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The behavior of the refractive index in the region of the A-exciton resonance in CdS has been 
determined from the deflection of light by a thin prismatic crystal. The transition from the case in 
which spatial dispersion is important to the case of classical crystal optics has been followed 
during excitation of the mixed mode. Theory is compared with experiment, and the basic charac- 
teristics of the polariton branches are determined. 

1. INTRODUCTION 

We report here a study of the dispersion properties of a 
mixed polariton mode in the particular case of the A, = , 
exciton ground state in hexagonal cadmium sulfide crystals. 
We know that a mixed mode can be excited in an anisotropic 
medium and that it is a light-exciton wave whose wave vec- 
tor makes some angle x (0 < x < 90") with the electric field 
(see Ref. 1, for example). Such a mode is thus not purely 
longitudinal (x = 0") or purely transverse (x = 90"). In the 
particular case of a mixed mode it is possible in principle to 
follow the changes in the dispersion properties of exciton 
polaritons by making a smooth transition, at a fixed value of 
the damping constant r ( T  = const), from the region in 
which spatial-dispersion effects are important to the limit 
corresponding to classical crystal optics. This problem can 
be solved experimentally by studying the dispersion of the 
refractive index in the vicinity of an exciton resonance, by 
observing the refraction of light by a thin prismatic crystal. 
By varying the angle between the hexagonal axis of the crys- 
tal and the electric vector of the incident light wave in this 
case, one can change the projection of the dipole moment of 
the transition to the exciton state and thus change the split- 
ting of the upper and lower polariton branches (we will call 
this splitting the "effective longitudinal-transverse split- 
ting" A &). The method of light refraction in a thin prism, 
which was first used in Ref. 2 to construct polariton curves, 
has certain advantages over interference methods for study- 
ing the behavior of the refractive index near exciton reson- 
a n c e ~ . ~ . ~  The most important of these advantages is that 
dead-layer effects can be avoided, while they absolutely must 
be taken into account in the interference  method^.^ We 
might also note that in working with a mixed polariton mode 
one can follow the behavior of the refractive index well into 
the exciton-absorption region, despite the rather large thick- 
ness of the sample. 

2. CRYSTALS AND EXPERIMENTAL PROCEDURE 

In the experiments we used scaly CdS single crystals 
grown by the Froerichs methods from the gas phase. We 
selected wafers with a wedge-shaped cross section. The 
wedge shape is a consequence of the natural although uncon- 
trollable growth. At crystal thicknesses of 10-20~m the re- 

and ran parallel to the refracting edge of the wedge, as shown 
in Fig. 1. The quality of these crystals was quite high. From 
the line intensities I, and I, of the exciton-impurity complex- 
es at liquid-helium temperature we conclude that the con- 
centration of residual electrically active impurities did not 
exceed 1015 cmP3. The samples were immersed directly in 
superfluid helium in an optical cryostat ( T  = 1.8 K). By ro- 
tating a shaft on which the samples were mounted we were 
able to vary the angle (8 ) at which light was incident on the 
surface of the crystal [8 is the angle between the normal to 
the surface of the crystal and the direction of the incident ray 
in the plane perpendicular to the principal cross section of 
the prism (Fig. I)]. 

The angle (p) through which a parallel light beam is 
deflected by the prism is determined unambiguously by the 
refraction angle of the prism (a),  the angle of incidence (8 ), 
and the refractive index of the prism material (n). In the 
general case in which the incident beam does not lie in the 
plane of the principal cross section, the quantities p ,  a ,  8, 
and n are related by a rather complicated expression (see Ref. 
5, for example). For a thin wedge, in contrast, the simple 
approximation p =a (n - 1) is quite accurate. 

We used the same equation to calculate the refraction 
angle of the wedge (a) for a sample with dimensions of 1.5 
mm, 5 mm, and a thickness of 20,um, which we used for the 

- 
fraction angle at the vertex of the wedge was on the order of 
lo-' rad. The C, hexagonal axis lay in the plane of the wafer FIG. 1 .  Experimental apparatus and geometry. 
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experiments reported below. For this calculation we mea- 
sured the deflection angle p, and we adopted n = 3 at the 
wavelength il = 4884.4 b;, in accordance with the results of 
Ref. 2. The value found for a is 0.012 rad. 

