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A novel type of spin waves in superfluid 3He-B is studied, waves which may be regarded as along- 
wave spatial modulation of the nonlinear magnetization ringing. The speed of propagation of 
these waves is anomalously small, by an order of magnitude smaller than the speed of usual spin 
waves in superfluid 3He. Arguments are presented that these are the waves which were observed 
in the known experiments1 on propagation of magnetic excitations in 3He-B. 

INTRODUCTION 

Spin waves in nonequilibrium states of 3He-B were first 
detected in Ref. 1, where the relaxation of magnetization in 
weak magnetic fields was studied. In order to detect these 
waves (which in the sequel will be called WSW waves) use 
has been made of general properties of the so-called WP 
mode of nonlinear magnetization ringing in 3He-B. In Ref. 1 
the WP-mode was generated in the following manner. A 
sample of 3He-B was placed in a parallelepipedal cavity and 
an external field was applied parallel to one of the walls of 
the cavity. The magnitude of the field did not exceed that of 
the dipolar field, which in Ref. 1 was of the order of 10 gauss. 
After the system attained equilibrium the external field was 
switched of suddenly, i.e., over an interval much shorter 
than the relaxation time. This provoked a precession of the 
spin of the system, giving rise to a clear long lived signal. In a 
series of experiments the field was not switched off com- 
pletely but only to some value H, called the residual field; an 
induction signal was observed also in this case. The high 
quality and the duration of the signal of the WP mode were 
used in Ref. 1 for the detection of the WSW waves, which 
could not be detected by usual methods. In Ref. 1 these 
waves were excited by a sudden change of the field compo- 
nent longitudinal to the direction of wave propagation at a 
point far removed from the pickup coil. The effect of propa- 
gation of a spin wave was estimated from its action on the 
WP mode. If the WSW wave arrives on time, the configura- 
tion required for the generation of the WP mode may be 
destroyed, and the signal of the WP mode is detected poorly 
or not at all. The results obtained in Ref. 1 show that there 
are two modes with a lifetime of several tens of milliseconds, 
and propagating in a small residual field of the order of 30% 
of the dipole field with a group velocity of several tens of cm/ 
s. More precisely, at a pressure of 20.7 bar, a temperature 1- 
T/Tc = 0.02, and a residual field of the order of 5 gauss, the 
speeds of propagation were 17 and 21 cm/s, i.e., differ by an 
order of magnitude from the corresponding speeds of the 
spin waves in spatially homogeneous 3He-B at equilibrium. 

The spin waves studied in the present paper seem to 
have a direct relation to the WSW waves. They may be con- 
sidered as waves of spatial modulation of the WP mode, 
when over a sufficiently small scale the configuration of the 
spin and of the order parameter may be considered spatially 
homogeneous, whereas at the scale of the device there is no 
spatial homogeneity. The analysis of the magnitudes of the 

dynamical variables involved in the process shows (see be- 
low) that there exists a clear cut separation between the re- 
gion of high frequencies, corresponding to the spatially ho- 
mogeneous regime, and the region of low frequencies, 
corresponding to the propagation of large-scale spatial exci- 
tations. The group velocity of the waves studied in the pres- 
ent paper is given by the equation 

~ , = 2 l t k c ~ ~ ~ / y H ,  (1) 

where k is the wave number, y is the gyromagnetic ratio for 
3He, ell is the velocity of the longitudinal wave, H is the 
switched-off magnetic field required to generate the WP 
mode, is a dimensionless factor of order unity. It is interest- 
ing to note that for wavelengths of the order of 3.4 mm (the 
size of the generating coil in Ref. l), a pressure of 20.7 bar, a 
temperature of 1-T/Tc = 0.02, and a field H = 5 gauss (the 
data of Ref. 1) the velocity v, turns out to be 13.8 cm/s (cf. 
infra, Sec. 3) in good qualitative agreement with the results 
of Ref. 1, namely 17 and 21 cm/s for the two observed 
modes. 

