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Some macroscopic physical properties of a new class of systems with the spin current density 
wave (SCDW) in the ground state are considered. Within the framework of the microscopic two- 
band model of a metal with congruent parts of the Fermi surface it is shown that in itinerant 
antiferromagnets a mutual reorientation of the magnetic moments of the sublattices may occur 
with the formation of the SCDW. This effect is analogous to the "weak ferromagnetism" predict- 
ed by Dzyaloshinskii; but it does not involve any relativistically small quantity. The phase dia- 
gram for such systems is obtained. In the case of a special symmetry of the bands whose extrema 
coincide in momentum space, there may be a divergence in the nonlinear magnetic susceptibility 
of systems with SCDW (providing the angular-momentum interband transitions are allowed). If 
the dipole moment interband transitions are allowed, a system with SCDW can transform into the 
ferroelectric state. However, the effect is small to the extent that the spin-orbit coupling is. 

1. INTRODUCTION 

It was recently remarked by Gorbatsevich, Kopaev, 
and the author' that for phase transitions in crystals charac- 
terized by vector order parameters these order parameters 
can be subdivided with respect to time inversion and the 
spatial transformations of the crystal point group into four 
types: polar vectors which are either (a) even or (b) odd with 
respect to the operation of time inversion, or axial vectors 
which are either (c) even or (d) odd relative to this inversion. 
Types (a) and (d) are well known. In particular, the displace- 
ment vectors in structural phase transitions and the magnet- 
ic-moment vectors in magnetic phase transitions belong to 
the types (a) and (d) respectively. 

An order parameter of the type (b) was considered in a 
series of papers.'-5 The polar vector T(T in the notation of 
Ref. 1) which is odd with respect to the operation of time 
inversion is dual to the antisymmetric part of the magnetoe- 
lectric tensor. Consequently, the state into which the system 
is transformed upon the formation of the vector T was said to 
be "magnetoelectric." 

This work is devoted to a study of some types of states 
with the order parameter G of the type (c) (p in the notation 
of Ref. 1). These states will be called "orientational" for rea- 
sons to be given below. Wherever it is not stated otherwise, it 
will be assumed that only commensurate structures are con- 
sidered. 

Some peculiarities of the transition into the orienta- 
tional state of a magnetic system will be considered in Sec. 2 
by means of a phenomenological Landau functional. The 
vector G is dual to the antisymmetric part of the weak ferro- 
magnetism tensor which was introduced by Dzyal~shinski'i.~ 
In the presence of the antiferromagnetic order characterized 
by a vector L of the type (d) a transition into a state with 
G#O can cause a change in mutual orientation of the mag- 
netic moments of the sublattices and the emergence of ferro- 
magnetism. (The term "orientational state" is so named pre- 
cisely because G has the property that its formation causes a 
change in the orientation of ordinary axial and polar vectors 

relative to their orientation in the state with G = 0.) 
In Sec. 3 a correspondence between the orientational 

states of type (c) and the states with the imaginary interband 
triplet order parameter A;, [the states with the spin current 
density waves (SCDW)] is established on the basis of a micro- 
scopic two-band model of metals with congruent segments 
of the electron and the hole Fermi surfaces. The explicit 
forms of the coefficients in the Landau free-energy func- 
tional are obtained and the region of the phase diagram in 
which the "weak" ferromagnetism can be realized is deter- 
mined. This region is characterized by coexistence of the real 
interband triplet order parameters A;, , which describes the 
states with the spin density waves (SDW), and the parameter 
A;, (SCDW). The main result is that the tensor of the 
"weak" ferromagnetism is proportional to A:, and that it 
does not contain any relativistically small quantity, in con- 
trast to the known models (e.g., Refs. 7 and 8) where this 
tensor is due to the spin-orbit interaction. In the model with 
an interband electronic mechanism for the "weak" ferro- 
magnetism an important role is played by the effects of the 
intraband exchange enhancement. These effects are taken 
into account within the microscopic analysis. This model 
can be generalized to the case of systems which besides the 
itinerant electrons also contain localized moments. The exis- 
tence of an indirect exchange between the localized moments 
enhances the tendency towards the orientational state. This 
opens up a possibility of experimental observations of this 
state in a wide class of metallic magnets by analyzing related 
orientational effects. 

