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A systematic theoretical analysis is made of the lattice loss in a displacive ferroelectric with a non- 
overdamped soft mode. Three main lattice-loss mechanisms are distinguished: quasi-Debye, 
three-quantum, and four-quantum. The physical nature of the mechanisms, their frequency and 
temperature dependence, and the order of magnitude of their contributions to the loss are all 
discussed. It is established that the pattern of lattice losses in a ferroelectric is qualitatively similar 
to that in an ordinary dielectric. In a number of cases the results obtained in this paper differ from 
those of previous theoretical studies both in terms of the temperature and frequency dependences 
and in the identification of the phonon processes responsible for the loss in each particular case. 
An analysis is made of the current experimental situation. 

1. INTRODUCTION o<oo. (1) 

The intrinsic dielectric losses in displacive ferroelec- 
trics has been the subject of relatively few theoretical pa- 
persI4 (see also the book by Vaks5). As was shown by Bala- 
gurov, Vaks, and Shkl~vskii,~ outside the region of 
well-developed critical fluctuations the soft mode of a dis- 
placive ferroelectric should, generally speaking, be under- 
damped, i.e., the relative damping of the phonons of the soft 
mode should be much less than unity. Thus, in the region in 
which Landau theory applies to displacive ferroelectrics 
their phononic excitations are well defined, so that one can 
describe the intrinsic (lattice) losses with the aid of a pertur- 
bation theory in the lattice anharmonicity parameter. Such a 
"phononic" perturbation theory was used in Refs. 1 4 .  Al- 
though such a perturbation theory can give a systematic de- 
scription of the dielectric loss, the authors of Refs. 1-4 used 
various auxiliary assumptions. The present paper gives a sys- 
tematic theoretical analysis, free from apriori assumptions, 
of the intrinsic dielectric loss of a displacive ferroelectric 
outside the region of well-developed critical fluctuations. In 
a number of cases the results of this analysis differ from those 
of Refs. 1 4  both in the in temperature and frequency depen- 
dence of the dielectric loss tangent and in the identification 
of the phonon processes responsible for the loss in each parti- 
cular case. 

2. THE THREE MAIN LATTICE-LOSS MECHANISMS 

From the standpoint of phonon kinetics there is no fun- 
damental difference between displacive ferroelectrics with 
non-overdamped soft modes and ordinary dielectrics. For 
this reason our analysis need not rely solely on Refs. 1-4 but 
can also make 'use of the approach developed for ordinary 
dielectrics by Coombs and C ~ w l e y , ~  Gurevich,'s8 and the 
present author9*'0 (see also the book" and review article" by 
Gurevich). The possibility of employing this approach for 
displacive ferroelectrics has been demonstrated by Gurevich 
and the present a ~ t h o r . ' ~ , ' ~ , ' ~  

In discussing dielectric losses we shall always presume 
that the frequency w of the electric field is much smaller than 
the limiting frequency w, of the soft mode: 

It is this relation that is responsible for the most important 
features in the pattern of the dielectric losses. In fact, from a 
quantum-mechanical point of view the intrinsic losses re- 
duce to interactions of the electric-field quanta with phon- 
ons. It seems quite natural that in a ferroelectric the most 
important interaction is with the long-wavelength phonons 
of the soft mode (it will be shown that this is in fact the case). 
Inequality (1) therefore shows that the characteristic energy 
of the phonons primarily responsible for the loss is much 
larger than the energy of the field quanta with which they are 
interacting. This energy spread makes it difficult to satisfy 
the conservation laws in processes involving the absorption 
of field quanta.3 In such a complicated situation there are 
three most efficient means of absorption, which correspond 
to the three main lattice-loss rnechanism~'~~: 1) three-quan- 
tum, 2) four-quantum, 3) quasi-Debye. 

The three-quantum mechanism corresponds to field- 
quantum absorption processes involving two phonons hav- 
ing energy and quasimomentum conservation laws of the 
form 

Q j ( q )  *Qj. (q ' )  =o, q*qf=0, 

where fl, (q) is the frequency of a phonon on branch j with 
wave vector q. 

The four-quantum mechanism corresponds to pro- 
cesses involving three phonons with conservation laws 

where b is a reciprocal lattice vector. The four-quantum pro- 
cesses correspond to the next (in comparison with the three- 
quantum processes) order of smallness in the lattice anhar- 
monicity parameter, and so one can expect that the 
contribution to the dielectric loss from these processes will 
be parametrically small in comparison with the contribution 
from the three-quantum processes. However, the restric- 
tions imposed on the participating phonons by conservation 
laws (3) are much less stringent than those imposed by (2). 
This circumstance diminishes the difference between the 
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three- and four-quantum contributions and can even render 
them comparable. " 

These two mechanisms are the only intrinsic loss mech- 
anisms in a centrosymmetric ferroelectric. Thus, because 
ferroelectrics of the displacive type are usually centrosym- 
metric in the paraphase, the intrinsic loss in the paraphase 
should be described by the three- and four-quantum contri- 
butions. In the ferrophase, however, where the center of in- 
version is lost, the extremely powerful quasi-Debye loss 
mechanism, which is present only in non-centrosymmetric 
crystals, also comes into play. This quasi-Debye loss derives 
from the relaxation of the phonon distribution function, 
which has been thrown out of equilibrium by the alternating 
electric 

