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The methods of theories of pseudopotentials and simple liquids are used to carry out quantitative 
computations of the melting characteristics of the alkali metals. A previously described pseudo- 
potential model, the thermodynamic perturbation theory in the Weeks-Chandler-Andersen 
(WCA) form for a liquid, and the quasiharmonic perturbation theory for the solid phase are 
employed. The u 5 20% compression region, which corresponds to the region of applicability of 
the WCA method, is considered. For Na, K, Rb, and Cs the theory describes the thermodynamics 
of the solid and liquid phases with a high degree of accuracy, and the computed melting points 
Tm (u) agree with experiment to within 1-2%. The values of the volume jump AD for u = 0 are 
also quite close to the observed values, although the disagreement between AD and experiment 
increases with increasing u. The melting entropies AS (u) exceed the observed values by 15-20%. 
The possible causes of the deviation of the AD (u) and AS (u) values from the experimental data are 
discussed. For Li the agreement between the computations and experiment is worse because the 
pseudopotential model used is less adequate. The role of the various contributions to the thermo- 
dynamics of melting, the influence on the Tm of the quantum effects in the liquid phase, the 
sensitivity of the results to the approximations of the theory, the satisfiability of the Lindeman 
criterion on the melting curves, etc., are considered. 

1. INTRODUCTION 

The development of the theory of melting is one of the 
fundamental problems of the physics of the condensed state. 
But in spite of the availability of detailed experimental infor- 
mation'.' in broad ranges of pressuresp, quantitative theor- 
ies of melting have as yet not been developed even for the 
simplest materials. The absence of microscopic theories, 
which is due first and foremost to the absence until very 
recently of quantitative theories of the liquid state, led to a 
significant extension to the problem in question of model or 
phenomenological approaches, such as the "lattice-vacan- 
~ i o n , " ~ . ~  the "topological" and "d is l~ca t ion ,"~~~ and the 
"q~asicrystallite"~ theories of melting. But the microscopic 
sense of the concepts used in these investigations to describe 
the liquids does not seem to be quite clear. 

Attempts at the development of a more consistent ap- 
proach to the description of melting were meanwhile con- 
nected largely with the use of the methods of computer mod- 
eling, i.e., the Monte-Carlo and molecular-dynamics 
methods (see, for example, Refs. 2,8-10). The simplest mod- 
el systems with pair interaction potentials g, (r) of the type of 
the potential pH, for hard spheres, or with power-law poten- 
tials g,(r) = &(u/r)", the systems that were mostly consid- 
ered.2 Of the realisticp(r) potentials the one that has received 
the greatest attention is the Lennard-Jones-type potential 

(1) 

which has been discussed in application to a r g ~ n . ~ , ~  The re- 
sults obtained by computer modeling8 describe well the data 
on the melting of argon in the compression range from 0 to 
20%, and Hansen and Verlet's8 construction of the P-T 
phase diagram for argon, which is in good agreement with 
experiment, is considered by a number of authors as "un- 
doubtedly the principal achievement of statistical mechanics 

in the explanation of the phase relations between the solid, 
liquid, and gasH9 

But the procedures used in computer modeling (some- 
times called computer experiments2) are extremely long and 
laborious, have errors that are difficult to estimate,'1913 and 
are not very suitable for, for example, the computation of the 
second derivatives of the thermodynamic potentials. The de- 
velopment of analytic theories of real liquids and melting 
seems to be desirable. 

The development of thermodynamic perturbation the- 
ories (PT) for the description of the liquid state9*14*15 and of 
pseudopotential techniques for the computation of the inter- 
actions in nontransition metals (see, for example, Ref. 16) 
has created the prerequisites for the development of a theory 
of melting for these metals. The first investigations in this 
direction were performed by Stroud and Ashcroft17 and 
Jones.18 But, as discussed in Ref. 13, the methods and mod- 
els used in Refs. 17 and 18 are too crude for quantitative 
computations of the thermodynamics of melting to be possi- 
ble, and the agreement with experiment obtained for some 
quantities is only a consequence of a random mutual cancel- 
lation of the various errors. Thus, the values obtained in Ref. 
17 for the melting points Tm ( p )  of sodium in the pressure 
range from 0 to 30 kbar differ from the observed values 
3 7 0 ~  Tm ~5 10 K only by 20-90 K. But the refinement of 
only one of the computed approximations in Ref. 17 should 
shift Tm ( p )  by 200-2000 K.13 In Jones's paper,'' on the oth- 
er hand, the computations are carried out with great care. 
But the use of quite an inaccurate pseudopotential model 
and the crudeness of the methods used to describe both the 
solid phase (the Einstein model) and the liquid (variational 
method with a basis system of hard spheres, called below the 
HSV method13) made it impossible to obtain quantitative 
results in Ref. 18, too. Thus, the values obtained atp = 0 for 
the heat of transition qm in Li, Na, K, and A1 differ from 
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experiment by a factor of 1.5, while the values obtained for 
the volume jump AR differ from the experimental values by 
factors of 2 to 3, and the satisfactory agreement of the com- 
puted Tm with experiment (to within 10-20%) is, apparent- 
ly, also accidental (see Ref. 13 and below). 

Recently, Holian et a1.I0 computed the thermodynam- 
ics of melting of Na, using the methods of molecular dynam- 
ics. A rather crude pseudopotential model was used, and the 
accuracy of the description of the thermodynamics of the 
solid and liquid phases was not high in each case13; the com- 
puted Tm values differ from the experimental values by 10- 
20%. 

The consistent computation of the thermodynamics of 
melting of real materials clearly requires the solution of the 
following problems: 

a) The construction of a fairly adequate model for the 
interatomic interactions. 

b) The microscopic computation of the Gibbs thermo- 
dynamic potential G (p ,T)  = G, (p ,T)  of the solid phase. 

c) The microscopic computation of G ( p, T ) = GI ( p, T ) 
for the liquid phase. 

The melting curve Tm ( p )  is then found from the equa- 
tion 

G.(P ,  T )  =Gl (P, T ) ,  (2) 

where the characteristics of the melting are found from ther- 
modynamic relations. Let us note here that the ratio of the 
melting point Tm to the binding energy E,, the primary 
quantity in the theory, is quite small: Tm /Eb ~ 0 . 5 %  (Refs. 
13, 19, and 20b). Therefore, in order to be able to compute 
the Tm to within, say, several percent, the relative error 
made in the computation of each of the quantities G, and GI 
should not be higher than It is clear that this makes 
very high demands in respect of the accuracy with which 
each of the above-listed problems a)+) must be solved. 