We shall consider in Sec. 4 a two-band model of a semi- 
metal with coincident extrema in the momentum space and 
with a nonzero interband matrix elements of the angular 
momentum operator. It will turn out that near the transition 
point into the orientational state the nonlinear magnetic sus- 
ceptibility is divergent and that the orientational order pa- 
rameter G is induced by the external magnetic field H. 

In Sec. 5 another class of orientational states is consid- 
ered for uniaxial crystals. It is shown that when G#O it is 
possible to realize in such systems unusual ferroelectric 
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structures in which the polarization vector is orthogonal to 
the polarization axis. In this section a microscopic picture of 
such a ferroelectric state is formulated within the framework 
of a two-band model with hybridi~ation.'.~ Although this 
effect is small to the extent of the spin-orbit coupling is, the 
anomalies in the dielectric permeability can become signifi- 
cant near the transition temperature. When describing a 
transition into the orientational state one considers, in fact, 
the formation of an antisymmetric tensorial order parameter 
and it is understood that the author does not claim a priority 
in considering the general phenomenology of such systems. 
Since parallels between the phenomenology and the results 
of calculations within concrete microscopic models are very 
important for general physical understanding of the results, 
the elementary analysis within the Landau theory of second- 
order phase transitions, conducted in Secs. 3 and 5, is justifi- 
able. 

2. A PHENOMENOLOGICAL DESCRIPTION OF 
ORIENTATIONAL STATES 

To clarify the physical meaning of the vector order pa- 
rameter G of the type (c) it is first necessary to understand 
which physical quantities can be sources of G (i.e., conjugat- 
ed to G in the free energy functional). Clearly, such sources 
can be, in principle, the vector products of any two vectors of 
the same type, either (a) or (b) or (d). In this work, we shall 
stay with two such cases of the greatest physical interest. In 
these cases the source of the parameter G is either the pro- 
duct L X M of two axial vectors of the type (d) or the product 
U X V  of two polar vectors of the type (a). In the first case, 
which will be considered in this section, the relevant term in 
the free energy has the form 

where y is a proportionality constant. It is, of course, neces- 
sary that the expression (I)  transforms according to the iden- 
tity representation of the crystal space group (by definition 
of the quantities G, L, and M, 6F, is invariant to the oper- 
ation of time inversion). To be specific, we shall consider the 
case of a two-sublattice model of ferrimagnetism where L 
and M are the sublattice magnetic moment and the average 
magnetization of the crystal, respectively. The term (1) has in 
this case the structure which is similar to the structure of the 
Dzyaloshinskii-Moriya term of the theory of weak ferro- 
magnetism in which the vector G is dual to the tensor of the 
weak ferromagnetism (see, for example, Ref. 7, p. 246 of 
Russian original, or Ref. 9). A general expression for the 
three-parameter functional F (G,L,M) can be written exactly 
to fourth (or even sixth) order in the small quantities G,L, 
and M. Nevertheless, we shall assume for simplicity that the 
system cannot transform into ferromagnetic state when 
G = L = 0. That is, we shall assume that the coefficient of 
M2 in the free-energy functional is strictly positive, and that 
the coefficients of G2 and L2 can change their signs with, for 
example, a change in temperature. Then, among the fourth- 
degree terms, it is possible to drop those terms which contain 
M and the functional can be written in the simplified form 

F(G,  L, M) =a,GZ+a2L2+aM2 
+yG[Lx M] +A,G2L2+Bi (GL) 2+$iG4+$2L4. (2) 

We remark immediately that the coefficients in (2) are as- 
sumed such that all the transitions which will be considered 
below are second-order transitions. In the opposite case it 
would be necessary to keep the sixth-order terms in (2). 