3. THEORETICAL DESCRIPTION OF THE MAIN LOSS 
MECHANISMS 

Following G ~ r e v i c h , ~  we describe the interaction of the 
electric field E with the phonon gas of the crystal with the aid 
of the electrophonon potential AB' (q), i.e., we write the linear 
field term HE of the Hamiltonian in the form 

where l', = a$ a f ,. is the operator for the normal phonon 
coordinates, and a and a+ are the phonon creation and anni- 
hilation operators, respectively. Using (4), one can straight- 
forwardly ascertain that the relative change in the phonon 
frequencies is expressed in terms of the diagonal components 
ofA: 

AQj ( q )  /Qj ( q )  =Aii ( q )  E.  ( 5 )  
The off-diagonal components are responsible for transitions 
between different branches of the phonon spectrum under 
the action of the alternating electric field. 

a. Three-quantum losses 

We shall assume that only the association contribution 
[the minus sign in formulas (2)] is actually important in fer- 
roelectric~.~' The qualitative description of the three-quan- 
tum loss in the previous section of this paper literally corre- 
sponds to a calculation in first order of the usual 
quantum-mechanical perturbation theory in the lattice an- 
harmonicity Such a calculation does not take 
into account the finiteness of the phonon lifetime T and is 
therefore valid only for sufficiently high field frequencies 
w = 1 / ~ .  To describe the loss for an arbitrary relationship 
between w and r one must treat the problem in terms of the 
equation for the off-diagonal (in the spectral branches) com- 
ponents of the density matrix. The present author has 
shown9 that the contribution to the imaginary part 7 of the 
dielectric constant in this case is given by the relation 

where T is the temperature in energy units and T,. is the 
damping of a phonon of frequency a,.. The physical mean- 
ing of this formula is extremely simple: It takes into account 
that when phonons with a finite damping are involved in 
three-quantum processes, the energy conservation law (2) 
should be satisfied only to an accuracy of order fir. That is, 
in order for the three-quantum process to be possible, the 
phonon branches must converge to the extent that 
IdB' I -max[w, r]. Formula (6) is valid under the condition 
that the main contribution to the integral comes from the 
region IdB' I 5 max[w, r 1. In the opposite case, however, 
there is no point in considering the three-quantum losses, 
since they cannot compete with the other lattice-loss mecha- 
n i s m ~ . ~  Thus the three-quantum losses are described com- 
pletely by formula (6) in its region of applicability. 

b. Four-quantum losses 

The qualitative description of the four-quantum losses 
in the previous section literally corresponds to a treatment in 
the second order of perturbation theory in the lattice anhar- 
monicity ~a rame te r .~  Because the conservation laws for 
four-quantum processes impose considerably weaker re- 
strictions on the participating phonons than in the three- 
quantum case, allowance for the fact that interactions of 
damped phonons need to conserve energy only to within fir 
leads to only an insignificant change in the absorption. 
Therefore, for describing four-quantum losses it is sufficient 
to use ordinary second-order perturbation theory. The four- 
quantum losses have been analyzed in detail for the case of a 
centrosymmetric crystal by Balagurov, Vaks, and 
ShklovskiL3 The expression which they obtained is rather 
awkward and contains several terms which are, generally 
speaking, of the same order and have identical frequency and 
temperature dependences. Since we only intend to analyze 
the temperature and frequency dependence and make order- 
of-magnitude estimates of 77, let us give just one of the terms 
in our notation9: 

xA@*jjr (q ) .  
N~(N'+I)  . 4 w ( q ) r , ( ~ ~ , )  

[Qj2 -Qj~2]2  7 (7) 

where nn' EN (aj) ,  and r,. (0 ) is the imaginary part of the 
phonon mass operator to lowest order in the anharmonicity; 
the summation is over branches which do not have mutual 
points of degeneracy. The most important feature of the 
four-quantum contribution is that, unlike the three-quan- 
tum case, it is accumulated relatively uniformly over the 
space of wave vectors (k space). This fact is a consequence of 
the weakness of the restrictions imposed by conservation 
laws (3)  in comparison with (2), even when the finiteness of 
the phonon lifetime is taken into account in the latter. 

In the case of noncentrosymmetric crystals, a calcula- 
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tion to second order in the anharmonicity yields terms with a 
substantially different frequency dependence in addition to 
those considered in Ref. 3. As was shown in Ref. 11, the 
contribution of these terms is already included in that of the 
quasi-Debye mechanism. 

c. Quasi-Debye loss 

The simplest quantitative treatment of the quasi-Debye 
loss consists of solving the kinetic equation for the phonon 
distribution function for the case of a phonon spectrum 
which is a periodic function of In the general case 
the problem cannot be solved in quadratures. Let us give the 
expression obtained for the quasi-Debye contribution to the 
imaginary part of the dielectric constant in the relaxation- 
time approximation, which is accurate enough for our subse- 
quent analysis7: 

We note that formally relations (7) and (8) can be re- 
garded as particular cases of (6) ,  but without the restriction 
on the summation over the branches. This corresponds to a 
qualitative interpretation of all three mechanisms from a un- 
ified point of view in the language of field-quantum absorp- 
tion processes involving two phonons having a finite damp- 
ing. 

The three-quantum loss corresponds to transitions 
between states of different branches in a small region of k 
space where these branches either approach one another to 
the extent that the energy gap satisfies Id lii. -a or else sub- 
stantially overlap on account of their natural widths T. 