Figure 1 shows a block diagram of the experimental 
apparatus. The light source is a tunable laser whose active 
medium is a dioxane solution of the organic dye coumarin- 
152A. This laser was pumped by a pulsed nitrogen laser. The 
use of a laser instead of an incoherent light source fundamen- 
tally improves the accuracy of the refractive-index measure- 
ments. The power level of the tunable pulse was about 100 W 
at a length of 6 ns and a spectral width of about 0.5 b;. Ex- 
periments were carried out at power densities below 1 kW/ 
cm2, at which nonlinear changes in the dispersive properties 
of the medium could be ignored. The laser beam was colli- 
mated by a lens L, and directed to the crystal. The beam 
deflected by the crystal was focused to a spot 25pm in size in 
the focal plane of lens L2 (f = 180 mm). The displacement of 
this spot was monitored visually with a measuring micro- 
scope (with a rotating prism P in place) or photoelectrically, 
by projecting an image of the spot (by lens L,; the rotating 
prism is not in place in this method) onto the light-sensitive 
matrix (SIT) of an optical multichannel analyzer (OMA-2). 
Large deflections of the spot could be measured quite accur- 
ately by the visual method. However, it turned out to be 
absolutely necessary to use the OMA-2 analyzer to study the 
behavior of the refractive index for the mixed mode of exci- 
ton polaritons at small angles of incidence, 8-0" to 5". At 
such small angles 8 the deflection angle p must be measured 
more accurately, since the changes in the refractive index 
with the frequency are small in this case. The photoelectric 
measurement method made it possible to measure the shape 
of the spot. As a result, we were able to determine the posi- 
tion of the spot maximum more accurately and thus reduce 
the relative measurement error. While the error in the mea- 
surements of the angle by the visual method was + 7 . 
rad, that in the measurements with the OMA-2 was 
f 1.5 . lo-' rad. Another factor making the photoelectric 

method convenient is that the transmission of the crystal can 
be measured at the same time as the spot displacements. 

The inset in Fig. 1 shows some representative measure- 
ments of the angular deflection of a parallel light beam due to 
the dispersion of the refractive index in the vicinity of the 
A,, , exciton resonance of CdS. The arrows mark the 
known positions of the transverse (AT) and longitudinal (A, )  
excitons. These measurements were carried out with light 
incident normally on the crystal (8 = 0") in the polarization 
ElC,. The size of the circles in Fig. 1 indicates the experi- 
mental error in the measurement of the angular deflection of 
the spot and the wavelength spread of the light source. In 
converting the wavelength to a frequency we made correc- 
tions for the refractive index of air in all cases. 

3. RESULTS AND DISCUSSION 

We studied the dispersion of the refractive index for the 
transverse and mixed polariton modes in the vicinity of the 
A, = , exciton resonance. In the discussion below we will 
need expressions for the diagonal components of the dielec- 

tric tensor in the spectral region of interest and for the ex- 
perimental geometry in Fig. 1. For the longitudinal compo- 
nents &, =EII(EIIC~) and the transverse component 
cyy &'(E1C6) we have, respectively, 

The second term on the right in (2) is the contribution of the 
A ,  = , exciton to the dielectric constant. The quantity A, is 
proportional to the oscillator strength of the phototransition 
f: 

do= (2ne2100mo) N f ,  (3) 
where e and m, are the charge and mass of an electron in 
vacuum, w, is the resonant frequency of the transverse A, = , 
exciton, and N is the number of unit cells per unit volume of 
the crystal. The quantities r, Mil ,  and M, in (2) are the exci- 
ton damping constant and the longitudinal and transverse 
translational masses of the exciton. The polariton wave vec- 
tor k has been replaced in (2) by the refractive index n, in 
accordance with the definition n2 = c2E '/a2. A dispersion 
relation for a mixed mode of exciton polaritons can be writ- 
ten' 

(4) 
where the angle S is the angle which the polariton wave vec- 
tor k makes with the z axis (according to the experimental 
geometry, 8 and 6 are related by Snell's law, sin8 = nsins ). 
We will discuss separately the cases in which the wave inci- 
dent on the crystal was polarized perpendicular to the plane 
of incidence (the case of s polarization) and in the plane of 
incidence ( p polarization). 