To be specific, we shall assume that the coefficient a, 
reverses sign before (i.e., at a higher temperature 
T =  TL > T G )  the coefficient a, does (we assume 
a, - T - TG , a,- T - TL , and a > 0). However, generally 
speaking a, and a, are quantities of the same order of magni- 
tude. We shall assume for simplicity that P, = P, = P > 0. 
Then, it is not difficult to obtain from the minimization of 
the functional (2) a system of equations for the order param- 
eters G, L, and M: 

a,G+'/,y [Lx MI +A,GLZ+B,L (GL) +2$GG2=0, 

a2L-'/,y [GxM] +A,LGZ+B,G(GL) +2pLL2=0, (3) 

aM+'/,y [GXL] =O. 

We shall consider three possible types of solutions: 
type I: GlL, Gf 0, Lf 0, M = - (y/2a)Gx L 

a,+ (A,-y2/4a) LZ+2$GZ=0, 

a2+ (A,-y2/4a) G2+2$L2=0; (4) 

type 11: GIIL, GZO, LZO, M = 0, 

a,+ (A,+Bi)L2+2$Gz=0, 

a2+ (A,+B,) G2+2$L2=0; ( 5 )  

type 111: L#O, G = 0, M = 0, 

a2+2$LZ=0. (6) 

The third type is clearly trivial: it simply describes a transi- 
tion at the temperature T = TL into the state with L#O. 

It follows from equations (4) and (5) that the solutions of 
the types I and I1 can be realized under the condition that the 
determinants corresponding to the equations are nonzero, 

The solutions of the type I1 are interesting in themselves, 
although they do not lead to the ferromagnetic ordering. It is 
clear that regarding the orientation of L the system with 
GllL possesses the anisotropy of an "easy axis" type. How- 
ever, we shall not consider these solutions, assuming that 
they are not realized since, for example, they are energetical- 
ly less likely than the solutions of the type I (this can be 
obtained by an appropriate choice of B,) .  

For the solutions of the type I, which realize "weak" 
ferromagnetism (MfO), it is possible to obtain 

while for the solutions of the type I11 we obviously have 
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For the solutions of the type I1 it is necessary to replace 6 ,  by 
S ,, = (A ,  + B1)/2p in (8) and (9). It is easy to convince one- 
self by comparing the energies (9) and (1 1) for the interval in 
which (8) and (10) exist that F, - F,,, = - (a, - Sla2)2/ 
48 (1 - S :). That is, for 1 - S : < 0 the solution of the type 
I11 is realized, while for 1 - S : > 0 the solution of the type I 
is realized. Therefore, we shall consider the case 1 - 6 : > 0 
with 1 - S :, < 0 so that a competition between the states I 
and I1 does not occur. It follows from equation (8) that for 
- 1 < 6,  < 0 the solution I exists in the interval a, < 0, 
a, < la,S, 1, while for 0 < S,  < 1 it exists in the interval 
a, < 0, a, < a,S, < 0. In this way, for 6 ,  < 0 the orientational 
state (G#O) appears already whena, > 0, i.e., when T >  T G .  
The behavior of the system described by the functional (2) is 
the following. First, at the temperature T L  (a, = 0), while 
G = 0, the antiferromagnetic order parameter L whose mag- 
nitude is determined by (10) emerges. Next, at the tempera- 
ture T,,  given by the condition - a, + S,a,  = 0, in addi- 
tion to L, G#O (with LlG) emerges through a second order 
phase transition. At the same time, appears the parameter 

M=- (y/2a)  [GXL] P O .  

If the magnetic field interaction term - M-H is added to the 
functional (2), it is easy to realize that the Curie-Weiss law 
for the temperature dependence of the magnetic susceptibil- 
ity is valid in the temperature interval T, < T <  T L  (for H 
noncollinear with G). All our considerations can be followed 
in an analogous way when T ,  > T L  . Then, a transition into 
the orientational state occurs first, followed, with already 
present G and L, by the growth of the average magnetiza- 
tion. In the traditional analysis of the "weak" ferromagne- 
tism9 such sequence of transitions is assumed while the tem- 
perature T ,  can be formally assumed larger than the 
melting temperature. That is, a real high-temperature phase 
already has a magnetic symmetry which allows for the exis- 
tence of G. 