For the alkali metals considered below all these prob- 
lems are solved in Refs. 19-24 and 11-13. It is shown that, 
with due care and computational consistency, the simple 
pseudopotential model described in Refs. 19 and 20a pro- 
vides a very accurate description-usually at the level of the 
experimental accuracy--of the broadest range of atomic 
properties of the metals in question (except some properties 
of Li): the binding energies and the elastic moduli cik at19 
T = p  = 0; the equations of state p(R,T) (Ref. 20a); the 
phonon the properties of the hcp phases and of 
the martensitic transitionszob; the specific heat, the thermal 
vibrations and thermal the temperature 
and volume dependences of the elastic moduli cik (T,p) (Ref. 
22); the anharmonic effects in the lattice d y n a m i c ~ ~ ~ ~ ~ ~ ~ ~  and 
lattice  thermodynamic^^'^; the structural and thermody- 
namic properties of the liquid phase at all Tright down to the 
vicinity of the critical etc. The results obtained 
in these investigations allow us to assume that the model 
described in Refs. 19 and 20a and the corresponding poten- 
tials q, (r) (Ref. 12) describe the ion-ion interactions in the 
alkali metals sufficiently accurately, and that the thermody- 
namic computations carried out in Refs. 19-23 for the solid 
phase are quite reliable. 

For the computations of the properties of the liquid 

phase we shall use the thermodynamic perturbation theory 
(PT) in the form proposed by Weeks, Chandler, and Ander- 
sen (WCA). 14.15 AS shown in Ref. 13, the WCA method turns 
out to be significantly more adequate for the description of 
liquid metals than the other variants of the thermodynamic 
PT (including the HSV variant), and, for a given q, (r), it al- 
lows us to find the thermodynamic potentials to within a few 
percent of T,,, . 

Thus, we have all the essential prerequisites for quanti- 
tative computations of the melting characteristics of the al- 
kali metals, and these computations, can, apparently, serve 
as a source of information about the microscopic nature of 
melting in the case of other metals as well. 

In Secs. 2 and 3 we describe the methods used to com- 
pute the G (p ,T )  potentials in the solid and liquid phases re- 
spectively. In Sec. 4 we present and discuss the results of the 
computations, carried out by these methods, of the melting 
characteristics of the five alkali metals from Li and Cs in the 
compression range from 0 to 20%. We also consider the 
question of the role of the various contributions (in particu- 
lar, of the equilibrium lattice defects) in the thermodynamics 
of melting, the question of the sensitivity of the results to the 
various approximations made in the description of the liquid 
phase, the question of the satisfaction of the Lindeman crite- 
rion on the melting curves, etc. The principal results are 
listed in the Conclusion. 

2. THE THERMODYNAMIC POTENTIAL OF THE SOLID PHASE 

The thermodynamic functions of the solid phase were 
found with the aid of the methods described in Refs. 20b, 
20e, 21, and 22. In view of the above-noted high-computa- 
tional-accuracy requirement, in doing this we also took into 
account the various relatively small contributions to G, : the 
contributions from the anharmonicity effects and the equi- 
librium lattice defects,20" from the terms of higher order in 
the thermal expansion,20b from the electronic excitations, 
etc. The Gibbs potential per atom G, ( p,T) (the chemical po- 
tential) was written in the form 

Gs(p,  T )  =En, (Q) + Fh(Q, T) + pQ+Fa,+Fe8+Gd,,. (3) 
Here R = R (p ,T)  is the atomic volume, E,, (0 ) is the static 
binding energy (see, for example, Ref. 25), F,, is the free ener- 
gy of the phonons in the harmonic approximation, Fa,, F,*, 
and G,,, are the contributions of the anharmonicity, the 
electronic excitations, and the lattice defects. The last three 
terms in (3) are small corrections to the first three terms, and 
we shall consider these two groups of contributions separate- 
ly. 

The static, harmonic, and quasiharmonic contributions to G, 

The quantity E,, , the dominant contribution to (3), is 
found by expanding it in powers of the electron-ion interac- 
tion psuedopotential V (q), and can, in the second-order (in V )  
approximation used here, be written in the form25,18 

E.t=Ec+E,,+E(0)+E(1)+E(2). (4) 

Here Ec is the Coulomb interaction energy of the ions in the 
compensating negative-charge background (the Madelung 
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term); EBM is the correction that takes account of the Born- 
Mayer repulsion of the ion cores; E'O' is the energy of the 
homogeneous electron liquid (described by the Nozibres- 
Pines approximation26); E (I)  is the contribution of the non- 
Coulomb part of V(q), and E '2' denotes the terms of second 
order in V.25 

The pseudopotential V(q) is taken in the local form pro- 
posed by Animalu and Heine,19.20a and contains two param- 
eters characterizing the dimension and depth of the ionic 
core. These parameters for each metal were determined by 
fitting the computed values of the atomic volume and the 
shear modulus c,, for T =p  = 0 to the corresponding ex- 
perimental values,20a713 and further considering them to be 
constant for all T and p in both the solid and liquid phases 
(the "hard core" m~de l ) . " - ' ~ ,~" -~~  For Li the model (with a 
local pseudopotential) used is less adequate than for the oth- 
er alkali metals, and the properties of Li are described less 
accurately by the m ~ d e l . ' ~ - ~ ~  

In the EBM calculations the Born-Mayer interaction 
constants were taken from Ref. 27. In this case the EBM 
values for Li and Na turn out to be negligibly small, and were 
neglected, but in K, Rb, and Cs, apparently, this correction 
also effectively describes the contributions of some effects 
that have not been explicitly taken into account---effects like 
the polarizability of the ionic cores, the nonlocality of the 
pseudopotential, etc.I3 

In computing f2 = f2 ( p,T) we can neglect the contribu- 
tions of the last three terms in (3),2k and use the quasihar- 
monic PT described in Refs. 2 1b and 20e, and corresponding 
to the expansion of the thermal expansion in powers of the 
phonon pressure p, . In the zeroth approximation the vol- 
umef2 = f2,(p) is found from the solution to the static prob- 
lem: 