The four-quantum loss corresponds to transitions 
which go between states of different branches and are quite 
uniform over k space, since all the branches overlap to some 
degree at any point in k space. 

The quasi-Debye loss corresponds to transitions which 
go between states of the same branch on account of its finite 
width r. 

4. THE ELECTROPHONON POTENTIAL OF A 
FERROELECTRIC 

To calculate the lattice loss of a ferroelectric one must 
know the electrophonon potential at least for the long-wave- 
length part of the soft mode and the acoustic branches; the 
significance of the interaction of the field with these parts of 
the branches was shown by Balagurov, Vaks, and 
Shkl~vskii .~ In what follows we shall discuss the tempera- 
ture and frequency dependence and the order of magnitude 
of the observable effects. We shall therefore need only rough 
estimates of A. The formal derivation of these estimates on 
the basis of the relations between the electrophonon poten- 
tial and the anharmonicity of the third-order force constants 
is given in Appendix 2. However, it is useful to obtain these 
estimates on a qualitative level in order to clearly demon- 
strate the reasons why the electrophonon potential in displa- 
cive ferroelectrics is large in comparison with its characteris- 

tic values in ordinary dielectrics. 
According to Gurevich,' in an ordinary noncentrosym- 

metric dielectric all the components of A can be estimated as 

IAjj' (q) 1 -l/p'lawl (9) 

where w is the average sound velocity andp is the density of 
the crystal. In centrosymmetric crystals the diagonal com- 
ponents of A are identically zero, and the off-diagonal com- 
ponents obey 

IAjj' (q) I -aq/pl"w, (10) 

where a is the average interatomic distance. 
In a ferroelectrics as a polar crystal the effectivenesss of 

the interaction of an electric field with its lattice is character- 
ized not by the value of the macroscopic field E, but by the 
polarization it induces, P = xE, wherex is the lattice suscep- 
tibility. Therefore, for all the phonon branches of a ferroelec- 
tric the electrophonon potential should be larger by roughly 
a factor ofx than in an ordinary dielectric. Thus, in a centro- 
symmetric paraphase the off-diagonal components of A for 
the noncritical branches are given not by (10) but by 

IAij' (q) I - ~ a q / ~ " w .  (11) 

Below the transition one should take it into account that the 
spontaneous polarization P, is small compared to the atomic 
polarization Pa -e/a2,  where e is the electron charge. The 
phenomenological theory of second-order phase transi- 
tions16 implies that P :/P -X (for first-order phase transi- 
tions which are nearly second-order, we shall for simplicity 
use this same estimate). Considering that the "noncentro- 
symmetric" properties in the ferrophase arise in proportion 
to P,, we have the following relations for the noncritical 
branches in the ferrophase: 

X IAjj' (9) 1 - -(qa+~-"), j+ j l .  p'" w 

If the interaction with the electric field involves phonons of 
the soft mode, the electrophonon potential potential be- 
comes still larger. For the off-diagonal components Aj', 
where j and j' are branches of the soft mode, the estimate 

where w, is the Debye frequency, is valid above the transi- 
tion, while below the transition one has 

X @DZ IA3j' (q) I - - (qa+~-I"). 
p"w Qj(d  Q,, (q) 

For the diagonal components below the transition we have 

XI" o D 2  
IA"(q) I - -- 

p'"w Qj" (q) ' 

If one of the branches j and j' is the soft mode, while the 
second is an acoustic mode, then estimate (13) is valid both 
above and below the transition. The reason for the additional 
large factor in these last estimates is most simply explained 
for the example of the diagonal components of A. According 
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to (5), the magnitude of a diagonal component is character- 
ized by the relative shift of the phonon frequency under the 
action of the field. It is easy to verify that the additional 
factor in (15) [as compared to (12)] makes for absolute values 
of the same order of magnitude for the shifts of the square 
frequencies of the soft mode and of an ordinary "stiff' opti- 
cal branch with a frequency of the order of w, . This means 
that the changes of the corresponding "harmonic stiff- 
nesses" are the same. This should obviously be the case, 
since for a soft mode only the harmonic stiffness is anoma- 
lously small, while the anharmonic properties for all the op- 
tical branches are quite ~ i m i l a r . ~  In particular, upon a distor- 
tion of the lattice the harmonic stiffness should generally 
speaking be of the same order for all the optical branches. 

In regard to the estimates obtained above it is important 
to note the following. As is the case for (9) and (lo), these 
estimates are generally speaking valid only for accidental 
positions of the wave vector q. Near the high-symmetry 
points of the Brillouin zone additional small factors can arise 
in estimates (9)-(15). These factors are not substantially dif- 
ferent for a ferroelectric and for an ordinary dielectric, and a 
detailed analysis of them can be found in Refs. 3, 7, and 11. 

5. SPECIFICS OF THE LATTICE LOSS IN DlSPLAClVE 
FERROELECTRICS 

The relations given above permit one to analyze the lat- 
tice loss in any displacive ferroelectric at temperatures not 
too close to the transition, where the soft mode is not yet 
overdamped. Let us consider only cubic and centrosymme- 
tric (in the paraphase) crystals, since the majority of displa- 
cive ferroelectrics are of this type. 