3. THE MICROSCOPIC MODEL 

We shall consider a two-band model of a metal with 
congruent pieces of the electron and the hole Fermi surfaces. 
We shall include in the system Hamiltonian the intraband 
interactions of the density-density type as well as the inter- 
band interactions of two types: the density-density interac- 
tions and the interactions related to the interband transitions 
of pairs of particles. This gives 

where i, j, i', and j' are band indices, a andp  are spin indices, 
and E~ (k) are the dispersion laws. No special symmetry con- 
ditions are imposed on the wave functions of the bands 1 and 
2. The interaction constants gFY are chosen as 

In systems with the Hamiltonian (12) several types of phase 
transitions can take place. These phase transitions are de- 
scribed by the four interband order parameters A;B(i#j) and 
also by the intraband parameters X;O. In the present work 
we shall consider only the triplet order parameters which 
can be written in the spinor notation as 

where 6 is the vector whose components are the Pauli matri- 
ces. 

h h 

The matrices AU andBii are related to the Green's func- 
tions G ;O(r, r', W ,  ), 

&,=T [dll (r, r, con) -$if0 (1, I, 0.1 ]go 
n ,. + [GZ2 (r, r, 0%) - - 322 '  (c, r, mn) I R L ,  

It is that the order parameter A;, describes 
the formation of the spin density waves (SDW), i.e., of the 
antiferromagnetic ordering, while the order parameter A:, 
describes the formation of the spin current density waves 
(SCDW). The parameters Xi, describe the magnetization of 
the electrons in the band i (Stoner parameters). Let us consid- 
er the possibility of coexistence of A:, , A;, , and Xi,. The 
system of equations for the Green's functions in spinor nota- 
tion is 

h 

where I is the unit matrix in the spin space. 
From the system of equations (17) and (16), using the 

notation (1 5), it is possible to establish the explicit form of the 
free energy functional F for the order parameters 
[A;, 1, I Aim 1, I Xii 1 -=g max( T,p), where p is the noncon- 
gruency parameter of the electron and the hole Fermi sur- 
faces ("chemcial potential"). We shall assume for simplicity 
that p = const (the system is in contact with a reservoir of 
infinite capacity). Then, to lowest orders in the order param- 
eters 

The coefficients in (18) have the form 
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The temperatures TRe and TI, are defined through the ef- 
fective coupling constants gRe(,,, = g, + g, by the equation 

Furthermore, N (0) is the density of states at the Fermi level 
while 

Let us consider in detail the origin of the third order 
invariants proportional to y,,, . The quantities y,,, can be 
expressed in terms of the Green's functions 3;. as 

FIG. 1. P denotes the paramagnetic phase, A denotes the antiferromagnet- 
ic phase, Fis the "weak"-ferromagnetism phase, and Zis the incommensu- 
rate phase. 

related to the energy dependence ofthe density ofstates N (6 ). 
One can convince oneself that the contribution of these cor- 
rections is a small quantity of order [ln(&,/n-T)]- ' ( 1 rela- 
tive to the accounted terms proportional to y,. 

The phase diagram T (p) for the considered model can be 
easily constructed using the results of the phenomenological 
analysis of Sec. 2 (see Fig. 1). It is easy to see that the coexis- 
tence condition for Ake and A:, is 

By considering the explicit dependences of the coeffi- 
cients A,, y,, y,, and0  on Tandp  it is possible to determine 
exactly the phase-transition line for the state with coexisting 
A;, and A:, (shaded region in Fig. 1). As the noncongruency 
parameter p is increased, the coefficients A, and 0 are de- 
creases while y, is increased so that the conditions (23) is 
fulfilled in the region of (T,p) approximately given by 

=F(3,1"k, on))49220 (kf Q, ~ n )  1, (22) The coexistence of A;, and A:, leads to the formation 
of the average magnetization M. A direct calculation shows 

where Q is the wave vector which connect the congruent 
parts of the electron and the hole Fermi surfaces (in the com- 

that 

mensurate case which is only considered here the vector Q is M = -  2 ~ B Y I  [ A r m t  x AREt]  
at the same time the wave vector of the SDW and SCDW). L-g+ 

(25) 

When integrating over the momentum in (22), in order to 
calculate y, it is necessary to take into account that the den- 
sity ofstates N (( ) should not be replaced by theconstant N (0) 
because in such cases y, = 0. In evaluating (22) one takes 