1. LONG TEXTURE-SPIN WAVES IN =He-B 

The order parameter for 3He-B, AV = (A /d)ei'?'RV is 
parametrized in the present paper by the angle 0 and the axis 
ci of the rotation matrix 

Rij=cos 0sij+ (I-cos 0 )  C ~ C , - - E ~ ~ ~  sin Ock. 

It is assumed that there exists a dependence only on one 
spatial variable z. The Leggett-Takagi (LT) equations of spin 
dynamics in superfluid 3He in the presence of spatial inho- 
mogeneities are given by2-6: 

1) The Poisson brackets of the spin components and of 
the order parameters 

[ s i ( r i ;  t )  ; Sj(rz; t )  ] =&{jRSk(ri; t ) 8  ( r i - r2) ,  

[ s i ( r i ;  t )  ; Ajrn(r2; t )  l=~ijkAkm(ri; t j6 (r i - rZ) ,  

[Asj (ri, t )  ; Akm (rz, t )  ] =O; 
2) The Leggett Hamiltonian with gradient terms 

3) The dissipative function 
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Here y , ~  are the gyromagnetic ration and the susceptibility, 
UD is the dipolar energy, UD = gD (cos 8 + a)' + U,. It is 
convenient to use the dimensionless variables 

S , = Y ~ - ' Q - ~ S ,  t,=nt, z,=L-lz, HR=yP-'H; 

where D is the Leggett frequency, and L is the spatial scale. 
In the sequel the index R will be omitted everywhere. In the 
indicated variables the L T equations have the form 

Here cll and c, are the speeds of the longitudinal and trans- 
verse spin waves (see Ref. 7), r is the width of the longitudi- 
nal NMR lines which determines the relaxation term.2 In the 
sequel the coefficients in front of the gradient terms will be 
denoted by 

In the weak-coupling approximation7 the relation 2K1 = K, 
holds. 

We estimate the magnitude of the terms entering into 
the LT equations in the range of temperatures and pressures 
investigated in Ref. 1: pressure 20.7 bar, temperature 1-T/ 
T, = 0.02-0.05, external field of the order of 5 gauss. In this 
range the Leggett frequency is given by 

P = ~ ~ ~ ~ ( I - T / T , ) ' " . I ~ ~  [rad . s]13, 

i.e., D = (3.078-4.867) X lo5 rad/s. From the results of Ref. 
2 [it suffices to compare equations (6.13) and (6.3 1) in Ref. 21 
it follows that the relationsr = (a/37?)D, holds, wherea is 
the constant in the relaxation law of the square of the period 
of the WP mode f -' = fo-' + a t  (see Ref. 2). In Ref. 1 the 
temperature-dependence a-' = 5.8 X 10'' (I-T/T, ) was 
found for a, hence rll /D = 0.305. 

For the correct estimate of the magnitude of the dipolar 
term one must take into account the magnitude of the devia- 
tions of 8 from the equilibrium value 8, = arccos (-i). In the 
absence of an external field one may assume that the system 
is near the regime of the WP mode; then the following for- 
mula derived by Brinkman8 holds: 0 - e, = J3/5(y~ /D )2 

(see also the following section), where H is the field being 
switched off. If there is a residual field of magnitude suffi- 
ciently small compared to the dipolar field, then the indicat- 
ed formula remains valid in order of magnitude. For the data 
of Ref. 1 the field is of the order of 5 gauss, which in the range 
of temperatures under consideration is of the order of 30% 
of the dipole field. If one makes use of the Brinkman formula 
listed above, the dipole term will be of the order 0.04, the 

dissipative term is of the order 0.01, and the term involving 
the magnetic field is of the order of 0.09. 