Let us illustrate the specific features of the loss in a 
ferroelectric by comparing the losses in an ordinary dielec- 
tric for temperatures above the Debye temperature (Dh, ) 
and in a ferroelectric of the same symmetry for temperatures 
at which the phonons of the soft mode are thermally excited 
( T 2  &,). Under such conditions in an ordinary dielectric 
the most important processes contributing to all the loss 
mechanisms are those involving thermal phonom7 i.e., 
phonons with frequencies of the order of w, . In a ferroelec- 
tric the processes involving long-wavelength phonons of the 
soft mode (with frequencies of order wo and qa of order 
x -'I2) turn out to be the most important, even if such phon- 
ons are deeply subthermal. This is immediately explained in 
the calculation and is a consequence of the growth of expres- 
sions ( 13)-(15) as 9 4 .  Using (6)-(8) and ( 13)-(15) and bear- 
ing in mind the remark from the previous section, we obtain 
the contributions to the dielectric loss tangent tan S = v/&, 
where& is the dielectric constant. For the contribution of the 
three-quantum loss we have 

where < = T ~ ~ / M W ~  is the correlation parameter, M is the 
average mass of the crystal atoms, and r, is the damping of 
the long-wavelength phonons of the soft mode. The three- 
quantum processes whose contribution is given by (16) occur 
either close to the symmetry-degeneracy lines of the soft- 
mode branches (as transverse vibrational branches they are 

degenerate in the directions of the symmetry axes C3 and C, 
of the Brillouin zone17) or close to the accidental-degeneracy 
lines of the longitudinal acoustic branch and the soft mode. 
The governing contributions are that from the lines of sym- 
metry degeneracy, which lie at appreciable angles to the di- 
rection of the measuring electric field, and that from the 
lines of accidental degeneracy.13 In formula (16) no is the 
total number of these lines. For the four-quantum loss we 
have 

where m, is the number of soft-mode branches. The last fac- 
tor is the number of possible binary combinations involving 
the soft mode for the low-lying branches of the long-wave- 
length part of the spectrum. The presence of this factor in the 
formula logically corresponds to the qualitative description 
of the four-quantum loss at the end of Sec. 3. For the quasi- 
Debye loss in the ferrophase we have 

Further analysis will require an estimate of the damping 
r, of long-wavelength phonons of the soft mode in displa- 
cive ferroelectrics. A systematic microscopic calculation3 of 
the damping contributions from three-quantum (r a)) and 
four-quantum (r t)) collisions gives the order-of-magnitude 
estimates (in our notation) 

ro(s)-r;oO, ro(0-~200. (19) 

It is seen from (19) that the condition of a non-overdamped 
soft mode requires << 1. Therefore, one can maintain consis- 
tency in the theory of a weakly anharmonic crystal without 
including the contribution to the soft-mode damping from 
four-quantum processes, i.e., one can take r, - r a). 

For comparison, let us give the analogous estimates779 
for an ordinary dielectric at T 2  hD : 

where p = T/Mw2 is the lattice anharmonicity parameter, 
m is the number of branches in the phonon spectrum, n the 
number of degeneracy lines of the phonon spectrum that are 
important in the loss, and r is the damping of the thermal 
phonons (according to Ref. 7, T-pw,). We note that the 
absolute magnitudes of the dampings r and To are of the 
same order (if it is taken into account that w,-w,/fi, the 
estimates for r and To coincide). 

Comparing the formulas for the contributions of the 
lattice-loss mechanisms [(20) with (16), (21) with (17), and 
(22) with (18)] and the formulas for the damping, we see that 
they are similar to within numerical factors in the sense of 
replacing the anharmonicity parameterp by the correlation 
parameter < = p c  and the Debye frequency w, by the 
limiting soft-mode frequency w,-w, /fi. The conditions 
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FIG. 1 .  Schematic comparison of the contributions to tan S as functions of 
the frequency w of the measuring field for a linear dielectric (dashed 
curves) and for a displacive ferroelectric with a non-overdamped soft 
mode (solid curves): 1,l') the quasi-Debye contribution; 2,2') the three- 
quantum contribution; 3,3') the four-quantum contribution. The tem- 
perature is assumed to be such that the lowest optical branch is thermally 
excited. 

on the temperatures at which the formulas apply are also 
similar: T 2  h, and T 2 hao .  

The frequency dependences of the contributions from 
the lattice-loss mechanisms in a ferroelectric are similar in 
this same sense to those of the analogous mechanisms in a 
dielectric. The changes in the frequency dependences in go- 
ing from an ordinary dielectric to a ferroelectric are shown in 
Fig. 1. It is seen that in going to the ferroelectric the contri- 
butions of all the mechanisms grow larger. The frequency 
dependences of the contributions of the main lattice-loss 
mechanisms have the following characteristic features: 

1) The quasi-Debye loss reaches its maximum at w -To, 
with a value of max[tg 6'9'1 -6 of the same order as that 
which would be reached by the three-quantum loss for 3' 

w-0; 
2) For w < To all the mechanisms have a linear frequen- 

cy dependence; 
3) For w 5 To the three-quantum contribution is larger 

than the four-quantum by an insignificant factor (In 6 -'); 
4) For w STo the quasi-Debye contribution is larger 

than the other two contributions by a substantial factor 
(6 -7; 

5) For w)To the three-quantum contribution grows 
quadratically with frequency while the quasi-Debye contri- 
bution falls off, becoming comparable to the linearly increas- 
ing four-quantum contribution in the limit w--two. 