,y 
(k) = - E ~ ( ~ + Q )  =% = --- cF, 

2m' 

that is, 

in the interval of the momenta k=; k,. Here E, = k :/2m*, 
where m* is the effective mass of the carriers. The integra- 
tion in (22) is cut off at 16 I 5 E,. We note that the coefficient 
y, equals zero in a one-band model. This can be easily proved 
by simply changing the variables k -+ k + Q and by noting 
that the spectrum is even, E~ (k) = E~ ( - k). In principle, 
when calculating the coefficients A,, B,, 8, and y, of the 
functional (18) it is also necessary to include the corrections 

wherep, is the Bohr magneton. We emphasize that we con- 
sider everywhere the case g* < 1, i.e., the Stoner criterion 
for the itinerant ferromagnetism is not fulfilled. 

Therefore, at the transition line T, (j~) that bounds the 
shaded region in the figure, a transition occurs from the anti- 
ferromagnetic phase (SDW state, Ake #O) into the ferromag- 
netic phase in which the average magnetization M is orient- 
ed perpendicular to the SDW (MlAk,). This phase can be 
conditionally called the "weak"-ferromagnetism phase (in 
accordance with the formal analogy with the traditional 
"weak" ferromagnets), although there exists no relativistic 
"weakness" in ouz case. With a change of sign of p, (and, 
accordingly, ofp, A,, and B,) it would seem that the situation 
becomes even more favorable for the coexistence of SDW 
and SCDW. However, the situation is more complicated be- 
cause within our model the coefficient of the gradient term 
[which is not written in (1 8)] changes its sign at the same time 
as the signs of 0 ,  A,, and B, change. Consequently, to the 
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right of the Lifshitz point (the point T *, p* in the figure) the 
system goes over into a phase with incommensurate struc- 
ture. A detailed calculation of the coefficients with the gradi- 
ent terms of different degrees was completed in Ref. 13. The 
present analysis regarding the existence of A;, and A:, 
turns out to be analogous to the analysis of the coexistence 
between the SDW and the CDW (charge density waves) 
which was carried out in Ref. 13. In particular, the favorable 
configuration in the incommensurate phase is Ake lA;,, in 
which the spatial modulations of A;, and A:, are displaced 
for ~ / 2 .  That is 

ARBt (r)  =ARet cos qor, Axmi (r)  =Amt sin qor, (26) 
where q, is the wave vector of the incommensurate structure, 

and v, is the Fermi velocity. In the structure described by 
formula (26) the magnetic-moment density m(r), which is 
proportional to Ake x A:, , is modulated with the period 
doubled relative to the SDW and the SCDW, 

m (r)  =m sin 2q,r. 

In this way, the magnetization averaged over the whole crys- 
tal is zero and there is a distinctive domain structure of typi- 
cal dimension L - (29,)- ' . 

It is easy to see that in the systems with the Hamiltonian 
(18) the question about coexistence of Ak, 11  A;, is analogous 
to the question about coexistence of A;, and As,. The latter 
was considered in detail in Ref. 5. It was shown that within 
the interval of commensurate structure, where the Landau 
expansion is valid, the coexistence is not possible. Analogous 
result about the impossibility of coexistence of commensur- 
ate A;, 11  A;, is also obtained in our case as long as the expres- 
sion (18) is valid. The analysis shows that in the region of 
incommensurate structure the solution AkelA:, is the pre- 
ferred one sufficiently near the Lifshitz point. 

It is possible to suggest another mechanism for the for- 
mation of the intraband order parameter 2, which is not 
related to the Stoner exchange intergral g+. Namely, we 
shall let the system have the localized magnetic moments S 
which interact with the itinerant electrons, 

Here, J,. are corresponding coupling constants and S, are 
the Fourier components of the density of the localized mo- 
ments. For simplicity, we shall neglect the iterband con- 
stants J12 and J,,. Then, we have an ordinary system with the 
RKKY exchange and the order parameter which describes 
the emergence of the ferromagnetism is 2 + = J (S), where 
J = J , ,  = J2, and (S) is the average density of the localized 
moments. 

