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The possibility of coexistence of ferromagnetic ordering and superconductivity in a two-band 
model of semimetal with an isotropic current-carrier spectrum is investigated in detail. It is 
shown that triplet electron-hole and Cooper pairing with weak electron coupling can coexist at 
unequal electron and hole densities. A nonzero mean magnetic moment appears in this case. 

1. INTRODUCTION 

The coexistence of superconductivity and magnetism is 
of great interest because the interaction of these two compet- 
ing order parameters leads to the appearance of new states in 
which magnetic ordering and superconducting pairing are 
transformed in such a manner that they can coexist. In most 
theoretical papers, however, the investigations concern 
mainly materials either with magnetic impurities or made up 
of magnetic elements.' The question of coexistence of mag- 
netism and superconductivity in substances without mag- 
netic impurities or made up of nonmagnetic elements has 
been attracting attention in connection with the observed 
abrupt increase of the magnetic susceptibility and of the non- 
linear field dependence of the magnetic moment in super- 
conducting ternary molybdenum chacogenides to which A1 
and Ga are added.' In such cases the magnetic ordering can 
be due to collectivized electrons, in analogy with the Stoner 
band ferromagnetism3 and the excitonic ferromagneti~m.~ 
In the present paper is investigated, for a simple two-band 
model of a semimetal with an isotropic spectrum, the possi- 
bility of existence, in a superconductor, of the nonzero mag- 
netic moment that is produced by interference between spin- 
density waves and Cooper pairs. It is known that in the case 
of triplet pairing of electrons and holes from different bands, 
an excitonic dielectric is antiferromagnetic and a spin-den- 
sity wave is produced in it.5 At unequal electron and hole 
densities, the system is unstable to Cooper pairings. Simulta- 
neous existence of triplet electron-hole and intraband Coo- 
per pairings leads automatically to the existence of triplet 
pairing of electrons from different bands [see Eq. (8)]. Since 
the functions I:'!, that describe the intraband Cooper pair- 
ing [see Eq. (7)] are antisymmetric in spin, the interaction 
between the dielectric and superconducting order param- 
eters lifts the spin degeneracy. By virtue of the triplet pairing 
of electrons from different bands, the redistributions of the 
spins in two bands are not canceled out and a nonzero mag- 
netic moment exists in the system at arbitrarily small inter- 
action constants. The Stoner criterion that the interaction 
constants must satisfy actually becomes weaker in the pres- 
ent paper because account is taken of the valence band (the 
extra electrons below the gap) in addition to the conduction 
band (extra electrons above the gap). Since the spin splitting 
takes place in both bands, the kinetic-energy loss that is due 
to the redistribution of the carriers above the gap and pre- 
vents the existence of a ferromagnetic state at weak interac- 

tion in the case of one band3 is offset by the energy gain on 
account of the states below the gap. 

2. THE MODEL HAMILTONIAN 

The single-particle spectrum of electrons of an isotropic 
semimetal is described by the Hamiltonian 

where p is the electron quasimomentum; i = 1 and 2 label 
respectively the electron and hole bands; a,(p), a': (p) are the 
Fermi operators of annihilation and creation of electrons 
with spin a/2 = + 1/2 in the ith band, and 

E ~ , ~  (p) =bp*e (p) , e (p) = ~ ~ / 2 m - ~ ~ .  (2) 

Here E~ is the Fermi energy, m is the effective mass which is 
assumed for simplicity to be the same for an electron and a 
hole, Sp is the Fermi-level shift produced in each of the 
bands by the doping. Neglecting local impurity levels, it can 
be assumed that the difference between the hole and electron 
densities is given. This condition enables us to determine Sp. 

We retain in the electron-electron interaction Hamil- 
tonian Hi,, only the direct-interaction terms 

(the summation is over i, j, a,,  a,, p,, p,, q), so that the Hamil- 
tonian of the system is 

H=H~+H~:: ' .  (4) 

Allowance for the interaction terms 

(the summation is over i, j, a,,  a,, p,, p,, q (i+j)) correspond- 
ing to electron transitions from one band to another leads 
only to a renormalization of the interaction constants / Z U .  

We continue the analysis in the high-density approxi- 
mation, when the following inequalities hold: 

where e is the electron charge, E, is the lattice dielectric 
constant, and x is the reciprocal of the screening radius. In 
this case the potentials Aij and g can be regarded as indepen- 
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dent of the momentum. This is permissible for the potential 
ilii because of the screening, while the potential g is short- 
range by its very definition. Its matrix elements are calculat- 
ed with Bloch functions of different bands, and the latter are 
practically mutually orthogonal. We assume next that the 
c~ns t an t s i l~  andg are real. They can be made real in the case 
of simple bands (that are degenerate only in spin) by a gauge 
transformation. 