In the harmonic approximation the phonon free energy F, 
and pressurep, are given by the well-known formulas2Ib : 

Here A, k, and w,, are the polarization, wave vector, and 
frequency of the phonon, the sum over k stands for f2 J d 3k / 
8 2 ,  the integration being performed over the Brillouin zone, 
B = 1/T, and the y,, = - d In w,, /d In f2 are the micro- 
scopic Griineisen constants, which can be simply expressed 
in terms of the dynamical rnatrix.'lb The thermal-expansion 
effects are described in the quasiharmonic PT with the aid of 
a power series expansion in the parameter 

where B,, = - f2dpst /df2 is the static compression modu- 
lus. The quantity u, is "literally" ofthe order of T/E,, , where 
E,, -BaO is the atomic energy; in the alkali metals we have 
ul-0.06 in the region close to T m .  Up to terms -u: the 
relative thermal expansion is equal to2Ib 

where (dB /dp), = - (d In Bst /d In f2 ),, and the subscript 0 
here and below denotes the value of the function for f2 = 0,. 
In the expansion (8) (and in the other similar expansions) the 
last term is, formally, of the same order (T2/&:,) as the ne- 
glected strictly anharmonic contributions. But it actually 
turns out to be an order of magnitude greater than these 
discarded terms because of the relative sharpness of the vol- 
ume dependences of the static contributions (dB,, /dp z 4 )  as 
compared to the phonon c ~ n t r i b u t i o n s . ~ ~  

Using (8) and the well-known thermodynamic relations, 
we can write the expansion of the first three terms of (3) in 
powers of u, in the form 

where the quasiharmonic correction G,, is given by the 
expression 

and A = 1 + (dB /dp),. Accordingly, the contribution of the 
terms in (9) to the entropy in the quasiharmonic PT has the 
form 

where the expressions for (S, ), = - (dF, /dT ), and (dS, / 
d In f2 ), = (f2dph /dT), are obtained by differentiating (6a) 
and (6b) with respect to T. 

Let us further give the result of the quasiharmonic PT 
for the Lindeman parameter r, = 2( ?)1/2/d [where 2 is 
the mean square linear displacement of the atom and d is the 
distance to the nearest neighbor in the crystal, which, in the 
bcc metals under consideration, is equal to f i (O /4)1/4], 
which is discussed below: 

where M is the ion mass. The methods used to evaluate the 
integrals in (6) and (12) (the computational errors of which do 
not exceed lop4%) are described in Ref. 21a. 

The anharmonic, electronic, and vacancion contributions to 
Gs 

In computing Fan, F,*, and G,,, for f2= f2 (p,T),  we 
used the quasiharmonic expression determined by the rela- 
tions (5) and (8). As noted in Ref. 20e, for the metals under 
consideration, the anharmonic term Fan in (3) is small com- 
pared to Tm at all T, and has the following form in the high-T 
region in question: 

Fa,=-'12c ('Q) T2. (13) 

The quantities with c(f2 ) are computed in Ref. 20e; as 
shown in that paper, they are very slowly varying functions 
of O. Therefore, in the compression range considered below 
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TABLE I. Quasiharmonic, anharmonic, electron, and vacancion contributions to G, and S,, 
computed for p = 0, T = TgP.  

-- - 

we can consider them to be constants, equal to c (R)  for forp = 0, T =  T,,, was then 0 . 4 4 5 % .  
f2(p,T)=fi(o,Tm).  The dependence of E ,, and R ,,/R on the compression 

The electron contribution F: in (3) was assumed to be u = 1 - R /Rm was assumed to be linear in each case: 
given by the usual expression F: = - ye T2/2. For the con- 
stant ye we used the free-electron value y, = r2z/ Eia=Eiem (l+uG), -=- I Qiam (i-uv), (17) 
2, = m ( z ~ ~ R  2/9fi6)113 (Z = 1 is the valency of the ion and m Q Qm 
is the electron mass), since, in the high-Tregion under consi- 
deration the effects of the ye renormalization by the elec- 
tron-phonon interaction tend to zero,28 while the ye renor- 
malization by the electron-electron interaction and the band 
effects in the alkali metals is, apparently, slight.26 

The thermodynamic contribution of the equilibrium 
lattice defects (also called the contribution of the "premelt- 
ing anomalies") is customarily considered to be be primarily 
to the monovacancies, and we shall use this assumption: 
Gdef = Gvac. Then this contribution in (3) has the form29 

G a - a AS Metal I F I -$?*I -$. 1 I * 1 1 ~,elp.l 

Here n,, is the monovacancy concentration, which is deter- 
mined by the Gibbs potential G ,, for the monovacancy: 

sti 1 sti 1 san+sz  1 suac 

where E ,, , S ,, , andR ,, are the energy, entropy, and volume 
of the monovacancy formation. The mean atomic volume 
is then connected with R ,, by the relation 

Si=Q+Q,.,, QvGc=ninQin. (16) 

The quantities E ,, and S ,, are estimated in Ref. 20e 
from specific-heat data for the temperature region close to 
the melting point Tm and normal pressure p =: 0 (the param- 
eter values corresponding to this point will be labeled by the 
index "m": E r;, , S r;, , R 'I:, R m  ). The E r;, and S r;, values for 
Li could not be estimated in Ref. 20e. Taking also into ac- 
count the above-noted crudeness of the model used for Li, we 
neglected the contribution G,,, of the defects in this metal. 
As the vacancy volumes for Na and K we took Jacucci and 
Taylor's calculated values3': R ,, =:0.7R. For Rb and Cs (for 
which we do not know of similar calculations) we set R ,,/a 
equal to the corresponding ratio for K, in view of the simili- 
tude of all the atomic properties of the metals in ques- 
t i ~ n . ' ~ - ~ ~  The total relative volume Rvac/R of the vacancies 

3.0 
2,4 
2.0 
2,3 - 

0,207 
0,193 
0.216 
0,200 
0.231 

Na 
K 
Rb 
Cs 
Li 

where the quantities S and Y were also taken from Ref. 30. 
The u dependence of S ,, (which is not considered in Ref. 30) 
is evidently weaker, and we neglected it. 