Because the scale factor & does not contain the tem- 
perature explicitly, in going from an ordinary dielectric to a 
ferroelectric the form of the explicit functions of tempera- 
ture should remain the same. For w)To the quasi-Debye and 
four-quantum contributions are proportional to T2, while 
the three-quantum contribution is proportional to T; for 
@<To the three- and four-quantum contributions are pro- 
portional to T 2 ,  while the quasi-Debye contribution has no 
explicit temperature On the other hand, be- 
cause of this scale factor the contributions exhibit critical 
(implicit) temperature dependences corresponding to the 
x 'I2 for the quasi-Debye mechanism andx 312 for the three- 
and four-quantum contributions. Therefore, above the tran- 

sition, where the quasi-Debye mechanism does not operate, 
the temperature anomaly of tan S corresponds to x 3'2. Be- 
low the transition the loss is governed by the Debye mecha- 
nism over practically the entire frequency range (w <wof 'I3), 
and so the anomaly of tan S corresponds to4' that o f x  'I2. 

Let us conclude this section by comparing our results 
with those of the earlier theoretical 

Balagurov, Vaks, and ShklovskiY made the first detailed 
study3 of the losses in the paraphase of a centrosymmetric 
cubic ferroelectric of the displacive type. We have used their 
results to describe the four-quantum loss. In considering the 
three-quantum loss they used single-particle perturbation 
theory, and so, strictly speaking, their results are valid only 
for w ) r 0 .  Furthermore, the anisotropy of the phonon spec- 
trum was neglected in that cal~ulation,~ so that the soft- 
mode branches were assumed degenerate over all of k space, 
while the lines of accidental degeneracy of the acoustic 
modes and the soft mode merge into a sphere. Because the 
three-quantum loss is extremely sensitive to the properties of 
the set of degeneracy points of the spectrum, it is natural that 
the estimate obtained in Ref. 3 for the three-quantum contri- 
bution does not agree with ours even for w )T,. We note that 
the contribution due to the lines of degeneracy of the noncri- 
tical branches was discussed in Ref. 3 but was regarded as 
small and neglected. In our treatment this contribution is 
also small. The three-quantum contributions which we have 
taken into account correspond to degeneracy lines involving 
the soft mode. 

Coombs and C ~ w l e y ~ ~  considered the intrinsic dielec- 
tric loss is a ferroelectric both above and below the transition 
for arbitrary frequencies of the electric field. They were 
probably the first to point out the existence of the quasi- 
Debye loss mechanism in the ferrophase. However, their re- 
sult for the quasi-Debye contribution to tan 6 has the wrong 
temperature dependence (it was not taken into account that 
the contribution is governed by the interaction of the field 
with soft-mode phonons, for which qa ZX- 'I2, and not with 
thermal phonons). Their result for the loss in the paraelectric 
phase corresponds to the simple oscillator model and gives 
tan S a w x T  for w (ao.  According to our conclusions, such a 
combination of temperature and frequency dependences 
cannot occur in a cubic ferroelectric. Let us clarify the rea- 
son for the discrepancy in the results. In Ref. 4 the loss was 
expressed in terms of the Green function for the soft mode, 
with the imaginary part of the mass operator (the damping) 
assumed frequency independent and equal to its value on the 
mass surface. In the present problem the dispersion of the 
damping is generally large, and the neglect of this dispersion 
is the cause of the discrepancy in the results. In fact, every- 
thing we have done in this paper corresponds precisely to 
evaluating the frequency dispersion of the soft-mode damp- 
ing at w 4 w O .  

6. COMPARISON WITH EXPERIMENT 

The lattice loss should be most clearly manifested in the 
ferroelectric phase, where it is governed by the quasi-Debye 
mechanism. The loss reaches a maximum at frequencies in 
the range from tens to hundreds of gigahertz, with the con- 
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tribution to tan S at the maximum being of the order of the 
correlation parameter 5, i.e., the loss can easily reach values 
of the order of 0.1. Unfortunately, to the author's knowledge 
there have been no experiments done on the losses in the 
microwave and hundred-millimeter ranges in the ferrophase 
of a displacive ferroelectric with a non-overdamped soft 
mode, although lead titanate and lithium tantalate would be 
entirely suitable objects for such a study. Of the displacive 
ferroelectrics having a non-overdamped and non-frozen soft 
mode, there are reliable data apparently only for centrosym- 
metric strontium titanate in the microwave region.".19 

According to the data of Ref. 18, at T = 78-360 K and 
w = 3-72 GHz the frequency dependence of tan S is linear, 
while the temperature dependence is a curve with a mini- 
mum at T z  140 K; at T = 90 K and o = 22 GHz one has 
tan S = 1.16 lop3. 

From the standpoint of the theory proposed above, in 
cubic noncentrosymmetric strontium titanate only the 
three-quantum (16) and four-quantum (17) losses are pres- 
ent. At frequencies smaller than the soft-mode damping ro 
(with ro 5 100 G H Z ) ~  these two mechanisms have the same 
frequency and temperature dependence. The frequency de- 
pendence is linear, while the temperature dependence for 
T> 80 K is given by the formula T2/(T- T , )~ '~ ,  where 
To = 37 K. It has a minimum at T, = 4T0 = 148 K. As is 
seen from (16) and (17), the contributions for w(ro do not 
differ parametrically, but the large number of degeneracy 
lines (no 2 12) and the logarithmic factor favor the three- 
quantum contribution: 

Here it is taken into account that the soft mode has two 
branches (m, = 2). At T = 90 K and w = 22 GHz, with 
l = 0.07 and w, = 1300 GHz (Ref. 5), we obtain from (23) 
the rough order-of-magnitude estimate tan SX 5 . lop3. 