3. BASIC DEFINITIONS AND EQUATIONS 

Our problem of coexistence of ferromagnetism and su- 
perconductivity, as stated in the Introduction, reduces to 
ascertaining the conditions under which coexistence of a tri- 
plet-dielectric parameter and a superconducting order pa- 
rameter with nonzero magnetic moment is possible. We 
shall use a diagram technique for temperature Green's func- 
tions6 which are defined, as usual: 

~ : t ~  (x-x')  = - < ~ $ i o ,  ( 2 )  4,z (2') ). 

dinger representation these operators can be expressed in 
terms of the annihilation and creation operators of band 
electrons with quasimomentum p: 

where pip ( x )  is a Bloch function with electron qausimomen- 
tum p in the ith band. 

We shall consider, besides the normal Green's func- 
tions G, also the anomalous Green's functions that charac- 
terize the triplet dielectric pairing G 'i , (i#j), and the intra- 
band superconducting pairing, F 'L , . Writing down the 
equations for these functions, we can verify right away that 
the simultaneous existence of the anomalous functions 
G ", (i#j) and F 'L , leads automatically to the existence 
of anomalous Green's functions F z, (i#j), which character- 
ize the triplet superconducting pairing. Indeed, the equa- 
tions for these functions contain, on top of the diagrams 
shown in Fig. 1, four analogous ones with the indices 1 and 2 
interchanged. 

Here t+b and t+b+ are the electron annihilation and creation In the Matsubara representation, the system (Fig. 1) can 
operators in the Heisenberg representation. In the Schro- be expressed after a Fourier transformation in the form 

The gaps are defined in terms of Green's functions by the 
following expressions: 

A,.=T E.G.I:(P, o ) ,  
P P  

s:~=T Z L , F ~ ( P ,  w),  (10) 
P,W 

Soi l=T A 5, F a:J ( P ,  a )  (i+i), 
P.0 

where w = ITT (2n + 1) and n is an integer. 
The solution of the system (9) is 

DG,,"= ( i o + e l )  (eZ2+o2)  - 1  A -o ,12 ( - io+~2)  

+ I S ? ! ~ , I ~ ( ~ ~ + E ~ )  

-2 ~e ( ~ ~ b - , ~ ~ , ~ - , , ) + ~ ~ ~ , l ~ i i o + e ~ ) ,  
21 

D G - , , = - ~ , f . ( i o + e ~ )  ( io+e2)  +A:-,) A-mi 

+s:~-,s:;: ( i o + e 2 )  
1 1 .  22 -s-,,s-,,A-,,-s::' s~:-,A~,,+s~:' ~ ? ~ ~ ( i o + e ~ ) ,  

11+ 2 1 .  . 22.  . 
DF-oo =S- , , -oAo-o ( io+~2)  -S-o , ,A~-oA-~o (11) 

+S~~(E~~+~~)+S?~~IS?,,(~ 
2 1 .  * 10 2%.  -Soo A- , , ( - io+e2)  -& S-o-aS-oo, 

21+ 21.  . 22- . 21' 21 
DF,, =-S-,-A,-d-,+S-,A,-,(io+e,) + S,, IS -.-, 1 

I. 
where the determinant of the system (9) is 

D= ( O = + O + ~ )  (oZ+o-2). (12) 

Substituting the expressions (1 1) for the Green's functions in 
(10) we obtain a system of self-consistent equations for the 
gaps. 

4. CONDITIONS FOR THE COEXISTENCE OF ELECTRON- 
HOLE AND COOPER PAIRINGS 

Denoting the phases of the gaps by a, for A,-,; a, for 
21 2 1 A~,;a , forS~,;a , forS22,;a5forS -,-, ;a6forS,, 

we obtain the conditions for the existence of a solution of the 

11. I i .  1 .  
- s - ,d- , , ( - io+e2)  -s?~-S-,, f?,, +em ( - i o + e 2 )  ( i o + e l ) ,  FIG. 1. 
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system of equations (10) for the gaps: 

where k,, k,, and k, are integers. An investigation of these 
conditions yields readily the following physical solutions: 

a) a solution corresponding to a spectrum of elementary 
excitations of the form 

a,'= ( E & ~ ~ I ) ~ + S ~ ,  

E'=E~+A~, 6p2=m6p2+SZ2, (14) 

A2= (6pAf SISz) '/6p2, S2= (6pSl~S2A)2/6p2; 

b) a solution corresponding to a spectrum of elementary 
excitations of the form (14) with S, = 0; 

c) a solution corresponding to a spectrum of elementary 
excitations of the form 

a,'= (E*SP)~+S~~,  E2=ef  A'. (15) 

These solutions were obtained under the assumption 
that the gaps A,-, and A_,, S1!, and S22,, and S:u 
and S 2!, - , have pairwise identical moduli, which were de- 
signated A, S,, and S, respectively. We are not interested in 
solutions a) and b), which yield a zero magnetic moment and 
coincide with the solutions investigated in Ref. 7 for singlet 
dielectric pairing. 