We begin with the s polarization. In this case we are 
dealing exclusively with transverse polariton modes since 
the electric vector is perpendicular to the C6 axis. The disper- 
sion relation for transverse exciton polaritons is given by (2). 
Solving this equation, we find the well-known Pekar equa- 
t i o n ~ , ~  which give the frequency dependence of the refractive 
indices n+ and n- for the lower and upper polariton modes. 
From (2) we see how a change in the angle 8 affects the be- 
havior of the refractive index. The only quantity in this 
expression which depends on the angle 6 is the translational 
mass of the exciton. The effect of the anisotropy of the trans- 
lational mass turns out to be extremely weak, however. Since 
n takes on values roughly between 2 and 5 in the present 
experiments, the first term in square brackets in (2) is about 
an order or magnitude greater than the second. This asser- 
tion is supported by experimental observations of the disper- 
sion of the refractive index in the s polarization at various 
angles of incidence 8 (Fig. 2). We see that in this polarization 
the experimental dispersion curves for the different values of 
8 essentially coincident within the experimental errors. The 
theoretical curves calculated for various angles 8 also coin- 
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FIG. 2. Behavior of the refractive index near the line of the A,, = , exciton. 
For the s polarization: 0-8 = 0"; 0-0 = 21"; A-8 = 41"; U - B  = 56". 
For the p polarization: W--6' = 0"; A-0 = 56". The dot-dashed curves 
are theoretical curves calculated without consideration of the B exciton, 
while the solid curves show calculations incorporating the B exciton. 
These curves coincide for the n+ branches. 

cide. The dot-dashed lines in Fig. 2 shows calculations for 
the n+ and n- branches of transverse polaritons according 
to the Pekar equations with the following parameter values: 
E; =7.4+0.3, A,= 16.3 +0.5 meV, M, =(0.7+ 0.3)m0, 
h, = 2.55 19 + 0.0002 eV, r = 0, and Mil = 5m0. The reso- 
nant frequency of the transverse polaritons, w,, is not an 
adjustable parameter in this case; it is found from the famil- 
iar relation w, - w, =A,,/&;. The energy of a longitudinal 
exciton was found experimentally in a study of a mixed po- 
lariton mode (more on this below); its value is 
h, = 2.5541 + 0.0002 eV. Furthermore, a variation of MI,  
has essentially no effect on the shape of the dispersion curve, 
so we did not treat MII as an adjustable parameter; we adopt- 
ed the value MII = 5mo in all the calculations, in accordance 
with data from the l i t e ra t~re .~  In the calculations of the dis- 
persion of the refractive index of the transverse polariton the 
damping was set at r = 0 in view of the large longitudinal- 
transverse splitting A,, = w, - w, = 2.2 meV. From mea- 
surements of the transmission curves in the case of a mixed 
polariton mode (as discussed below) we found r = 0.02 meV 
(i.e., r ( A L T )  for the damping. Consequently, in comparing 
theory and experiment for the transverse polaritons we are 
essentially dealing with only three adjustable parameters: 
E;,  A,, and M,. It can be seen from Fig. 2 that a theoretical 
approximation based on dispersion relation (2) agrees rea- 
sonable well with experimental data on the lower transverse 
polariton branch, while for the upper branch there are sub- 
stantial discrepancies. The reason for these discrepancies is 
that higher-energy exciton states, primarily the B, = , exci- 
ton, have been ignored. To take these states into account we 
must add terms Bb(/(wf-w) and B;/(wf-w) to ex- 
pressions (1) and (2), respectively, for the dielectric constant; 
here wf is the resonant frequency of the B, = , exciton, and 
the parameter B, is, by analogy with A,, related to the oscil- 

lator strength of the optical transition to the state of the 
B, = , exciton. 

Far from the B-exciton resonance we ignore the damp- 
ing and the spatial dispersion for the B exciton. In this case, 
strictly speaking, we would have to solve the dispersion rela- 
tion for the transverse polariton mode, (2), again, with a di- 
electric constant incorporating the additive contribution of 
the B exciton. However, we can use the old expressions for 
the refractive indices n+ and n-, replacing E; in them by 
E; + B;/(wf - a ) .  This approximation is valid if 
B; / (wf-w)(~;  orAET/(wf-w)(1 (AfT inthiscon- 
dition is the longitudinal-transverse splitting for the B exci- 
ton). In the actual frequency interval near the A-exciton res- 
onance this inequality holds, so that this approximation is 
valid. The B exciton was taken into account in the calcula- 
tions shown by the solid curves in Fig. 2; the parameters of 
this exciton were taken from Ref. 2: h, = 2.5680 eV and 
B = 2ra, wf = 10.3 meV. The parameters of the A exciton 
were taken to be the same as before. We see that after the B 
exciton is taken into account the discrepancy between theory 
and experiment essentially disappears. 

