of Refs. 1 and 2, 
an expression such as (14) (in the eV, T limit) can apparently 
be used also at sufficiently large eV > Eo, and the function 
3 ( V )  describes in this case the total density of the excited 
states in the system. Indeed, Eq. (14) reflects the fact that the 
inelastic contribution to the tunnel current increases with 
increasing Vboth on account of "inclusion" of new systems, 
and s subsequently on account of processes with participa- 
tion of the third and following excited levels. What is impor- 
tant is that in the latter case a contribution can be made also 
by systems with high and broad barriers (when the tunneling 
between the wells is weak and the relaxation time is long). 

We wish to call attention here to one more effect that 
can manifest itself in tunnel junctions of sufficiently high 
resistance. Strictly speaking, for this effect the tunneling it- 
self is a masking factor; we assume therefore initially that the 
layer is sufficiently thick and that we are dealing in fact with 
a capacitor whose+dielectric contains TLS. In the presence of 
an electric field 8 the interaction of the ith TLS with this 
field is described by the operator 

If the field is static, the equilibrium level-population differ- 
ence takes, when this interaction is taken into account, the 
form 

The field is then at equilibrium also with systems having 
sufficiently long relaxation times. We point out that corre- 
sponding to the distribution (1 6) is a certain dipole moment 2 
pi (Sf  ) containing a contribution that is not made to vanish 
by summation over i. I fp  8 < T, this total dipole moment is 
equal to 

Assume now that the field is turned off jumpwise at t = 0. 
The distribution (1 6) begins to relax to the equilibrium value 
at V = 0, and this relaxation is described by the law exp( - t / 
rli). For the summary dipole moment (17) we obtain thus the 
expression 

Since the presence of the layer dipole moment manifests it- 
self in the form of a junction voltage F ( t  ) = (47/eO)ii? (t )/ 

A (eo is the dielectric constant ofthelayer), a study ofthe V (t ) 
dependence makes it possible in principle to study the TLS 
relaxation processes all the way to systems with very weak 
tunneling. In this case V(t )is a measure of the number of TLS 
with r1 2 t. 

We have so far neglected in our arguments the presence 
of a tunnel current, i.e., of tunnel conductivity G. In the 
study of n t  )this neglect is justified only for times t < to-ed 
47rdG. At t > to the short-circuiting of the junction by the 
tunnel current becomes substantial, and the effect becomes 
unobservable. 

4. FLUX ON RELAXATION PHONONS FROM THE LAYER 

We have shown earlier that the tunneling electrons can 
excite TLS and produce a nonequilibrium distribution de- 
scribable at T = 0 by expression (1 1). The excited TLS re- 
laxes after a time T~ = min(rph , re ) on account of emission of 
a phonon or else, if the TLS is close enough to the metallic 
bank, by interaction with the electrons. In the latter case, 
however, the energy is transferred to the phonon in final 
analysis also within electron-phonon relaxation times 
re-ph - O '/E 3, which we assume to be much shorter than 
rl. Thus, the presence of disequilibrium in the spin system 
manifests itself, in particular, in the appearance of a flux of 
relaxation phonons. In the stationary situation this flux can- 
not be isolated from the background of the flux due to the 
relaxation of the tunneling electrons. However, if the junc- 
tion voltage is turned off abruptly enough,4' the flux of the 
phonons due to relaxation in the electron system terminates 
after a time5' t-re, ph, whereas the phonons due to the TLS 
relaxation will be emitted up to very long times connected 
with the slowly relaxing TLS. In this case we must also take 
into account, generally speaking, the relaxation of the TLS 
disequilibrium due to their "polarization" in the ele'ctric 
field, the polarization considered in the preceding section. It 
can be readily seen from (16) that the corresponding non- 
equilibrium (after turning off the field) part of (S, ) can be 
estimated for p ( T  at 

For the energy flux due to relaxation phonons we have 

where(6S ) = (SS ), + (SS ), . Recognizing that themaincon- 
tribution is made by TLS withpg 1, we arrive at the estimate 