Substituting the expressions for the Green's functions 
(1 1) with spectrum (15) in (lo), we obtain a system of equa- 
tions for the gaps: 

where N(0) is the density of states on the Fermi level, and w, 
and w, are the cutoff frequencies for Aii (i#j) and A,, respec- 
tively. 

It can be seen from (16) that the equations for the gaps 
have a solution when A,, < 0 and A,, > 0, corresponding to 
attraction of the electrons in one band and of an electron to a 
hole from different bands, just as when the dielectric and 
superconducting pairings exist separately. 

For T = 0 (we can obtain analytically the interaction- 
constants region in which electron-hole and Cooper pairings 
coexist (mixedS-D state). This region is shown in Fig. 2 in the 
coordinates (Ao, So), where do and So are respectively the 
dielectric and superconducting gaps when they exist sepa- 
rately: 

FIG. 2. S-region of existence of superconducting state; [S-D ]-region of 
metastable mixed state. S-D (M #O)-region of existence of mixed state 
with nonzero magnetic moment. 

The line A = 0 on which S, = 0 is determined by the equa- 
tion 

and the line S, on which S, is also equal to zero is determined 
by the equation 

So=O. (19) 

The region of existence of mixed S-D state is located between 
the line S, = 0 and the line A = 0. It can be seen from (18) 
and (19) that the system is unstable at arbitrarily weak inter- 
action between the electrons, when extra electrons exist 
(6p # O), and the region of the dielectric pairing becomes nar- 
rower because of the existence of Cooper pairing (see Fig. 2). 
In fact, the region of the existence of a mixed S-D state is 
restricted also by the condition for the free energy. Indeed, a 
general expression for the free energy of the state in question, 
relative to the state of the normal semimetal,' is 

where we use the representation 

From this we get 

where A.0, and A.0, are the free energies of the dielectric 
and superconducting states relative to the state of the normal 
semimetal when they exist separately. 

It can be seen from (2 1) that for the mixedS-D state to be 
energywise favored over the excitonic dielectric and the su- 
perconducting states, when they exist separately, the follow- 
ing condition must be satisfied: 
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On the diagram the line A = S2 lies in the (A,, So) plane, 
between the lines A = 0 and S, = 0, so that the region of 
existence of the mixed S-D state lies between the line A = S, 
and the line S, = 0 (the shaded region in Fig. 2). Since a 
numerical calculation is needed to plot the line A = S,, we 
show it symbolically as dashed. 

5. MAGNETIC PROPERTIES OF MIXED S-D STATE 

The average magnetic moment can be calculated in 
terms of the Green's functions: 

wherep, is the Bohr magneton. Substituting in (23) the ex- 
pressions for the Green's functions from (1 l), we obtain for 
the considered state with spectrum (15) 

M-2 - t h )  . (24) 

The magnetic moment that results from the interaction 
of the dielectric and superconducting order parameters van- 
ishes when one of these order parameters is zero. In the gen- 
eral case the dielectric-transition temperature T, (at which 
A = 0) differs from the superconducting-transition tempera- 
ture T, (at which S, = 0). Thus, the Curie temperature (at 
which M = 0) will be the smaller of TD and T,. 

To conclude this section we note that in the case of an 
undoped semimetal the system (16) has a solution only at a 

finite value ofill,. For weak interaction, the system (16) has a 
solution ifS, = 0 andso = A,. Notwithstanding so stringent 
a condition on the interaction constants at S, = 0, it can be 
seen from (24) that the average magnetic moment is also 
equal to zero. It is seen from the figure that the mixed S-D 
state in which a nonzero magnetic moment exists can be 
stable at any value of So, but only at A,> 2Sp. Thus, the 
conditions for the interaction constants, which, as stated in 
the Introduction, are weakened by spin splitting in both 
bands compared with the similar condition in Stoner's the- 
~ r y , ~  do not change for R ,, in this case (owing to the condi- 
tion Sp # 0). 

In conclusion, the author thanks V. G. Bar'yakhtar, 
Yu. V. Kopaev, and B. A. Volkov for a discussion of the 
results. 
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