The functional (18) is also valid in this case (when 
Z - = 0). However, now the coefficients a + depends on tem- 

perature. If it is assumed that the Curie temperature Fc,  
which is determined only by the RKKY exchange interac- 
tion, is of the same order of magnitude as TRe and TI,, then 
in the mean-field approximation 

Clearly, for IT, < T,,,, the ferromagnetic order does not 
appear in the absence of the SDW and the SCDW. However, 
the smallness of a +  can lead to the expansion in the phase 
diagram of the region of the "weak" ferromagnetism. 

We need to emphasize that the considered model (in the 
absence of localized spins) has peculiarities related to the 
simultaneous vanishing of the coefficients A , ,  B,, P and of 
the coefficient a ,  of the gradient term. This is due to the 
extreme idealization of the model (in particular, other bands 
are ignored, scattering is neglected, the density of states is 
idealized, etc.). However, even with these conditions the 
state of "weak" ferromagnetism is possible. It is only impor- 
tant that the mechanism for the formation of SCDW has a 
purely electronic origin related to the characteristic topol- 
ogy of the Fermi surface, while the formation of the antifer- 
romagnetic and the ferromagnetic order parameters can 
come from completely different sources. This substantially 
broadens the class of systems in which there is, possibly, an 
electronic mechanism for the "weak" ferromagnetism. 

4. THE FORMATION OF "ORIENTATIONAL" STATES IN AN 
EXTERNAL MAGNETIC FIELD AND THE ANOMALY IN THE 
NONLINEAR MAGNETIC SUSCEPTIBILITY 

We shall consider a special case of a two-band model of 
a semimetal with the extrema of the bands 1 and 2 overlap- 
ping at the point k, in momentum space. We shall suppose 
that the symmetry of the Bloch wave functions at the ex- 
trema of the bands allows for a nonzero interband matrix 
element of the orbital momentum operator 

Such model was considered in Ref. 14. If the wave functions 
U,,, and U,,, can be chosen purely real, then the vector L12 
will be purely imaginary, i.e., L12 = L2, = 11. In the models 
with such band symmetry the formation of the orbital ferro- 
magnetism is possible when the imaginary singlet order pa- 
rameter A s, is nonzero (note that the magnetic moment 
M-Ld ;,).I4 The magnetic susceptibility of the system di- 
verges as the transition point is approached according to the 
Curie-Weiss law x - ( T - Ti, )- ', where T i, is the transi- 
tion temperature. 

In contrast to Ref. 14, we shall assume that the state 
with A:, #O is realized earlier (i.e., at the higher tempera- 
ture T ;,) than the state with A s, #O (i.e., Tim < T :,). 
Next, let us assume that the states with the real order param- 
eters are not at all realized in the considered temperature 
interval (this can be obtained by introducing the scattering 
on charged impurities). Then, in the lowest approximation in 
A:, and A s, and in the external field H it is possible to write 

F/2N (0)  =axrn' (Ami)  z+iaxm'(A~rn8) 
+ q t  (AImtH)  ( L H )  + q . A ~ m ? m )  

+CAIm' (A1rniH). (31) 
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Thus, we notice that the invariants of the type (A:;L)H2 are 
formally absent from (31). Such invariants appear in our 
model only as a result of the spin-orbit interaction. In addi- 
tion, the invariants linear in H and which contain Ak, or 
A ", [of the form A:;(Ak, X H), A Le (Ake.H), etc.] are 
dropped from (31) because their contribution is assumed 
small as a result of the large difference between the transition 
temperatures TS,,,, and T k,,, (T",,,, g T k ,,, ). It is nec- 
essary to keep the terms containg A i, already for 
Ti, ( Tk, because in the weak magnetic fields precisely 
these terms determine the linear magnetic susceptibility. 