Thus, this phonon flux falls off slowly with time like t -'. 
Under conditions of sufficiently strong disequilibrium, 
when (6s) -  1/3, F- erg-1.cm-3, andd- 3 X 10-'cm, 
at typical values E- 10-l6 erg, we have YPh -(lo-' W/ 
cm2) 10W6 c/t. 
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5. FLUCT UATlONS INDUCED IN TUNNEL JUNCTIONS BY THE 
PRESENCE OF TLS 

We have shown above that the presence of TLS in the 
dielectric layer of a tunnel junction influences a large num- 
ber of effects, and the corresponding contributions to the 
physical quantities of interest to us (particularly to the tun- 
nel current) are expressed in terms of the components ( S :  ) 
of the spins of the individual TLS, i.e., in terms of the occu- 
pation numbers of the levels. Thus, the fluctuations (due to 
transitions into TLS) of occupation numbers will lead ulti- 
mately to fluctuations of the observable physical param- 
eters. It is important to note that, as indicated by Kogan and 
N a g a e ~ , ~  the TLS can serve as a source of l/f noise by virtue 
of the large scatter of the relaxation times. 

We consider in the present section the fluctuations pro- 
duced by the TLS in the tunnel current and voltage of the 
glass-layer tunnel junction considered by us. We shall as- 
sume that the transitions take place independently in the 
different TLS,~' and consequently the fluctuations of the oc- 
cupation numbers n; are statistically independent. With 
allowance for the foregoing, using the standard approach,16 
we obtain the following expression for the correlator of the 
fluctuations Sn, : 

We can now calculate the correlator (I, I ), of the junction- 
current fluctuations due to the TLS. The most interesting 
contribution to (I, I), is due to elastic processes, since these 
are not accompanied by transitions, and slowly relaxing TLS 
also participate in them effectively. Turning to (6),  we repre- 
sent the corresponding part of the current in the form 

where j, is the current density in the absence of TLS, and 

have the meaning of the cross sections for elastic tunneling 
with TLS participation for the upper and lower TLS levels. 
Using (23) and (22) we obtain directly 

It can be seen from (24) that the spectral density of the fluctu- 
ationsisproportional tow-'. At&- 10-'A, d-  3.10W7 cm, 
a- 10-l5 cm2, F- erg- ' .~m-~,  T- 1 K and A- 
cm2 we have (61, 81,)- 10-l8 A2/w. If a resistor R whose 
fluctuations can be neglected is connected in the external 
circuit, the spectral density of the voltage fluctuations across 
the resistor become comparable with the spectral density of 
the usual Nyquist fluctuations at R [ a  ]/w[sec- '1 - lop5. 

Since the effect considered is proportional to I,, it mani- 
fests itself most noticeably for junctions with sufficiently low 
resistance. We wish to point out, however, one more mecha- 
nism typical ofjunctions of very high resistance and leading 
to fluctuations of the voltage on the junction. 

As already noted, the TLS contribute to the electric 
dipole moment of the layer; in the absence of tunneling and 
of an external circuit, this moment produces on the junction 
a potential difference 

Occupation-number fluctuations should lead thus to fluctu- 
ations of the voltage V. With allowance for (22), we obtain in 
analogy with (24) for the corresponding spectral density the 
estimate 

In the case A-lop3 cm2, d- lop6 cm, and ?i-1033 
e r g - l ~ m - ~  we have (SV, SV), - 10-l7 V2/w. Clearly, the 
shunting action of the junction resistance R, as well as of the 
external resistance R impose a limit on w in (25): w > d / 
[A min (R, , R )I. On the other hand, the increase of R is con- 
nected with "turning on" an additional noise source. But if 
RAw/d) 1, the noise of R is limited by the shunting action of 
the junction capacitance. For the system parameters cited 
above, the noise spectral density determined from (25) ex- 
ceeds the contribution of the Nyquist fluctuations in the case 
R > 10'' [a]/w [sec-'1. 