In order to estimate the gradient terms the spatial scale 
must be chosen correctly. The characteristic scales in Ref. 1 
are of the order of several millimeters (the sizes of the coils 
are 3.4 mm, the distance between them 6.1 mm), and there- 
fore one may choose 1 mm as the characteristic scale. In the 
weak coupling approximation this implies (see Sec. 3) that 
2K, = K, = 3 x lo-'. Thus the gradient terms are by three 
orders of magnitude smaller than all other terms and can 
consequently be treated perturbatively. It  is important for 
the sequel that the characteristic frequencies of spatially ho- 
mogeneous spin dynamics in the range of temperatures and 
field strengths under consideration is of the order lo4-lo5 
rad/s, whereas the frequencies of spin waves at that scale of 
lengths (of the order of 1 mm) is of the order not exceeding 
lo3 rad/s, since in the region of temperatures and pressures 
under consideration clI - 200 cm/s (Ref. 7, vide in fra). One 
can thus carry out an averaging over the rapidly varying 
variables which are related to the spatially homogeneous dy- 
namics, and derive equations for the mean values describing 
the spin waves on the configuration of the WP mode. 

2. THE EQUATIONS FOR THE MEAN VALUES 

We assume that the residual external fields are such 
that the term involving the magnetic field is much smaller 
than the dipole term and the relaxation term, and that in the 
first approximation the system may be considered spatially 
homogeneous. 

The spin dynamics in 3He-B in the absence of spatial 
inhomogeneities is characterized by the stationary solutions 
of the dissipation-free Leggett equations. To these solutions 
coriespond long-lived modes of the nonlinear magnetization 
ringing. In the regime of switched-off external field there are 
only two such modes: the WP mode8 and the attractor re- 
gime.9*10 In the presence of a residual field there are several 
modes of stationary solutions, a complete set of which has 
been recently described by Fomin. '' An essential trait of the 
long-lived modes is the fact that the system tends to reach a 
regime which is close to one of them over a time which is 
much shorter than the relaxation time. When an external 
field of magnitude smaller than a certain threshold is 
completely switched off, the system goes into the WP mode. 
If the residual fields is much smaller than the dipole field, 
one may assume as a first approximation that the system 
moves near a WP mode, and treat the influence of the residu- 
al field perturbatively. 

The stationary solutions lose their meaning in the pres- 
ence of sufficiently large gradient terms; this is a manifesta- 
tion of the difference between the latter and the dissipative 
term, which does not destroy the long-lived modes related to 
stationary solutions, but only forces the system to be in the 
vicinity of one of them, whereas spatial inhomogeneities 
tend to force the system out of a long-lived mode. However, 
if the latter are sufficiently small compared to the dissipative 
term, their influence on the spin configuration and on the 
order parameter reduces only to a spatial modulation which 
is small in amplitude and can be taken into account pertur- 
batively. 
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The method used in the present paper is based on the 
use of an integral of the spatially homogeneous dissipation- 
free Leggett equations, namely the Brinkman-Cross vector 
(cf. the review paper1') which has the form 

In the presence of dissipation, external fields, or gradi- 
ent terms the vector J is not conserved, and this allows one to 
use it for a quantitative estimate of the role played by the 
indicated factors. 

It is very important that J allows one to describe com- 
pletely the dynamics of the spatially homogeneous WP 
mode. In the regime of the WP mode the angle 6 is a con- 
stant, the vector c is perpendicular to J, the spin S is perpen- 
dicular to c and forms the angle t(6 + r) with J. Both vectors 
S and c rotate around J with constant angular velocity 

The equations of the WP mode are obtained by equating to 
zero the right-hand sides of the nondissipative Leggett equa- 
tions'; they yield an equation relating the magnitude of the 
vector J to the angle 6: 

The last equation may be considered as an equation of state 
for the WP mode. In turn the spin S and the axis c are deter- 
mined by the vector J in the form 

s=- J- ctg 'Iz€) [Jxe]  , c=u cos @+v sin v. ( 5 )  
Here IC, is the phase and u and v are two vectors perpendicu- 
lar to each other and to J. In the presence of dissipation the 
system will evolve in time remaining near the WP mode. We 
show that from the fact that the equations (4) and (5) are valid 
it follows that the linear Leggett-TakagiZ relaxation law 
holds: 

f-z=fo-z-tat, 

where f is the frequency of the WP mode. 
It follows from the equations (2) that, in the presence of 

dissipation but in the absence of an external field and of spa- 
tial gradients, the vector J satisfies the equation 