Before discussing the numerical values of the Gvac con- 
tributions in Table I, let us note that the interpretation (14) of 
the observed Gdef ( T )  in terms of the monovacancies in the 
alkali (and many other) metals meets with difficulty, leading 
to discrepancies in the n,, estimates obtained by different 
experimental methods. Thus, the n,, estimates obtained 
with the aid of x-ray structural analysis methods are signifi- 
cantly lower than the estimates obtained from the specific 
heat data.20" But the E ,, , S ,, , and n,, values used by us were 
obtained in Ref. 20e from specific heat data, i.e., from direct 
thermodynamic measurements. Therefore, although the ac- 
tual nature and functional form of G,,, may differ from (14), 
the numerical values obtained for Gvac and Svac = - aGvac / 
a T  forp = 0, T=: Tm are, apparently, sufficiently close to the 
real Gdef and Sdef = - aGdef /aT values. But the value of the 
volume Rvac = n,,R,, of the defects and the form of the 
dependences Gvac ( p), Svac ( p), and nVac ( p) are now more clo- 
sely tied with the assumption used, and, therefore, the esti- 
mates obtained for them are, generally speaking, less reli- 
able. 

To illustrate the role of the above-discussed contribu- 
tions to the thermodynamics of melting, we give in Table I 
the values, computed for p = 0, of the quantities G,, , Fan, 
F:, Gv, and the corresponding entropies S,, , San + S :, 
Svac (where Si = - dGi/dT), as well as the observed 
Tm = TZP, together with experimental values for the en- 
tropy of melting AS taken from Refs. 2 and 3 1 [here and 
below the notation Af =A-fs stands for the difference 
between the values of the function f i n  the liquid and solid 
phases at the melting point Tm (p)]. The results for Li 

0,844 
0.844 
0.828 
0.846 
0.794 

0,031 
0,027 
0.032 
0.028 
0,039 

0,141 
0,187 
0.195 
0,216 
0.114 

371.0 
337.0 
312,1 
301.6 
453.8 

TABLE 11. Contributions to the thermodynamic functions of liquid sodium on the melting 
curve. 
-- 

0.051 
0.043 
0,041 
0,049 - 

39.5 
32.8 
33.9 
30.2 
56.9 

UP., I y-, I -2, 1 1 - F ' ,  1 -2~2 1 Hid 1 -s;gf 1 -,ggL 1 S q  1 ,, 
Sb 

0 370 71 644 2076 1238 492 11,21 3.22 1,28 0,96 0,524 
72 244 847 11.35 1,30 1,13 0,560 1 I 72 909 1 RP 1 8ii 1 1476 1 11,G 1 3:; 1 1-26 1 1.28 10,599 

3.9 
3,1 
3,3 
2,8 
6.5 

16.5 
19.3 
18.4 
19.6 
16.0 
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TABLE 111. Contributions to the free energy of liquid and solid sodium (in K). 

Liquid Crystal 

kbar 

, 370 1 68 356 25 762 23 1 1 1 7 2  246 1 25 668 25 577 1 1268 
437 71 395 25 653 25 894 74 584 25 523 28 140 1540 

21.7 504 74625 25 443 29 323 2234 77 117 %307 31 106 1843 

(which, as noted above, are less reliable) are given in this and 
the other tables presented below after the results for the oth- 
er metals. The quantities G and S in Table I denote the 
first, while GF: and Sf1 denote the second, terms in the 
formulas (10) and (1 lb). It can be seen from Tables I and IV 
and Fig. 2 that at TZ Tm the derivative d(G, - G,)/ 
dT  = AS= 1. Therefore, the variations (as a result of parti- 
cular approximations) in the G, or G, potential are numeri- 
cally close to the variation in the computed melting point 
Tm . As to the variations SS, and SS,, they are directly con- 
nected with the variation in the entropy of melting AS: 

It can be seen from (18) and Table I that the discarding 
of any of the contributions under discussion would lead to 
some reduction in the computed Tm and some increase in 
AS, T,,, being much less sensitive to the corrections than AS 
and the heat of melting qm = TmAS. This evidently reflects 
the well-known variational properties of the thermodynamic 
p~tential.~'  

3. THE GlBBS POTENTIAL FOR THE LIQUID PHASE 

The quantity G, was found from the relation 

where F= F, is the free energy of the liquid phase and 
f2 = f2 ( p, T )  is the atomic volume, which was found from the 
solution to the equation 

pl (Q, T )  =-dF (Q, T)/dQ=p. (20) 
In the temperature region T4eF under consideration a 

liquid metal is a two-component system consisting of ions 
moving in a classical manner (for the quantum corrections, 
see below) and a degenerate electron liquid screening the 

TABLE IV. Comparison of the computed and measured values of the therm~ 
atp = 0, T =  TZP.  

Coulomb interaction between the ions. In this case the pres- 
ence of conduction electrons leads [as in (4) in the case of the 
solid phase] to the presence in the energy of large structure- 
independent terms ESi that depend only on the electron den- 
sity."." 

In the second-order-in the pseudopotential-mode1 
under consideration, the structure-dependent part of the en- 
ergy can be represented in the form of a sum of ion-ion pair 
potentials p(r) of the following form1"": 

Here p,, (r) is the non-Coulomb part of the ion-ion interac- 
tion, for which we shall use the Born-Mayer approximation: 

(pnc=qh~=a exp (- yr) , 
while F (q) has, in the case of local pseudopotentials V (q), the 
form 

F ( q ) = w q ) I ' I ( q ) / ~ ( q ) ,  
where 

E ( q )  =1+4neZII(q)/q2 

is the dielectric function. 
To compute the free energy F (a, T )  of a liquid with the 

potential (21), we use the thermodynamic PT in the WCA 
form“w. , the application of this method to liquid metals is 

described in detail in Ref. 13. In all the variants of the ther- 
modynamic PT, the interion potential p (r) is split up into the 
potential p,(r) of the basis system and a perturbation 
v(r) = p p o ,  so that the potential energy @ can be written as 

iPj iPf 

where rV = Iri - rj I is the distance between the ions i and j. 
The expansion of F in powers of V has the form32.33 

odynamic quantities 
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Metal 

Na 

K 

Rb 

C8 

Li 
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T. K 

371.0 

337,O 

3121 

301.6 

&3,8 

Crystal 

- 1 G : ,  r 1 8 8  1 a.u. 

Liquid 

-G: 1 sl 1 " 1 3  

a.u 

271,1 
(270.6) 
520,3 
(515.3) 
630.9 
(632.8) 
799.3 
(786.7) 
151.4 
(149.6). 