CONCLUSION 

Thus, the presence of TLS in the insulating layer of a 
tunnel junction can lead to a large number of specific phe- 
nomena. The most direct influence on the properties of the 
junction is exerted by inelastic tunneling with participation 
of TLS, which contributes to the nonlinearity of its current- 
voltage characteristic (i.e., in fact to the second derivative 
d *I/dV2 of the tunnel current). We have shown that at suffi- 
ciently low temperatures this contribution (at any rate for 
the junctions considered here, with normal conductors) can 
exceed the contributions of the other nonlinearity mecha- 
nisms. The TLS can influence strongly also nonstationary 
properties of the system in question, primarily because they 
have such an important feature as the presence of a broad 
relaxation-time spectrum. In particular, the fluctuations of 
the current (more accurately, of the junction resistance) and 
of the voltage across the contact acquire contributions 
whose spectral density corresponds to an w-' dependence; 
these contributions increase with decreasing junction area. 
The indicated specific current fluctuations increase then 
with increasing density of the current through the junction. 
At small V they can exceed substantially the usual Nyquist 
noise. Finally, we have seen that when the external voltage is 
abruptly turned off the flux of the relaxation phonons from 
the junction acquires, owing to the presence of the TLS, a 
contribution that decreases with time nonexponentially, 
- t  -'. In junctions of sufficiently high resistance a similar 
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nonexponential tail can be possessed also by the time depen- 
dence of the junction voltage. 

Although the absolute values of the effects considered 
are small, since the typical TLS densities are not too high,7' 
the foregoing estimates show that they apparently are ob- 
servable by contemporary experimental techniques, and 
their study can yield abundant information on the properties 
of TLS. On the other hand, it seems to us that allowance for 
the phenomena considered can be significant for the inter- 
pretation of the high-precision experiments typical of tunnel 
spectroscopy. 

We have considered in this paper the properties of a 
normal-conductor tunnel junction. We purposely disregard- 
ed the case of superconducting junctions, which calls gener- 
ally speaking for a special analysis. There are grounds for 
assuming that such a situation uncovers additional possibili- 
ties for the study of TLS in amorphous layers. Finally, a 
highly interesting situation can be realized, in our opinion, in 
a system whose properties are reminiscent of a tunnel junc- 
tion, namely in a point contact of two metals, l7  in the vicinity 
of which TLS are located. (Since such a contact is usually 
made by "punching" through the insulating layer, amor- 
phous properties of the conductor structure near the contact 
can be expected.) In particular, since the number of TLS is in 
this case insignificant, and the current densities are high, 
noticeable current fluctuations due to the TLS can be expect- 
ed. 

I thank V. L. Gurevich and A. L. Shelankov for a dis- 
cussion of the work and Yu. M. Gal'perin for reviewing the 
manuscript and for many valuable remarks. 

APPENDIX 

Derivation of the expression for the operator of tunneling 
with participation of TLS 

Since, as already noted, ordinary impurities (in the ab- 
sence of resonant scattering) do not influence the tunneling 
~ignificantly,~ we use a model in which the insulating layer is 
described by a rectangular potential barrier; let its boundar- 
ies correspond to x, = 0 and x, = d. In accord with the tun- 
nel-Hamiltonian method (see, e.g., Ref. 18) the matrix ele- 
ment of the tunneling is defined by the expression 

Here $, and $, are the solutions of the Schrodinger equation 
in the barrier region x,(x, <x,, which are matched to the 
exact solutions for the respective regions x <x,  and x > x,. 
In the absence of the perturbation due to the TLS we have 

here Uo is the barrier height, while E, and a, are the kinetic 
energy and the momentum of the electron in a plane parallel 
to the barrier. 

In the presence of TLS in the barrier, we should take 
into account, when determining $, and $, , also the potential 

V(r) oftheinteraction ofthe tunneling electron with the TLS. 
We note that mechanism of such an interaction can general- 
ly speaking be different. Namely, since the TLS is located in 
the insulating layer at a sufficient distance from the metallic 
bank, one can expect, besides the short-range contribution 
typical of metallic glasses (and due to the usual scattering 
pseudopotential,3' also the appearance of a contribution of 
an electric dipole moment y of the TLS; this contribution is 
long-range and amounts, if the distance ro from the TLS 
exceed the lattice constant, to e(,uro)/ri. Assume that the 
potential Vis small enough to permit the use of perturbation 
theory (in the case xi.> 1, where 7. is the characteristic scale 
of the potential, this corresponds to the requirement 
I V 1 ((fi2/m?.2)xi.). In this case the Schrodinger equation in- 
side the barrier takes in first-order perturbation theory the 
form 

The solution of (A.2) is described in the general case by the 
expression 

R2= (x-x') '+ ( y-y') (2-2') '. 