The explicit expression for 77, ,v, , and Care the follow- 
ing: 

C=qr=(4~B/nT)qi, q,=qo. (32) 

It is easy to obtain from (3 1) the magnetic susceptibilityx (H) 
in which it is necessary to keep the field dependence to order 
Hz (we consider the magnetic field to be the only small quan- 
tity in the problem). For the case HllL we have 

It follows from (33) that near the transition point into the 
state with the imaginary triplet order parameter (a;, -+ 0) 
the Hz term in the nonlinear magnetic susceptibility diverges 
while the linear susceptibility 

does not experience any anomaly near the phase transition 
point (a;, > 0 as a:, + 0.) This effect is related to the in- 
duction of the order parameter A:, in the external fields, 

Therefore, a transition into the orientational state can, 
in principle, be observed through the Curie-Weiss anomaly 
of the nonlinear magnetic susceptibility x (H). It is under- 
stood that the formula (33) is not valid for sufficiently strong 
fields H and in the immediate vicinity of the transition point 
where it is essential to renormalize Ti, relative to Hz. It is 
easy to show that the criterion for the validity of (33) is 
4a:,x ;, % C 'HZ. 

5. FORMATION OF SPONTANEOUS MAGNETIZATION 
WITHIN THE "ORIENTATIONAL" STATE 

The invariants in thefree energy which are linear in the 
parameter G can be formed by having two polar vectors U 
and V: 

-. , , 

where A is a proportionality constant. 
We shall assume that U = E is the constant electric field 

strength and V is some polar vector characterizing the crys- 
tal anisotropy of the system (for example, it can be the unit 
vector n along the direction of the polar axis). The free ener- 
gy functional Fof such a system depends only on one param- 
eter and has the form 

F=aG2+a'(Gn) 2+AG[E~n] +pG4 

+p' (Gn) '+PUG2 (Gn) '. (36) 

We shall let the coefficients in (36) be such that the transition 
into the configuration Gln is the most likely (the type of 
systems having an "easy plane"). Then, below the transition 
point which is determined by a = 0 (where a - T - TG ) the 
spontaneous polarization 

~=h[G,xn ] ,  GoZ=-a/2p (37) 

is formed perpendicular to the polarization axis n. As the 
transition point is approached, T + TG + 0, there is a Cu- 
rie-Weiss anomaly in the perpendicular component of the 
dielectric permeability relative to the direction n: 

hZ 
8 j k =  -(I-&) djk. 

2a (38) 

Here, k j = x,y,z and the z-axis coincides with the vector n. 
Therefore, the orientational state can be accompanied 

with the emergence of the ferromagnetic order in a direction 
perpendicular to the polar axis. It is, of course, assumed here 
that there is no ordering along this axis. If, however, a "nor- 
mal" ferroelectric transition with the polarization direction 
along n occurred earlier, then the formation of the parameter 
G will be accompanied by a rotation of the polarization vec- 
tor for some angle $ relative to the polar axis. 

We move to a microscopic model which illustrates these 
phenomenological conclusions. We shall consider a two- 
band model of a semimetal with the extrema of bands 1 and 2 
coinciding at the point k, in momentum space, and with a 
nonzero interband momentum matrix element P,,. This 
model was explored in detail in Refs. 1-5. The effective Ha- 
miltonian of this system in an external field of strength E has 
the form 

H=R,+B,, (39) 

d 1 
8 (k - i -) - P,&I - A,I dk m 

a, (40) 
ez (k) - ieE dk 

where m is the electron mass and 

fi -- [Exk] [hxk] + [EXPIZ] 
" - (2;)' [[hx,k] + [EXPzl] [Ex k] 

is the spin-orbit interaction Hamiltonian for the assumed 
symmetry of the bands 1 and 2. In the formula (41) 

where V(r) is the crystal po~ntial .  Tke vector h is collinear 
with P,, and the matrices A,, and A,, have the structure 
considered in Sec. 3. In the absence of the electric field E one 
of the four types of order parameter considered above can 
appear in systems with the Hamiltonian (39). It was shown in 
Ref. 3 that when a singlet order parameter A i, which de- 
scribes the CCDW (charge current density wave) is formed, a 
uniform current is absent from the system, i.e., (j(r)) = 0. In 
analogy with Ref. 3, it can be shown that a uniform spin 
current density is absent ((j,(r)) = ( 6 ~ j ( r ) )  = 0) when a 
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uniform triplet order parameter A:, (which describes 
SCDW) is formed. This follows simply from the fact that the 
proof for the absence of the uniform current in the system 
goes through independently of the spin direction (see Ref. 3). 