We turn now to the results obtained for thep polariza- 
tion. In this case we are dealing with a mixed polariton 
mode. The behavior of the refractive index for this mode is 
easily found from the solution of dispersion relation (4), but 
we will not reproduce the very lengthy expression here. Fig- 
ure 2 shows measurements of the dispersion of the refractive 
index in thep polarization carried out for angles of incidence 
6 = 0" and 6 = 56". The dot-dashed curves are theoretical 
curves calculated without consideration of the B exciton, as 
in the case of the transverse polariton mode, while the solid 
curves incorporate the B exciton (by analogy with the calcu- 
lations for the transverse mode). The only new parameter in 
these equation is the quantity ~ b ( ,  which we were forced to set 
equal to 8.4 when the B exciton was ignored. In calculations 
incorporating the B exciton, on the other hand, we found 
~ b (  = E; = 7.4 (B b( = 2 7 4  wf = 12.8 meV; Ref. 2). All the 
other parameters were taken to be the same as before. The 
difference between ~ b (  and E; in the simple model which does 
not explicitly incorporate the B exciton is therefore due to 
the approximate nature of this model, and the discrepancy 
disappears when we incorporate in the dielectric-constant 
terms describing the B exciton. The dispersion of the refrac- 
tive index measured in the p polarization for 6 = O" is due 
exclusively to the B exciton. 

The parameters characterizing the A and B excitons 
must satisfy simultaneously a large number of dispersion 
curves of the refractive index which have been measured for 
the case of a mixed polariton mode at various angles of inci- 
dence. As a consequence, the determination of these param- 
eters is more reliable than that in Ref. 2. Figure 3 shows 
corresponding curves measured at relatively large values of 
6, at which damping can still be ignored. With decreasing 6 
the dispersion curves of n+ and n- move closer together; in 
other words, there is a decrease in the effective longitudinal- 
transverse splitting. We conclude from Fig. 3 that there is a 
good agreement between theory and experiment; the values 
of the adjustable parameters are the same as in Fig. 2. 
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FIG. 3. Frequency dependence of the refractive index of the mixed mode 
for various angles of incidence 8 (the points are experimental, and the 
curves are theoretical). and dot-dashed curves-8 = 56"; 0 and dashed 
cruves-8 = 36"; A and solid curve-8 = 16'. 

We turn now to the behavior of the refractive index in 
the mixed mode at small angles of incidence 6, at which the 
exciton damping r begins to have an important effect on the 
shape of the curves. It follows from the calculations that at 
r = 0 and at an arbitrarily small but nonzero value of 6 there 
is always a discontinuity on the curve of the refractive index 
at the transition from the n+ branch to the n- branch. If 
r #O, on the other hand, then a common continuous curve 
appears for the refractive index beginning at some quite 
small value of 6 corresponding to the value of the damping 
r. The situation here is analogous to the transition to classi- 
cal crystal optics, which is observed in the transverse mode 
of exciton polaritons with increasing r (Refs. 8 and 9). Fig- 
ure 4 shows the behavior of the refractive index in the mixed 
mode at small angles 6. At 6 = 9.5" and 6 = 5" there is a 
clearly defined discontinuity on the frequency dependence 
of the refractive index. Experimentally this discontinuity is 
seen as a rapid decrease in the intensity of the spot in the 
focal plane of lens L, when a certain frequency is reached, 
while another spot appears simultaneously at a different 
plane. In other words, there is an abrupt transition from one 
branch of the refractive index to the other. Under our experi- 
mental conditions we were not able to observe two waves 
simultaneously at the same frequency. In order to observe 
two waves it would apparently be necessary to use thinner 
prismatic crystals. The shape of the dispersion curves mea- 
sured at 6 < 9.5" cannot be described satisfactorily without 
considering damping. The value of the damping r was deter- 
mined by measuring transmission curves of the crystal in the 
vicinity of the A ,  = ,  exciton resonance and then approxi- 
mating the experimental curve by a theoretical curve calcu- 
lated from the solution of dispersion relation (4). For a given 
value of r the imaginary parts of the refractive indices n + 

and n- are found from the corresponding solution; with this 
information and the known thickness of the crystal it is then 
possible to calculate a transmission curve and then compare 
it with the corresponding experimental curve. As a result of 
this approximation of the transmission curves measured for 
angles of incidence equal to 5" and 2.5" we found the best 
agreement between theory and experiment with the value 
r = 0.02 meV, in approximate agreement with the values in 
the literature3.10 for T = 1.8 K. For all the dispersion curves 