73 405 

61 329 

58 337 

64 523 

86544 

1494 
(1540) 
1745 
(1771) 
1976 
(1986) 
2178 
(2160) 
1252 
(1144) 

1493 
(1540) 
1746 
(1771) 
1974 
(1986) 
2167 
(2160) 
1176 
(1144) 

7.74 
(7,78) 
9.09 
(9.06) 
10.34 
(10.25) 
11,28 
(11.12) 
5,87 
(5,65) 

6,76 
(6,93) 
8.10 
(8,22) 
9,37 
(9,41) 
10,29 
(10,28) 
4,93 
(4,86) 

278,5 
(277.6) 
534,3 
(528,5) 
647,4 
(648,1) 
819.9 
(806.0) 
155.1 
(152,O) 



Here F,, is the structure-independent term, which can 
be written as13 

FIG. 1. Melting curves T,,,(U:P) of the alkali metals; the relation between 
the compression uYP and the pressurep is indicted in Table V. For clarity 
of the figure, the results for each heavier metal are shifted by 50 K down- 
wards relative to the results for the lighter metal. The values indicated 
along the Taxis are for Na; for K they should be read as T + 50 K; for Rb, 
as T +  100 K; for Cs, as T + 150 K. The points are experimental 
points.2.34 

where N is the number of particles, (v), = (V),/N, (...), 
denotes thermodynamic averaging over the basis system. In 
the WCA method the potentials q,,(r) and v(r) are chosen in 
the form 

% (r) = l,rp (r) 0 (r,-r) , 

V (r) -%I3 (rm--r) +q (r) e (r-rm) , 
(24) 

where q,, = q, (r, ), r, is the position of the first minimum of 
q, (r), and 13 (x) = 0 for x < 0 and 1 for x > 0. Further, the free 
energy and the radial function of the distribution g,(r) of the 
basis system are found through expansion in powers of the 
"softness" parameter { of the core potential q,,(r), and v(r) is 
taken into account in the first order of the thermodynamic 
PT, i.e., only the first term in (23) is retained. The conver- 
gence of the two power series expansions in < and v then turn 
out to be very rapid (see Refs. 33 and 13 and below). 

With allowance for the foregoing, the free energy FwcA 
for liquid metals can be represented in the form 

F=F,i+FEs+<v>,, <V)~=F$;  +Fit. (25) 

FIG. 2. Temperature dependence of the difference G,( p,T) - G, ( p,T)  for 
sodium at p = 0. The continuous curve is the approximation obtained 
with the aid of the WCA method; the dashed curve, the approximation 
obtain by the HSV method. 

where F:, E 'O), and F(q) are the same functions as in (3), (4), 
and (24). The quantity F,, is the free energy of the auxiliary 
system of hard spheres (HS) used in the WCA method. The 
diameter d,, = d of these spheres is determined from the 
condition for the convergence of the expansion of the func- 
tion Fo in (22) in powers of the softness parameter ( of the 
potential q,,(r) in (20) to be the most rapid.I3-l5 The configu- 
rational part F$gf of FHs is approximated by the Carnagan- 
Starling (CS) formula, which gives quite an exact interpola- 
tion of the computer-modeling results for the HS system9: 

eonf 
FHs=Fid+ FHS , 

Here F,, is the free energy of an ideal gas, M is the ion mass, 
and 7 = n-d 3/6f2 is the packing parameter of the HS. 

The quantity F$& in (25) stands for the contribution of 
the first order thermodynamic PT in terms of the deviation 
of q,(r) in (24) from the potential pH,, and is given by the 
expression 

rn 

F;:) =(q)HS=42q J dxx2 gH.3 (x) 9 (xd), (28) 
i 

where x = r/d and gHs (x) is the radial distribution function 
of the HS system. As shown in Ref. 13, in actual calculations, 
it is more convenient to compute the sum of the terms E,, 
and F$), in (26) and (28) as a single quantity, transforming it 
into a form similar to (4): 

Here E0(f2 ) and E,(R ) are the same quantities standing 
in (4) [for volume (a) values corresponding to the liquid 
phase], while the first, second, and fifth terms correspond to 
E, , E ,, , and E (')in (4), and are obtained from the expression 
for the solid phase by replacing the lattice sums by integrals 
with the radial distribution function g,,(x) and the sums 
over the reciprocal-lattice vectors by integrals over q with 
the structure factor S,, (9). 

Finally, the last term in (25) corresponds to the linear- 
in the softness parameter (-correction for the deviation of 
po(r) from pH,, and has the formI3 

rmld 

FiE=-12q dx~~g, ,  (x) cpo (zd) . J (30) 

Thus, the complete expression for the free energy of the 
liquid phase has the form: 

F=E(~)+F,'+E(~)+F~,+U?+ ~ 2 : )  +u:: + F ~ ~ .  (3 1) 
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The methods used in the computation of the expres- 
sions (29) and (30) (with a computational error of the order of 
10W4%) are described in Ref. 13. 

Estimates made in Ref. 13 show that, for T z  Tm and 
p =; 0, the terms of higher powers in 6 discarded in (25) are of 
the order of 1276 2Tm, and the neglected terms of higher 
powers in u have roughly the same order of rnagn i t~de . ' ~ '~~  
For the alkali metals, 6-0.1 and 7 ~ 0 . 5  in the vicinity of 
Tm , and the present estimate yields SG, -0.05 Tm . 

It is also noted in Ref. 13 that the WCA method is less 
accurate in the region of large compressions u = 1 - 0 ( p)/ 
0, 2 0.15. This is connected with the fact that the values of 
the packing parameter 7 of the auxiliary HS system used 
become too large: 7 k 0.58. At the same time the equilibrium 
HS system crystallizes when 7-0.49, and the value 
77 = T,,, ~ 0 . 6 4  is indeed the highest possible value for ran- 
dom HS packing.9*21 Therefore, the properties of the auxil- 
iary HS system begin to exhibit (nonphysical) anomalies at 
the above-indicated large 7 values, and the accuracy of the 
WCA method (especially for the volume derivatives of P) 
begins to drop. 