The right-hand sides of the last equation are small, and we 
average them over the period of the basic solution of the 
unperturbed problem for which J is a constant of the motion. 
This basic solution is the WP mode defined by the equations 
(4) and (5). Making use of the averages 

< [SC] >=ctg ('/z0) J,, <S>=m-J 

the equilibrium value 8, = arccos( - A). Therefore, consid- 
ering 6 as constant, we have 

This yields the linear law 

f-z=f,-2+at, a=8nz cos - 0 rIl/S2. (: 1 
For 6 = arccos( - a )  we have r,, = (a/3r2)f2, in complete 
agreement with the relation obtained above from the micro- 
scopic equations of Ref. 2. By means of similar reasoning one 
can see that the deviations 66 from the equilibrium values 
exhibit a linear behavior of the type 66 - ' = 68 - ' + Bt. It is 
important to note that the equation for the time dependence 
of 6 is obtained from the equation (6) for the mean J and the 
equation of state (4) for the WP mode, A direct averaging of 
the LT equation for 6 is incorrect, and leads to a wrong 
result: the relaxation time of 0 to equilibrium comes out to be 
several microseconds, whereas it is well known, and also 
from experiment,' that this time coincides with the lifetime 
of the WP mode, and is of the order of several milliseconds. 

It follows from the above considerations that it is con- 
venient to characterize the spatial modulation of the WP 
mode through the dependence of the vector J on the point in 
space. In order to derive the appropriate equation we first 
list the exact (not the averaged) equations for the vector J, 
equations which follow from the complete LT equations (2). 
They can be written in terms of Poisson brackets in the fol- 
lowing compact form: 

The first two terms of the equations (7) are generated by the 
gradient part of the Hamiltonian and by the external field; 
each of them is co~sidered a small perturbation of %e origi- 
nal Hamiltonian H L .  It should be noted that [J; H L ]  = 0. 
The third term is generated by the dissipative term in Eqs. 
(2). The right-hand sides of Eq. (7) are averaged over the 
basic solution (4), (3 of the unperturbed Hamiltonian system 
with Hamiltonian HL . Thus a method analogous to the adia- 
batic approximation of quantum mechanics is used. It is 
worth noting that this method was used already by Laplace 
for a calculation of planetary orbits. 

In the present paper the dynamics of the spin and of the 
order parameter are considered in the linear approximation, 
i.e., the deviations of J from some value J, which does not 
depend on the point of space, are considered small and the 
products of gradients are neglected. It is assumed that every- 
thing depends only on one spatial coordinate z and the de- 
rivatives with respect toz are denoted by primes: f '  = af /az. 

and of the equation (4) for the angle 6 we obtain the equations With these assumptions the averaged equation (7) has the 
for the mean value (J)  (the symbol () will be omitted in the form 
sequel) 

-- 
For fields of the order of 30% of the dipole field 6 is close to 

4 K z E ~ ~ ~ w ~ w ~ W '  sin 0 
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- ~ ~ i ~ ( c ~ " c , )  (I-cos 0)2 

-his( [cc"]~) sin 0-(c3'[ee1l]i) (1-cos 0)3 
(8) 

+(c~c~[cc"],> [ (I-cos 0)'-sin2 0 (I-cos 0) I )  