The agreement between theory and experiment is thus 
rather fair: The frequency dependence and the shape of the 
temperature dependence (including the position of the mini- 
mum) are described correctly, and the theory gives the neces- 
sary order of magnitude of the loss (see Fig. 2). It must be 
stressed, however, that the available experimental data are 
insufficient for a serious experimental check of the theory. 
For example, it cannot be established whether or not the 
absorption is actually due to the neighborhoods of the degen- 
eracy lines in the spectrum, since for w (ro it is impossible to 
distinguish the three- and four-quantum losses. The elucida- 

4L I 0 . f  - 
60 740 220 300 f0 20 30 u, GHz 

tion of this question will require higher-frequency measure- 
ments or measurements in the presence of a weak bias field.I3 

7. CONCLUSION 

We have studied the lattice loss in a displacive ferroelec- 
tric outside the region of well-developed fluctuations. We 
have derived or adduced relations which describe the loss in 
any crystal of this type. We have analyzed in detail the case 
of ferroelectrics having a cubic paraphase. We have estab- 
lished that under conditions corresponding to thermal exci- 
tation of soft-mode phonons the pattern of lattice losses in a 
ferroelectric of this sort is qualitatively similar to that in an 
ordinary dielectric (of the same symmetry and above the De- 
bye temperature) in the sense that the relations for estimat- 
ing the contributions of the three main lattice-loss mecha- 
nisms in the former can be obtained from the corresponding 
relations for the latter by replacing the anharmonicity pa- 
rameter p by the correlation parameter l = p G  and the 
Debye frequency w, by the soft-mode frequency a,-w,/ 
fi. The temperature and frequency dependences which we 
have obtained do not agree at any temperatures or frequen- 
cies with the result obtained in the simple oscillator modelI6 
or in a phenomenological treatment. We have obtained the 
critical exponents (in the region where Landau theory ap- 
plies) for tan S above and below the transition. These also 
disagree with a simple phenomenological treatment. Rea- 
sonable agreement is found with the available experimental 
data, but in the opinion of the author the existing experimen- 
tal data are seriously inadequate for a rigorous check of the 
theory. Judging from the estimates, however, most of the 
predictions of the theory are completley amenable to verifi- 
cation by present-day experimental techniques. 

Experimental research on the lattice loss is also urgent 
from the standpoint of checking the very concept of a displa- 
cive ferroelectric. It is well known that the displacive-ferro- 
electric model gives a fully satisfactory description of the 
thermodynamic properties5 We note, however, that a value 
of the Curie-Weiss constant of the order of lo5 K can be 
reconciled with reasonable values of the transition tempera- 
ture only at ordinary values of the anharmonicity coeffi- 
cients. In this sense a displacive ferroelectric must be a weak- 
ly anharmonic c y r ~ t a l , ~  so that outside the region of 
well-developed fluctuations (i.e., for l g  1) the entire phonon 
spectrum should consist of weakly damped phonons. At this 
level a marked discrepancy appears: Although displacive 
ferroelectrics with overdamped soft modes are common- 
place, there is still no reliable experimental evidence in sup- 
port of their scaling behavior.I6 Outwardly it looks as if the 

FIG. 2. (a) Temperature dependence of tan S for strontium titanate at a 
field frequency of 9 GHz; b) frequency dependence of tan S for the same 
material at a temperature of 140 K. The points are the experimental data 
of Ref. 18. The solid curves are theoretical (the three-quantum loss): 
tan 6 a o T Z ( T  - (m < 100 GHz, T>  80 K, To = 37 K). The theo- 
retical position of the minimum is T,,, = 4T0 = 148 K. 
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model which describes the thermodynamic properties fails 
to describe the kinetic properties, and this would indicate an 
inherent contradiction in the concept of a displacive ferro- 
electric. In such a situation it is extremely important to do an 
experimental check on the results of a systematic theoretical 
analysis of the kinetic properties. The author believes that 
the theory presented here for the dielectric loss, with its 
many qualitative predictions, will provide such a possibility. 

The experimental study of the three-quantum loss in a 
displacive ferroelectric is also of interest in regard to the 
basic concepts of phonon kinetics. The point is that the 
three-quantum loss mechanism in the "hydrodynamic" re- 
gime (for w 5 To) corresponds to a rather peculiar phonon 
kinetics. This is the only phonon system known to the author 
wherein the kinetic coefficient in the hydrodynamic regime 
governs the relaxation of the off-diagonal (in the branches of 
the spectrum) components of the single-particle density ma- 
trix. The experimental observation of this type of kinetics 
would certainly be of interest. 