The role of the various contributions (26)-(30) is illus- 
trated in Table I1 by the results for liquid sodium on the 
(theoretical) melting curve Tm = Tm(p). For the conve- 
nience of comparison of the results for the various metals, in 
this and the next tables and in the figures, instead of the 
pressure p we give the melting-curve values of the ob- 
served-in the solid phase-compression u7P = 1 - 0, ( p ) /  
f2,(0), whose connection with p is indicated in Table V. It 
can be seen that the dominant contribution to F is made by 
the structure-independent term Psi , while the dominant con- 
tribution to S is made by the ideal-gas entropy Sid 
= - dFid /dT; this allows us to compute the total F and S 

fairly accurately even when the methods we use to describe 
the thermodynamics are cruder than the WCA method.I6 
Table I11 illustrates the above-noted analogy between the 
expansions (4) and (29) in powers of the pseudopotential in 

the solid and liquid phases. It can, in particular, be seen that, 
near Tm in the liquid, as well as in the crystal, the second- 
order term U gL:',, is small compared to U FS, E '", and E '". 

Tables I1 and I11 also show that the term (u), =I;;$ 
+ FIE in (22) is not small compared to the terms FHs and 
~ g g ~  of zeroth order in u. But, as noted in Refs. 33,9, and 13, 
the actual convergence of the expansions (22) is much better 
than what the formal estimates indicate because of the weak- 
ness of the fluctuations in the perturbation V in the case of 
close-packed basis systems and the smoothness of the func- 
tion u(r) in the WCA method. Thus, for a liquid with poten- 
tial (I), near the triple point the deviation of the entire series 
(22) from the first term (u), is -0.4% (Ref. 33). In the metals 
under consideration this would correspond to an error 
(SG,),,, (for a given q, (r)) of about 5-7 K. The results pre- 
sented below suggest that this estimate may not be too far 
from reality. 

It can also be seen from Table I1 that, as the compres- 
sion u is increased, the quantities FkL = (q,),, and FIE be- 
gin to change drastically, and the quantity (q,),, even 
changes sign drastically at high u > 0.2. This is due to the 
sharp increase that occurs at large 7 in the first peak of the 
radial distribution function g,, ( x , ~ )  in (28) and (30) for x =; 1 
(gHs ( 1 ,7) can be expressed in terms of pHs = - dFHs /dl2 as 
g ( 1 , ~ )  = ( Pf2pHS - 1)/47 [Ref. 331). As has already been 
noted, these nonphysical anomalies in the properties of the 
auxiliary HS system lead to a drop in the accuracy of the 
WCA method in the u k 0.2 region. It can, however, be seen 
that, for moderate u < 0.2, the sum Pk$ + PI; = ((v, varies 
with u much more slowly than each of the terms, so that the 
total P, (22), varies smoothly in this region of u. 

4. MELTING CHARACTERISTICS OF THE ALKALI METALS 

The results of the computations of the properties of the 
alkali metals on the melting curves are shown in Tables I-V 

TABLE V. The thermodynamic quantities on the melting curves T, (p). 
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FIG. 3. Dependence of the relative volume jump A 0  /a, that occurs dur- 
ing melting on the compression uYP. The dashed curve indicates the re- 
sults obtained for Na under the assumption that the volume of the defects 
does not depend on the pressure: 0 , , ( p )  = 0,,,(0). The experimental val- 
u e ~ ~ ' ~ ~  are indicated by the points: 0) Na; X )  K; A) Rb; 0) Cs. 

and in Figs. 1-4. For Na, K, Rb, and Cs all these results turn 
out to be similar (although the accuracy of the pseudopoten- 
tial model used drops somewhat as we go from Na to Cs 
[Refs. 19-24]). Therefore, comprehensive data are given 
only for Na and Rb. As noted above, our model with a local 
pseudopotential is less adequate for the description of Li, so 
that the results for Li are illustrative in character, and are 
not discussed in detail. 

The values of G f and G 7 in Table IV indicate the "ther- 
mal" contributions, which can be expressed in terms of the 
directly measurable enthalpy and e n t r ~ p y ' ~ . ~ ~ :  

where G,(O) = Eo is the energy of the solid bcc metal at 
T = 0; the theoretical Eo values used are given in Table IV. 
The experimental values are given in brackets in Tables IV 
and V. In the case of G f, G 7, S,, and S, in Table IV these 
values were taken from Ref. 34; in the case of all the remain- 
ing quantities, from Refs. 2 and 3 1. All the theoretical results 
in Tables 11 and IV correspond to the computed Tm (p )  val- 
ues found with a prescribed p from Eq. (2). 

Let us first discuss the results in Table 111, which char- 
acterize the accuracy with which the theory describes the 
solid and the liquid phases separately. In the case of the crys- 
tal the quasiharmonic PT formulas (3), (5)-(12) furnish a con- 
sistent description of the thermodynamics, and the inaccur- 
acy of the theory [for a given form of the potentials q, (r)] may 
be due only to the relatively small contributions of the type 
G,,, in (3). Therefore, a comparison with experiment of the 

quantities G f ,  S,, and a, in Table IV allows us to estimate 
the effect of the errors of the interaction model itself on the 
thermodynamics, whereas for the liquid phase the accuracy 
of the WCA method used is, generally speaking, also not 
quite apparent. l3 It can be seen that the results for S, and G f 
are in good agreement with the results of the phonon-spec- 
trum computations carried out in the same model.19 Thus, 
for Na the disagreement with experiment, SS, = S, - SyP 
z - 0.17, which is largely determined by the error made in 
the computation of S, , (1 la), corresponds, in accordance 
with the results obtained in Ref. 19 for w,, in Na, to the 
error (Sw,,/w,,) ~ 0 . 0 6  made in the phonon-frequency 
computations. At the same time, in Rb, where the w,,'s 
computed in Ref. 19 are in good agreement with experiment, 
the S, value in Table IV almost coincides with the observed 
value. Similarly, the discrepancies SG f ( p = 0) 
= S(Ef - TS,) are largely determined by the differences 

between the errors SS, and SEX zS(3T - Ezp) = - 6 ZP 9 

where Ezp is the zero-point-vibration energy. Thus, accord- 
ing to this estimate, (Sw, ,) ,-0.08(w, ,) in Na. Let us also 
note that, in the case of Cs, the good agreement between 
experiment and the quantities S, and G f (and the specific- 
heat calculations21a) shows that the phonon spectra of Cs 
(not yet measured) are apparently well described by the mod- 
el used. 