Here wi = Ji/lJI, E ~ , - ~ s  the totally antisymmetric third 
rank tensor (the Levi-Civita symbol), () denotes averaging 
over the period of the WP mode. In order to calculate the 
averages (c,c, " ) , (c, "c, ), etc. a convenient parametrization 
of the vectors u, v, and w which define the configuration of 
the WP mode [cf. Eq. ( 5 ) ]  at a point of space, is very impor- 
tant. The vectors u, v, and w form an orthonormal frame 
which, when moving from point to point, undergoes a three- 
dimensional rotation R. In the linear approximation the ro- 
tation matrix is close to the unit matrix R = 1 + SR. To the 
infinitesimal rotation SR corresponds a vector Sa such that 
the change of a vector X under such a rotation R is 
S X = S a x  X. Thus, the derivative of the vector X with re- 
spect toz will have the form X' = S p x X with p = Sa/Sz. In 
the linear approximation, when the squares of gradients (i.e., 
terms quadratic inP ) are neglected, we obtain for the second 
derivative with respect to z the result Xu = AX X. With re- 
spect to the frame u, v, w it is convenient to choose the gauge 
for the vector A such that A . w = O  and then 
u" = - (uwV)w, v" = - (vwm)w. In calculating the averages 
in Eq. (8) the values of the coordinates of the vectors u, v, w 
may be set equal to the coordinates of constant vectors u,, v, 
w,, around which they oscillate. From the invariance of the 
system with respect to rotations around the z axis it follows 
that w can be selected in the form w = (O,w,,w,). Indeed, the 
right-hand sides of the averaged equations (cf. infra) depende 
only on the coordinates u,, v,, and w, of the frame u, v, w. 

The results of the averaging of the right-hand side of the 
equations (7) is conveniently represented in the form of an 
equation for the magnitude J = I JI and two equations for the 
coordinates w, , w, of the vector w relative to the axes u,, v,. 
In doing this it is convenient to use the general formulas 

where X is a time-dependent vector, Xis its magnitude, and n 
is the unit vector n = X -'X. 

In this section we consider the case when the residual 
field H is absent; the influence of the residual field is dis- 
cussed in Section 3. 

Under the formulated assumptions, the equations for J ,  
W, , W, have the form 

where the coefficients A,, , A,,, A,, , and A,, in the weak- 
coupling approximation (2K, = K,) is given by the formulas 

The coefficients in Eq. (12) have been calculated for the equi- 
librium value 19 = arccos ( - b), since in the linear approxi- 
mation one can ignore the small deviations of 6 from the 
equilibrium value. 

It is convenient to reduce Eq. (9) to an equation for the 
phase @. For this we note that J may be decomposed into a 
sum J = J, + S J ,  where J, obeys the spatially homogen- 
eous relaxation equation (6)  and S J corresponds to the spa- 
tial inhomogeneities. In the linear approximation we obtain 
for IS JI the equation 

According to Eq. (3) the resolution of J into a S J and JsH 
corresponds to a resolution of the angular velocity w = w, 
+ Sw and of the phase $ = qSH + S$ into a spatially homo- 

geneous and dephasing parts. From Eq. (3) and Eq. (4) we get 

1 
-- 

d 
sin-' ($0)  $61- - 69 

at2 

Note that $" = a@". Making use of the relation between 6 J 
and S$ given above, we obtain the phase shift equation 

For 0 = arccos( - b) and switched-off dipole fields of the or- 
der of 30% the dipole field, we have Z--0.3. One can elimi- 
nate 0 " from the equations (10) and (1 1). For this purpose one 
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must first express 8 " in terms of J " with the aid of Eq. (4), and 
then in terms of the phase shift S$ by means of Eq. (3). We 
finally obtain the equations for w, and w, in the form 

where the coefficients A,, , A,, , A,, , A,, are given by Eqs. 
(12). It should be noted that their form depends on the choice 
of u, v. The most symmetric expressions for the coefficients 
are obtained if one chooses u, v such that u, = v,, u,  = - v,. 
Then one obtains the equality A,, = -A,, . 

The equations (14) and (15) split if the vector w = w, is 
parallel to the z axis: u, = v, = 0. One should keep in mind 
that the coefficients in front of the gradient terms contain the 
coordinates of the vectors u,, v,, w, (vide supra). 

The equations (14) and (15) represent a complete set of 
linearized averaged equations for the phase shift S$ and for 
the oscillations of the precession axis w. 