APPENDIX 1 

Lattice loss in a ferroelectric with a "frozen" soft mode 

For T 4 h 0  the number of thermally excited soft-mode 
phonons is exponentially small, and so the processes involv- 
ing these phonons give an exponentially small contribution 
to the loss. At these low temperatures the contribution from 
the interaction with the acoustic modes is small in a power- 
law sense.' Therefore, in the presence of a frozen soft mode 
one should generally expect a substantial decrease in the lat- 
tice loss, so that one would hardly expect that at T 4 h o  the 
lattice loss would be important in the overall balance. In 
such a situation a detailed theoretical analysis of the lattice 
loss is unwarranted, and we shall limit ourselves to an esti- 
mate of the lattice loss in the cubic virtual ferroelectrics 
SrTiO, and KTaO, at liquid-helium temperatures, in view of 
the considerable experimental interest in this q u e ~ t i o n . ~ ~ ~ '  

As was mentioned earlier, the main loss mechanism in a 
cubic centrosymmetric crystal is the three-quantum mecha- 
nism. At liquid-helium temperatures there are two contribu- 
tions that must be discussed: the exponentially small contri- 
bution from the neighborhoods of the lines of degeneracy of 
the soft-mode branches, and the contribution, small in a 
power-law sense, from the neighborhoods of the degeneracy 
of the transverse acoustic branches. Vaks5 has estimated that 
in these materials at T-h,=: 3&40 K the damping of the 
long-wavelength phonons of the soft mode is To- 10 GHz. 
For T < fio, the damping To falls off very rapidly with cool- 
ing,5 so that at liquid-helium temperatures the @,To regime 
is realized in the microwave region. For the interaction with 
the acoustic modes, as the simplest of estimates shows, such 
a regime is realized with a large margin of safety. Using (6), 
(13), and (1 1) and recognizing that w>To, we have for the 
contributions from the interaction with the soft mode 

(the factor in square brackets arises in going from T - h o  to 

Tgfio,) and from the interaction with the acoustic modes 

Let us make a numerical estimate of the contributions 
for T = 5 K and w = 20 GHz. Let us take into account only 
the contributions of the symmetry degeneracy lines; then9 
no = n = 12. We take the anharmonicity parameter at the 
Debye temperature, h,/Mw2, to be lop2. For SrTiO, we 
have h, = 23 K and x = 800, and for KTaO, we have 
ho = 36 K and x = 200 (Ref. 5). Then for SrTiO, we get 
tan SM 2 . tan Sa - lo-'' and for KTaO, we get 
tan SM ~2 . tan Sa - 10-12. Thus we see that the in- 
trinsic losses are very small and are governed by the interac- 
tion with the soft mode. The experimental values of tan S for 
SrTiO, and KTaO, under the same conditions are of the 
order of and lo-', 

In summary, by comparing the experimental values of 
tan S with the estimated lattice-loss contributions, we can be 
certain that under the conditions considered here the actual 
value of tan S is substantially higher than the intrinsic-loss 
level of an ideal crystal. 

APPENDIX 2 

In this Appendix we show how estimates (12)-(15) can 
be obtained formally. Because a ferroelectric is a highly po- 
lar compound, the electrophonon potential can to good ac- 
curacy be expressed in terms of the third-order anharmonic 
force constants B relating the atomic displacements R :p (n is 
the lattice vector,p is the number of the atom in the cell, and 
a is a Cartesian coordinate) with the anharmonic contribu- 
tion to the energy 

The corresponding expression is of the form1' 

d2" (q) 

1 
5" 

Q p  epa (0, j )  ez::: (0, j) e;: (q, j') e p t  1 (-q, j") 

=*C> ~ j ' ( b )  Q,* (q) 5 2 j . v  (q) 

where Q, is the effective charge of the ion, Vis the volume of 
the crystal, e,"(q, j) is the polarization vector of the displace- 
ments in vibrational branch j, and the summation in the last 
two formulas is over all the indices appearing in B [in (26) the 
summation over the optical branches j has already been 
done]. 

To obtain the necessary estimates it is sufficient to esti- 
mate the sum in (26). Estimates of this type of sum have been 
analyzed elsewhere," so we shall discuss only the main 
points in the derivation. 

According to Gurevich," the tensor B falls off very rap- 
idly as the differences In - n'l and In - n"I increase, and 
therefore the main contribution to the sum in (26) is from 
terms for which the values of these differences are of the 
order of unity. In an ordinary dielectric the components of B 
with small values of these differences are" of orderpw2, and 
in a centrosymmetric crystal the only nonzero components 
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are those which are odd under the replacement n-+ - n, 
n'+ - n', and n"+ - n". It is known that the anharmonic 
parameters of a displacive ferroelectric exhibit no anoma- 
lies.5 Therefore, in a centrosymmetric paraphase, B is of the 
same order of magnitude as in an ordinary centrosymmetric 
crystal, i.e., the odd components are of order pw2 and the 
even components are zero. In the ferrophase the old estimate 
remains valid for the odd components, but in this phase even 
components arise as well; these, however, are obviously 
smaller than the odd components by a factor of the ratio of 
the spontaneous to the atomic polarization, i.e., a factor of 
order pw2 X-1'2. With allowance for this circumstance one 
can obtain (12) by proceeding from (9) and ( 1  1) .  

To obtain (13)-(15) let us consider the sum in (26) in the 
long-wavelength limit. We shall regard q as nonzero only in 
the argument of the exponential function, which we shall 
expand in a series. We shall consider separately the contribu- 
tions to the sum from the even and odd parts of B. For the 
even part, only terms with even powers of q can give a non- 
zero contribution, and for the odd part, only the odd powers 
contribute. For each part of B we shall consider in the sum 
only the first term that gives a nonzero contribution. Using 
the identity 

which ensures the translational invariance of Hi,, , and rec- 
ognizing that the polarization vector of the displacements 
for the acoustical branches at q = 0 are independent ofp, it is 
straightforward to show that the nonzero contribution to 
(26) comes from the terms of the expansion with powers of q 
larger than or equal to the number of acoustic branches 
between j' and j". This observation permits one to find the 
first terms of the expansion which give nonzero contribu- 
tions. Then, taking into account what was said above and 
recognizing that w: after straightforward transfor- 
mations we arrive at estimates ( 1  3)-(15). 