The results for the solid and liquid phases in Table IV 
allow us to conclude that the accuracy of the WCA method 
used with a given interaction model is markedly higher than 
the accuracy with which this same model describes the inter- 
actions in the metals under consideration, and the errors 
introduced by the model into the differences GI - G, almost 
cancel out: SG, - SG, zO. This makes it possible for us to 
compute the Tm(p) values with quite a high accuracy (see 
below). There also occurs significant cancellation of the er- 
rors in the computed equilibrium volumes 0, and a,. At the 
same time the WCA method apparently overestimates 
slightly the entropy S, ,  the magnitude of this error (SS,),,, 
~6 (S, - S, ) = 0.13-0.15 being weakly dependent on the 
model used (in contrast to the errors SS, and SS,, which 
depend essentially on the model). 

The Figs. 1 4  and Table V describe the thermodynam- 
ics of melting. It can be seen that the computed melting 
curves Tm (p) are in excellent agreement with experiment at 
all not too high compression values u 5 20%. This confirms 
the above-indicated high accuracy of the WCA method in 
application to liquids, and the possibility of the use of this 
method for precision Tm calculations when we have suffi- 
ciently adequate models for the interactions. In this case it 
can be seen that the sensitivity of Tm to the details of the 
models (e.g., the accuracies with which the phonon spectra 
are described) is not too high: the melting points Tm for Na 
and Rb have been computed with practically the same de- 
gree of accuracy. At the same time, Fig. 2 and the values for 
Na (HSV) in Table V show that the use of the now commonly 
employed HSV method for the computation of GI leads to 
the overestimation of Tm by a factor of almost two, and is 
consequently not suitable for quantitative Tm computations. 
Therefore, the satisfactory agreement with experiment ob- 
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tained with the aid of the HSVmethod in Refs. 19 and 20 for 
T, in the alkali metals is apparently due only to accidental 
cancellation of the errors introduced by the models em- 
ployed and the methods used to compute GI and G, (Ref. 13). 

Let us make a remark about the effect on the T, calcu- 
lations of the quantum corrections, which we neglected in 
the liquid (in contrast to the solid) phase. The contribution 
GI, of this correction in G, (see Ref. 32, $33) can be estimated 
by assuming it has the same value in the solid phase at 
T z  T,,, : 

where the last estimate corresponds to the Einstein model 
for the phonon spectrum. Using for E,, the values computed 
in Ref. 21a, we obtain for G,,(Tm) in Li, Na, K, Rb, and Cs 
the values 28, 6, 2, 1, and 0.5 K respectively. According to 
(1 5), this correction should lead to an increase ST, G,, in 
the computed T, . It can be seen from Tables IV and V that 
allowance for GI, draws theory and experiment slightly to- 
gether in Li (yielding T,,, ~ 4 0 0  K for TZP = 454 K), and 
preserves the agreement between T,  and experiment to 
within 5-10 K for the remaining metals. 

Let us discuss the results given in Table IV and Fig. 3 
for the volume jump Af2 = 0, - 3, that occurs during the 
melting. Forp = 0 the computed Af2 /a, values agree with 
experiment to within 2-9%. But the disagreement with ex- 
periment increases sharply when we go over to nonzero pres- 
sure, and in the compression region 0.03 5 u 5 0.15 our Af2 
values are significantly higher than the observed values, 
while for u 20.15 they, on the contrary, nonphysically 
sharply drop off with increasing u. The latter circumstance 
is evidently connected with the above-noted fact that the 
WCA method is less accurate at high compressions, this de- 
crease in accuracy of the method occurring at lower u in the 
case of Af2 (connected with the volume derivatives of F,) 
than in the case of GI or AS (see Ref. 13 and Figs. 1 and 4). At 
the same time, the large excess of the computed Af2 over 
AfleXp at small u is due to the rapid "extinction" under pres- 
sure p of the contribution Odd = a,, , computed from the 
relations (14)-(17), of the defects. Therefore, this disagree- 
ment with experiment seems to indicate that thep depen- 
dence of the contribution Gdef of the defects to (3) is actually 
not given by the formulas (14)-(17), i.e., the contribution (14) 
of the monovacancies to Gdef is actually small.2k But if we 
assume that the defect volume, being numerically close to 
the above-estimated value RVac atp = 0, actually varies little 
withp, i.e., that ad, ( p) =adef (0) z f2,, (0), then the comput- 
ed Af2 values will be close to the observed values at all com- 
pressions u 5 0.15; this is illustrated for Na by the dashed 
curve in Fig. 3. The description of the entropy of melting AS 
gets similarly (though to a lesser extent) refined if we assume 
that the contribution of the defects is independent ofp, i.e., if 
we assume that Sdef ( p) zSv, (0) (see Fig. 4). The contribution 
of Gdef to G, is small (see Table I), but even here the assump- 
tion that Gdef ( p) z Gde,(0), which lowers G, and Tm , slightly 
improves the agreement of T,,, ( p) with experiment at highp. 

FIG. 4. Dependence of the entropy of melting ASon the compression uyP. 
The dashed curve indicates the results obtained for Rb under the assump- 
tion that the entropy of the defects does not depend on the pressure: 
S,,,(p) = S,,,(O). The experimental are indicated by the points: 
a) Na; X ) K; A) Rb; 0) Cs. 

Thus, our results could be an indication of the fact that 
the premelting anomalies in the metals under consideration 
are not due to the production of vacancies, but have a differ- 
ent nature. Let us, however, note that this conclusion de- 
pends essentially on the values we use in the computations 
for the quantities S,,, El,, and n,, in (14) and (15). Thus, if 
n,, is in fact much smaller than the value indicated by our 
estimates (this is apparently indicated by the published n,, 
measurements2"), and the appreciable magnitude of the 
anomalies in the specific heat c, = ( ~ E l , ) 2 n l ,  is accounted 
for by S,, and El, values that are much higher than our 
values, then the contributions of f2,,,/f2 can be much 
smaller than the contributions obtained in the above-per- 
formed estimates. The theoretical Af2 /a, values forp = 0, 
shown in Fig. 3, will then become 0 . 5 4 7 %  greater than the 
observed values, and will, with increasing p, vary roughly 
parallel to the experimental curves right up into the region 
u,  20.15, where the WCA method becomes inapplicable. 
Then our results would indicate that there occurs in the 
WCA method a systematic, model- and compression-insen- 
sitive, 0 . 5 4 7 %  overestimation of the theoretical values f2, 
of the liquid phase. Quantitative computations of the quanti- 
tiesS,, and El, in the alkali metals seem to be quite desirable 
for the elucidation of these questions. 