The equations (14) and (1 5) yield a dispersion law for the 
waves proportional to exp i(kz - wt ). For this purpose it is 
convenient to choose the gauge of the frame u, v, w so that 
u3 = 0. Then v3 = w,, A,, = -A,, = 0. The coefficients 
A,, and A,, are of the order of K, and one can neglect the 
small difference between their magnitudes and set A,, 
= -A,, =a = K2. 

After the indicated simplifications the dispersion law 
takes the form 

We consider the case when w is collinear with z, i.e., 
w2 = 0. The dispersion law splits into an equation for the 
phase shift and an equation for the oscillations of the vector 
w: 

JZo2-QZk1=0, wZ-Bkz-i (I',,/Q) J2Zo=0. (18) 

In the situation considered in the present paper (vide supra), 
we have B-K2-3 . lop5; (r,, /D ) J2Z-0,014,008, 
whence B( ( r  ,, /D ) J '2. Thus, the second equation (1 8) ad- 
mits only decaying modes for the phase shift. From the first 
equation (18) follows the existence of an undamped mode of 
oscillations of the precession axis w = J/J. The group veloc- 
ity of the corresponding waves is v, = 2kDJ -'; in dimen- 
sional units it is given by Eq. (1). 

The configuration with w, # 0 can be taken into account 
perturbatively. It  is easy to see that the phase-shift mode will 
be damped in this case too. The dispersion law for the propa- 
gating mode of oscillations of the vector w has (up to second 
order terms in K, and w,) the form 

Po2=Q2k4 (1-igw;), 
where g-0.01 for the external switched-off fields consid- 

ered in the present paper (see Section 1). Thus, for the data 
considered here,', the damping is still sufficiently small so 
that waves can propagate. 

3. THE INFLUENCE OF A RESIDUAL EXTERNAL FIELD 

We assume that there is a residual external field He 
which is much smaller than the dipole field, and is parallel to 
the z axis. We assume that the vector w oscillates around the 
z axis, i.e., w, = 2. In this special case the equations for the 
phase shift S$ and for the vector are uncoupled. Repeating 
the reasoning of the preceding section we obtain from the 
equation (8) an equation for the phase shift of the form 

where Z i s  given by the same formula as in Eq. (14). It is easy 
to see that the phase-shift mode is damped. The two equa- 
tions for w, and w, are conveniently written in terms of a 
single equation, by introducing the complex function 
@ = w, + iw,. The equation for @ which is equivalent to 
the two equations for w, and w, , has the form 

Here all coefficients are calculated in the weak-coupling ap- 
proximation, for 8 = arccos( - b). 

In form Eq. (19) coincides with the one-dimensional 
Schrodinger equation. It yields the dispersion law 

The corresponding group velocity is v, = (65/32)Kd -'H. 
In dimensional units it is given by the same equation (1) as in 
the absence of a field. 

CONCLUSION 

In the present paper we have considered a type of spin 
waves which is specific fora superfluid liquid with a compli- 
cated order parameter, such as 3He-B. The situation studied 
here is not similar to spin waves in usual magnetic materials, 
in the sense that the waves discussed in the present paper 
exist only in nonequilibrium states of ,He-B generated by the 
WP mode of the spatially homogeneous spin dynamics. For 
the case of the Brinkman-Smith mode a similar phenomenon 
has already been studied by F ~ m i n . ~  It is possible that in 
addition to the gap-free spin- and order-parameter waves 
studied in the present paper there may exist other types of 
waves; Fomin conjectured that there may exist high-fre- 
quency gap modes with a low velocity of propagation. This 
interesting suggestion deserves to be investigated. 

As Volovik pointed out to the author, the equations 
derived in this paper for the averaged characteristics are 
reminiscent of the equations for the orbital dynamics of liq- 
uid crystals.I4 This circumstance seems natural, since the 
vector J, whose average lies at the basis of the derivation of 
the equations, is reminiscent of an angular momentum [cf. 
Eq. (311. 