Note added in proof (26 April 1984): It has been pointed 
out by G. E. Pikus and E. L. Ivchenko that all of our state- 
ments concerning centrosymmetric crystals are, strictly 
speaking, valid only for crystals in which every atom is a 
center of inversion. However, in all the known cubic ferro- 
electrics of the displacive type every atom is in fact a center 
of inversion, so all of the conclusions of this paper remain in 
force. 

"We note that in going to the five-quantum processes the substantial bene- 
fit gained in the weakening of the restrictions imposed by the conserva- 
tion laws does not occur. Therefore, the contributions of higher-order 
processes are smaller by a factor of the anharmonicity parameter, and 
one can neglect them or do more narrowly the sampling summation in all 
the orders (see, e.g.. Refs. 9 and 151. 

"It was shown in Ref. 3 that the dissociation contribution [the plus sign in 
formulas (2)] is negligibly small in ferroelectrics. 

3'Recall that all the results of this paper are valid only for o<w,, and 
therefore the transition to the limit o--to, should be understood in a 
formal sense. 

4)More precisely, if the difference between a first-order phase transition 
that is close to second-order and a true second-order phase transition is 
taken into account, the anomaly of tan 6 in the ferrophase should corre- 
spond to the anomaly of ,y 31ZP f.  

'B. D. Silverman, Phys. Rev. 125, 1921 (1962). 
'V. Dvoiak, Czech. J. Phys. B 17, 726 (1962). 
3B. Ya. Balagurov, V. G. Vaks, and B. I. Shklovskii, Fiz. Tverd. Tela 
(Leningrad) 12, 89 (1970) [Sov. Phys. Solid State 12, 70 (1970)l. 

4G. J. Coombs and R. A. Cowley, J. Phys. C 6, 143 (1973). 
5V. G. Vaks, Vvedenie v Mikroskopicheskuyu Teoriyu Segnetoelektrikov 
[Introduction to the Microscopic Theory of Ferroelectrics], Nauka, 
Moscow (1973), pp. 63,226. 

6G. J. Coombs and R. A. Cowley, J. Phys. C 6, 121 (1973). 
'V. L. Gurevich, Fiz. Tverd. Tela (Leningrad) 21,3453 (1979) [Sov. Phys. 
Solid State 21, 1993 (1979)l. 

'V. L. Gurevich, in: Problemy Sovremennoi Fiziki [Problems of Modem 
Physics], Nauka, Moscow (1980), p: 246. 

9A. K. Tagantsev, Zh. Eksp. Teor. FIZ. 80, 1087 (1981) [Sov. Phys. JETP 
53, 555 (1981)l. 

'"A. K. Tagantsev, Candidate's Dissertation, A. F. Ioffe Physicotechnical 
Institute, Leningrad (1982). 

"V. L. Gurevich, Kinetika Fononnykh Sistem [Kinetics of Phonon Sys- 
tems], Nauka, Moscow (1980), pp. 169, 67. 

12V. L. Gurevich, Dielectric Losses in Crystals in Semiconductor Physics 
(ed. by V. M. Tuchkevich and V. Ya. Frenkel), Plenum Press, New York 
(1984). 

I3A. K. Tagantsev, Zh. Eksp. Teor. Fiz. 77, 1993 (1979) [Sov. Phys. JETP 
50,948 (1977)l. 

I4V. L. Gurevich and A. K. Tagantsev, Izv. Akad Nauk SSSR Ser. Fiz. 47, 
169 (1983). 

I5V. Ya. Balagurov and V. G. Vaks, Zh. Eksp. Teor. Fiz. 57, 1646 (1969) 
[Sov. Phys. JETP 30, 889 (1970)l. 

16M. E. Lines and A. M. Glass, Principles and Applications of Ferroelec- 
trics and Related Materials, Clarendon Press, Oxford (1977). [Russ. 
trans]., Mir, 1981, pp. 89, 273, 430, 2381. 

"C. Herring, Phys. Rev. 95,954 (1954). 
"I. M. Buzin, Vestn, Mosk. Univ. Fiz. Astron. 18,70 (1977). 
19G. Rupprecht and R. 0 .  Bell, Phys. Rev. 125, 1915 (1962). 
'OK. Bethe, Philips Res. Rep. Suppl. No. 2 (1970). 
"0. G. Vendik, A. Ya. Zainichkovskii, V. V. Konovalenko, A. S. Ruban, 

T. B. Samonova, and D. V. Shpanskii, Fiz. Tverd. Tela (Leningrad) 19, 
1442 (1977) [Sov. Phys. Solid State 19, 838 (1977)l. 

"1. M. Buzin, I. V. Ivanov, and V. A. Chistyaev, Fiz. Tverd. Tela (Lenin- 
grad) 22, 2848 (1980) [Sov. Phys. Solid State 22, 1662 (1980)l. 

Translated by Steve Torstveit 

1297 Sov. Phys. JETP 59 (6), June 1984 A. K. Tagantsev 1297 