We shall assume that the critical temperature T ;, cor- 
responding to the formation of the parameter A:, is very 
high. Within the two-band model with coincident extrema, 
the parameter A ke is induced in the presence of an external 
field,15 and a component of the polarization along P12 
emerges, 

where T i ,  is the critical transition temperature into the usu- 
al ferromagnetic state (the state witkA ", #O). With the ac- 
count of the spin-orbit interaction H, another component 
of the polarization perpendicular to P12 emerges. It is related 
to the induction by the electric field of the imaginary triplet 
order parameter A:, with 

In calculatin~ B only the dominant contribution, related to 
the term in H, proportional to &(ExP12), was kept. The 
contributions related to the remainin3 term% such as the 
interference terms of second order in H, and H, , contain a 
logarithmically small quantity [ln(~,/n-T)]-' compared 
with the dominant term. 

Although the coefficient B is nonzero only because of 
the spin-orbit interaction, its contribution to the polariza- 
tion P, is the most important for ElP,,  and TZ Ti,. Then, 
the component of the dielectric permeability parallel to P12 
does not experience any anomaly while the perpendicular 
component diverges according to the Curie-Weiss law as 
T-+ Tirn. 

Clearly, the question arises as to how favorable is the 
formation of a state with A:, within the considered model 
and in the absence of an external field. Realistically, the elec- 
tron-phonon interaction in the electronic ferroelectrics is, 
evidently, much too strong for the state with A:, #O to be 
favorable, i.e., Tk, > Ti,. However, even in this case one 
can hope that with the formation of A;, in the background of 
Ak, and ElP,, it would be possible to observe a growth of 
the perpendicular component of the polarization P, as well 
as the characteristic break in the temperature dependence of 
P l ( T )  at the ferroelectric transition point T", . We remark 
that in the systems with the Hamiltonian (39) the electronic 
spectrum becomes spin-polarized at the transition into the 
orientational state. Let E = 0 and let us neglect the spin- 
orbit interaction. By directing the quantization axis along 
A;, it is easy to see that in the transformed phase 

Clearly, such rearrangement of the spectrum leads to a 
change in the selection rules for the optical interband transi- 
tions and this may manifest itself in the studies of the polar- 
ized light absorption 

6. CONCLUSION 

In connection with the results obtained in this work for 
the systems with SCDW (and also in previous for 
the CCDW) some clarifications of the terminology "charge 
current density wave" (CCDW) and "spin current density 
wave" (SCDW) appear necessary. The concepts CCDW and 
SCDW were used in many papers to denote the excited states 
of the systems with the CDW and the SDW ground states, 
respectively (see, for example, the review in Ref. 16). The 
excited CCDW and SCDW states are accompanied, accord- 
ing to Ref. 16, with the formation of "macroscopic nondissi- 
pative" charge or spin currents. 

The terms CCDW and SCDW were used in the present 
work in their original meaning (see Ref. 10 and also Ref. 2), 
i.e., they refer to the ground states of a crystal. At the transi- 
tions into the CCDW or the SCDW states a rearrangement 
of the charge or spin currents occur on the scale of the crys- 
tal's unit cell. This is analogous to rearrangements in the 
charge or spin densities occurring at the transitions into the 
CDW or the SDW states. However, there is no formation of 
any uniform macroscopic charge or spin currents in the 
ground states with CCDW or SCDW (a periodic, stationary 
distribution of charge or spin currents appears in the incom- 
mensurate structures). The possibilities of realizing equilib- 
rium states with the CCDW were presented while 
those with the SCDW were presented now. They have noth- 
ing in common with the methods of generating nonequilibri- 
um "nondissipative currents" considered in Ref. 16. The 
systems with the CCDW or the SCDW can be completely 
classified within the framework of the known magnetic sym- 
metry groups and their existence does not contradict any of 
the general physical principles. The interesting properties 
which are predicted, perhaps offer a stimulus for a broad 
experimental investigation or for a new interpretation of al- 
ready available results. 
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