In Fig. 4 we present the results for the entropy of melt- 
ing AS. It can be seen, in particular, that the above-noted 
model-insensitive disagreement between the magnitude of 
the entropy jump and experiment, S(AS ) = 0.13-0.15, re- 
mains roughly constant under pressure if, in accordance 
with the foregoing, we assume that the entropy of the defects 
in the solid phase is a slowly varying function ofp, i.e., that 
Sdef ( p) zSvac (0). As has already been noted, this discrepancy 
in ASis evidently due to some overestimation of the entropy 
S, in the WCA method, which should give rise to an error 
6Fl = - TSS, z - 50 K in the free energy. Therefore, the 
above-noted high accuracy of the (G,),,, computations 
may indicate the cancellation of this error by a similar error 
in the computed energy (E,),,, . But the occurrence of such 
a cancellation of the errors in the G,(p,T) calculations may 
reflect the well-known variational properties of the thermo- 
dynamic potentials, properties which manifest themselves 
in, in particular, the variational properties, discussed in Ref. 
13, of F, computations carried out by the WCA method. 
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Finally, let us consider the question, which has aroused 
great interest, of the "criteria" for melting or crystallization, 
i.e., the question of the possible constancy of some character- 
istics of the solid and liquid phases on the melting curves of 
different materials. For the solid phase the best known is 
Lindeman's semiempirical rule asserting the constancy of 
the ratio rL (Tm ), (12a), in crystals with similar types of bind- 
ing. Our calculations show that, for the alkali metals, this 
criterion is fulfilled with a high degree of accuracy. At all the 
investigated compression values us 5 0.2 the computed rL ( p) 
values on the melting curves lie in the range 0.174(rL 
(0.18 1, and almost do not vary withp [or, (p)/r, (0) 5 0.01- 
0.021, whereas, for example, the thermal expansion u*(p) 
computed for T = Tm (p )  from (8) decreases by a factor of 
1.5-2. For the liquid phase, Ferraz and March3' have sug- 
gested that the crystallization of simple liquids occurs when 
the height Sp of the principal peak of the structure factor 
S(q), increasing with decreasing T, attains some value (S, 
~2.7-2.8), which indicates a definite degree of short-range 
order (see also Ref. 24). Here we note that the configuration 
entropy Sc0,, = S - S,, , which determines the deviation ofS 
from the entropy Sid of the ideal gas, can also serve as a 
qualitative measure of the short-range order in a liquid. In 
the investigated compression range O<u 5 0.2 the SConf val- 
ues on the melting curves ofthe alkali metals are indeed quite 
close: in experiment2 the quantity ISconf 1 increases by 3-4%, 
while in the computations the variations 6Smnf amount to 1- 
2%. For the purpose of comparison, let us point out that, 
when, for example, we heat liquid Na from 371 to 473 K at 
~ z O ,  thequantity IS,,, I decreases by34 1596, while the peak 
height Sp decreases by36 12%. Therefore, the approximate 
constancy of S,,,, can be regarded as an indirect indication 
of the possibility that the criterion that Sp ~ c o n s t  on the 
melting curves of the alkali metals is fulfilled. 

5. CONCLUSION 

In conclusion, let us enumerate the main results of the 
present paper. They can be conditionally divided into meth- 
odological and physical results. 

The main methodological result is the demonstration of 
the fact that the WCA method furnishes a highly accurate 
description of the thermodynamics of liquid metals when we 
use fairly adequate models for the interactions, as well as the 
possibility of employing this method for precision computa- 
tions of Tm for all moderate compressions U N  5 20%. At 
the same time is is shown that the accuracy of the now com- 
monly used HSV method is insufficient for quantitative 
computations of the Tm in metals. Our calculations also in- 
dicate that, in the WCA method, the entropy S, of the liquid 
phase at TZ Tm is overestimated by an amount SS, ~ 0 . 5  
that depends weakly on the compression and the form of the 
model used. In the free energy F, this error is, however, al- 
most canceled out by a similar overestimation of the energy 
F,. We have also considered in detail the various thermody- 
namic contributions to the solid and liquid phases and their 
role in the thermodynamics of melting. We give, in particu- 
lar, an estimate for the influence on Tm of the quantum ef- 
fects associated with the motion of the ions in the liquid, and 

show that this influence is fairly appreciable in Li, but weak 
in the other metals. 

The important physical result seems to be the indication 
that the position of Tm is relatively insensitive to the form of 
the models for the interactions, in particular, to the accuracy 
with which the phonon spectrum is described. This may re- 
flect certain properties of universal melting, at least for ma- 
terials with similar types of binding, and facilitate the devel- 
opment of quantitative theories of melting. Also important is 
the result that we cannot describe the observed compression 
dependence of the volume jump A n  with the use of the "va- 
cancion" expressions (14) and (15) for the contributions Gdef 
and a,,, = dG,,/dp of the defects. As discussed above, this 
may indicate that the "premelting anomalies" are not due to 
the production of vacancies, but have a different nature, or 
that the values of the entropies and energies of formation of 
the vacancies are much higher than the values obtained in 
the preceding estimates. It is also noted that the good agree- 
ment with experiment of the computed G :, s, ,  and specific 
heat in Cs in an indication of the high accuracy of the de- 
scription of the phonon spectrum of this metal by the model 
used.19 Finally, it is shown that the Lindeman criterion 
rL ~ c o n s t  [where rL is given by (12)] for melting is, apparent- 
ly, very well fulfilled on the melting curves of the alkali met- 
als, at least in the region of moderate compressions u 5 0.2. 

On the whole, the results of the present paper show that, 
in the case of simple metals, the combination of the pseudo- 
potential theory with the thermodynamic PT in the form of 
the WCA method allows a quantitative description of the 
thermodynamics of liquid metals and the thermodynamics 
of melting. 

The authors are deeply grateful to S. M. Stishov, I. N. 
Makarenko, and A. M. Nikolaenko for valuable information 
about the experimental data and for useful discussions. 
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