FIG. 4. Behavior of the refractive index of the mixed mode at small angles 
8 (the points are experimental, and the curves are theoretical). and dot- 
dashed curves-@ = 9.5"; 0 and dashed curves-8 = 5"; A and solid 
curves-8 = 2.5". Plotted along the ordinate is the relative change in the 
refractive index, An = n(o) - n(2.5522 eV) + 0.041. As we go from 8 = 5" 
to 8 = 2.5" there is a radical change in the frequency dependence of the 
refractive index: The discontinuity disappears, and a region of anomalous 
dispersion appears. 

in Fig. 4 the calculations incorporated the B exciton and 
used the damping value r = 0.02 meV found above. The 
other adiustable parameters were left unchanged. 

At 6 = 2.5" the discontinuity on the frequency depen- 
dence of the refractive index disappears (Fig. 4). The spot 
shifts in first one direction and then another, tracing out the 
region of the anomalous dispersion of the refractive index. 
We see from Fig. 4 that the transition to classical crystal 
optics observed experimentally is described well by the the- 
ory, which predicts a classical frequency dependence of the 
refractive index for 6 = 2.5". 

We should also point out that the reason for the discrep- 
ancy which remains between theory and experiment on the 
behavior of the refractive index at 6 = 5" (Fig. 4) is still un- 
clear (see also Ref. 2). Since it is at 6 = 5", i.e., at the transi- 
tion to the classical dispersion curve, where this discrepancy 
is observed it may be that its explanation will require a more 
careful analysis of the behavior of the refractive index near 
this transition. 

A few comments are in order regarding the experimen- 
tal determination of the frequency of the longitudinal exci- 
ton, since we used the value found for w, in all the calcula- 
tions. As the angle 6 approaches zero, the frequency interval 
in which the refractive index for the mixed mode differs sub- 
stantially from the background value decreases. At 
6 = O" it contracts to a point, thereby defining a limiting 
frequency a* .  It can be shows that this frequency agrees with 
the frequency of a longitudinal exciton whose wave vector is 
equal to the wave vector of light in the crystal: 
k = (w*/c)@. To find the frequency (w,) of a longitudinal 
exciton at = 0 we must subtract from h* the kinetic ener- 
gy of the exciton, fi2k2/2M, = ? ? ? W * ~ E ~ / ~ M ~ C ~ = ~ ~ O - ~  
meV-which lies within the error of the present experi- 
ments. We are thus justified in concluding that we have 
h, = h* = 2.5541 eV. 

4. CONCLUSION 

The experimental method based on the refraction of 
light by a thin prismatic crystal is thus an effective tool for 
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studying the single-particle spectrum of exciton polaritons 
in the particular case of uniaxial cadmium sulfide crystals. 
In the case of a mixed polariton mode it is possible to con- 
trollably change the projection of the dipole moment of the 
transition to the corresponding exciton state, and thus 
change the effective longitudinal-transverse splitting 
( A  z,~(A,,,0)), by varying the angle between the electric 
vector of the incident monochromatic wave and the hexag- 
onal axis of the crystal. In the experiments described here the 
crystal temperature was held constant and low enough that 
the fixed value of the damping of the exciton polaritons, 
found from the transmission spectra, satisfied the condition 
r<A,,. This condition ultimately made it possible to follow 
the changes in the dispersion properties of the mixed mode in 
a smooth transition from the region in which spatial disper- 
sion is important ( T g A  2,) to the limit corresponding to 
classical crystal optics ( r - A  Z, ) . The dispersion proper- 
ties of the mixed mode can be described quite well analytical- 
ly over the entire range of the longitudinal-transverse split- 
ting, and the parameters characterizing the single-particle 
polariton spectrum (E,, M,,  and A,) can be determined. It 
appears that the refraction of light by a thin prismatic crystal 

could also be used effectively to study the nonlinear dielec- 
tric properties of a medium near exciton resonances. 
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