We assume next that 3 > d  /2x, x>k, ."' In this case the solu- 
tions take the much simpler form: 

d 
m 9, far - 9,: JV h't~, 
n29t 

where Cis  determined from the condition that they match 
the exact solution at x = 0 and x = d. Since the correspond- 
ing matching is ensured by the zeroth-approximation func- 
tions, we put $:(x,) = 0, $i(x,) = 0, whence 

If we now substitute the obtained functions $, and $, in 
(A. I), we get besides the contribution of the usual tunneling 
T:,, due to the zeroth-approximation functions, the incre- 
ment 

A 

(in the derivation of (A.6) we took it into account that it is not 
consistent to differentiate the terms 5: Vdx' in the approxi- 
mation considered). 

It must next be recognized that the potential Vis differ- 
ent for the TLS states that correspond to its location in dif- 
ferent wells of the two-well potential. Introducing the corre- 
sponding Fourier components V,, and V,, and using a 
procedure similar to that employed to describe the interac- 
tion of TLS with electrons in metallic g la~ses ,~  we obtain 
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ultimately the contribution of interest to us to the tunnel 
Hamiltonian. 

As for the quantity (V,, - V,, ), it can be assumed that, 
just as for metallic glasses, it is of the order of 1 eV. We note 
that for the long-range component, at typical values 
p - 10-'8 erg1'2.cm3'2 , the value of ( V,, - V,, ) is also of the 
order of 1 eV, and when account is taken of the long-range 
action the corresponding contribution to the interaction 
cross section may turn out to be predominant. 

"Such an estimate is obtained for a short-range potential; if the main 
contribution to the interaction is due to the dipole electric moment of 
the TLS (see the Appendix), then (cf. Ref. 5) ui - (4n-me2pZ/~;fi2 Wo) In (d /a). 

"The factor (eVd /+k) stems from the circumstance that in inelastic tunnel- 
ing only the interaction with the phonons in the layer itself is significant; 
at small V the wavelength of these phonons turns out to be larger than d, 
and this leads to a corresponding decrease of the probability of the pro- 
cess. 

3'We call attention to the fact that notwithstanding the presence of an 
alternating voltage, the terms proportional to (S, ) and (S,, ) need not be 
taken into account in the expression (6) for the current. Although the 
terns proportional to ( S i  ) and (pi  V,,, ) cos o t  can contain stationary 
contributions, their sum over i vanishes since Xipi = 0. 

4'It is readily understood that the lower bound of the turning-off time is 
estimated at to = min (~~/4n-dG, E~AR /4rd ), where R is the resistance of 
the external circuit. 

''We do not discuss here the question of the subsequent phonon propaga- 
tion, which is determined by the geometry of the experiment. 

6'This assumption is justified, since the TLS relaxation is caused by phon- 
ons (or electrons) for which the interaction with the TLS in the layer is 
only a weak perturbation, so that the equilibrium in the phonon and 
electron systems is established independently of the TLS. 

7'There are definite grounds for assuming that in surface layers, particu- 
larly near interfaces, the TLS density can exceed by an order of magni- 
tude the corresponding value in the bulk. 

8'The last inequality is obviously satisfied, since the main contribution to 
the tunneling is made by particles with small k, . As for the first inequa- 

lity [in the derivation of which we have put x' = d /2  in (A.3)], on the 
other hand, one can expect in a dielectric quite large values of i (since 
there is no screening). On the other hand, it can be easily seen that viola- 
tion of this inequality leads only to appearance of an additional coeffi- 
cient 4xP/d < 1 in the final estimates. 
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