The peculiarity of the processes considered in the pres- 
ent paper manifests itself with particular clarity in their 
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large-scale, averaged characteristics, described by waves 
both in the spin and in the order parameter. It is as if we were 
dealing with a new system, which arises on the basis of the 
superfluid 3He. This circumstance might serve as the source 
of some not completely useless physical analogies, like the 
above-mentioned analogy with liquid crystals. 

The waves under discussion can apparently be generat- 
ed in experimental situations by a sudden switching-off of an 
external field for 3He-B placed in a parallelepipedal cavity, 
i.e., in exactly the same manner in which the WP mode, on 
which they propagate, is generated. As explained in Section 
3, the presence of a sufficiently small and appropriately ori- 
ented magnetic field does not impede their existence. If these 
conditions can be weakened, then they are an adequate mod- 
el of WSW waves.' In this respect it is encouraging that their 
group velocity agrees well with the propagation velocity of 
WSW waves (see the Introduction). At the present time this 
is the only existing theoretical explanation of the small ve- 
locity of WSW waves (see Ref. 1). It should, however, be 
noted that there are two disagreements with the results of 
Ref. 1: that paper recorded two modes with velocities of 
propagation differing by 20-30%; and the temperature de- 
pendence of the observed velocities was proportional to (1- 
T /T, ) ' I 2 ,  whereas from Eq. (1) of the present paper it follows 
that there is a linear dependence on 1-T /T, . It  is also impor- 
tant to note that in Ref. 1 the residual fields are comparable 
in order of magnitude with the dipole field. 

The indicated difficulties do not seem to be an insur- 
mountable obstacle, but are rather a stimulus for further 
investigations. They can be interpreted qualitatively within 
the framework of the present paper. First of all, for residual 
fields of the order of 30% of the dipole field which was used 
in Ref. 1, the basic stationary solution is an analog of the WP 
mode in a magnetic field, mode which exhibits two branches 
(Ref. 1 I), which split from the single branch of the WP mode 
which exists in the completely switched-off field. The residu- 
al fields in Ref. 1 were sufficiently large that this splitting 
became noticeable. Unfortunately in Ref. 1 it was not indi- 
cated which configuration of residual fields was used: 
whether it was parallel or antiparallel to the switched-off 
field, and this determines the branch of the stationary solu- 
tion and corresponds to the wave mode which is the spatial 
modulation of the stationary solution. Secondly, as follows 
from its derivation, the equation (1) for the group velocity as 
applied to the situation in Ref. 1, has, essentially, a qualita- 
tive character. In this respect one may consider it satisfac- 
tory, since it yields correct orders of magnitude for the tem- 
perature range studied in Ref. 1. 

It is interesting to note the following circumstance also. 
It is known that the observed frequency of the WP mode 
differs from the theoretical value (2/5) '12~, Ref. 8, by ap- 

proximately 7.6% (Ref. 121, a discrepancy which is entirely 
within the experimental limits. One may assume, that the 
reason for the discrepancy are the texture-spin waves consid- 
ered in the present paper. Indeed, as was pointed out to the 
author by A. F. Andreev, such waves must lead to a shifts of 
the frequency of the spatially homogeneous ringing of the 
magnetization (the formation of a zone structure in the spec- 
trum), and this is, possibly, the reason for the indicated dis- 
agreement with experiment. 

Apparently analogs of the waves considered in the pres- 
ent paper may appear also in zones of instability of spatially 
homogeneous regimes, considered in Refs. 5 and 15; owing 
to the nonlinear character of their dispersion law the appear- 
ance of an instability may lead to phenomena reminiscent of 
weak turbulence.16 The possibility of occurrence of turbu- 
lence-like regimes in 3He-A was pointed out earlier in Ref. 
17. 

The considerations expounded here allow one to as- 
sume that the texture-spin waves considered in the present 
paper are interesting from a theoretical point of view and 
useful for the analysis of experiments. 

In conclusion the author would like to thank A. F. An- 
dreev, Yu. M. Bruk, G. E. Volovik, and I. A. Fomin for 
discussions and critical remarks. 
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