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A system of equations, written in terms of Riemann invariants, and describing the propagation of 
intense acoustic waves in superfluid helium, are derived. A qualitative investigation of these 
equations shows that a high-intensity entropy pulse decays into a "precursor"-a pressure wave 
propagating with the velocity of first sound-and a "mixture" of entropy and density perturba- 
tions moving with the velocity of second sound. 

At low amplitudes the coupling between density and 
entropy perturbations in superfluid helium, i.e., between 
first and second sounds, is determined by the expansion coef- 
ficient P, = - (dp/dT)/p, and is accordingly weak. There- 
fore, we can, with a high degree of accuracy, consider these 
wave modes to be independent. At high amplitudes there 
arises between them an interaction due to the nonlinear 
terms in the equations of motion. A number of investigations 
have recently been carried out in which certain effects con- 
nected with this interaction are described.l4 In the cited 
papers the investigation is carried out on the basis of the 
Hamiltonian formalism for He I1 hydrodynamics.' But this 
method, which has proved itself to be very effective in the 
case of waves in a plasma, or, for example, in the case of 
waves in the ocean, is not suitable for helium. The point is 
that sound-velocity dispersion practically does not occur in 
He 11, and the small parameter connected with this disper- 
sion vanishes. 

In this respect a more general approach is the one based 
on the standard Landau-Khalatnikov equations of m ~ t i o n . ~  
One of the first theoretical investigations in which the non- 
linear effects associated with sound propagation is contained 
in Khalatnikov's paper.6 In this paper the nonlinear correc- 
tions to the sound velocities are found, which makes it possi- 
ble to explain the heat-pulse distortion observed by Os- 
borne7 The method used in Ref. 6 does not reveal the 
wave-mode interaction effect. In Refs. 8 and 9 a Burgers- 
type equation is derived for the evolution of nonlinear waves 
with allowance for the viscosity. These investigations also 
miss the effects connected with the nonlinear interaction 
between first and second sound. If in Ref. 8 the reason for 
this is the proximity to the A transition (the intermode cou- 
pling is -p, /p), in Ref. 9 the cause is the unnatural omission 
of the terms that give rise to the interaction. Putterman and 
Garret," applying the method of successive approximations 
to the nonlinear wave equations, found the effect whereby 
pressure waves are generated under conditions of second- 
sound pumping. But this method, in the form developed by 
Putterman and Garret," does not allow us to describe the 
nonlinear distortion of the waves, and, consequently, does 
not adequately describe the evolution of pulses. 

In the present paper we derive for intense first- and sec- 
ond-sound waves a system of evolutional equations that take 
account of both the interaction processes and the processes 

of nonlinear twisting of the wave front. The system is written 
in the form of equations for Riemann invariants." On the 
one hand, this significantly simplifies the analytic and nu- 
merical investigation of specific problems, and, on the other, 
it is a convenient starting point for further generalizations of 
the type in which the viscosity is allowed for. In the second 
section of the paper, using the equations obtained, we qual- 
itatively solve the problem involving the nonlinear decay of 
an entropy wave and the appearance of a "precursor9'-a 
pressure wave propagating with the velocity of first sound. 

1. DERIVATION OF THE EQUATIONS OF MOTION 

Let us choose the following quantities as the variables 
describing the flow of superfluid helium: the density pertur- 
bat ion~' ,  the entropy perturbation a', the mean-mass veloc- 
ity v@v = j), and the relative velocity w = v, - v,. Up to 
terms of second order in these quantities (below we shall 
limit ourselves to this approximation) the equations of one- 
dimensional motion will be the following: 

Here p is a column vector formed by the quantities pl =p', 
p2 = U, p3 = a', and p, = w, where u = v, and w = w,. The 
elements of the 4 X4 matrix Aii contain the q, powers not 
higher than the first, and have the following form: 
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The notion used here is conventional notation, and cor- 
responds to the notation used in Ref. 5. We neglect the terms 
of the order of B, = - (ap/aT)/p.' 

Let us, following Ref. 11, multiply (1) by the left row 
eigenvector I of the AV matrix, i.e., by the quantities I, de- 
fined by the relation 2jl,Au = {Ii. For the various eigenvec- 
tors I @I we have 

In order for the equations of motion to contain terms of or- 
der-in smallness-not higher than the second, the elements 
of the row vectors ) should contain the quantities p, in 
powers not higher than the first. The row vectors I@)@ ) will 
be written out in their explicit term below. 

This formulation is different in that all the variables pj 
in each of the four equations of the system (3) are differentiat- 
edinoneandthesamecharacteristicdirectiona /at + {a /ax 
in the (x,t ) plane. 

The characteristics gb) are given by the following ex- 
pressions: 

The formula (4) gives the local first-sound velocity; the for- 
mula (S), the local second-sound velocity. If we set v = 0, 
p' = 0, then the relation (5) goes over into the corresponding 
formula, obtained earlier by Khalatnik~v,~ for the local ve- 
locity of the wave profile. 

If the Pfaffian formZ,lY'(p )dpj is integrable, i.e., if it is 
a total differential of the quantity I,, (p ), then we can simplify 
the equations of the system (3) further: 

A remarkable property of the equations (6), which makes 
them extremely convenient for the investigation of specific 
problems, consists in the fact that each of them describes the 
conservation of the quantity I, along the characteristic di- 
rection dx/dt = l@'(p ). The quantities I,, are called Rie- 
mann invariants. 

In the linear case the indicated scheme is easy to realize 
for He 11. In this case the Pfaffian form is a sum of the differ- 
entials dp, with constant coefficients. Such a form is, of 
course, integrable. The final result will be as follows: 

The Riemann invariants are given in this case by the 
following expressions: 

This is a classical result. The formulas (7) and (8) sepa- 
rate the wave modes (i.e., the first and second sounds) propa- 
gating to the right and left along the x axis (the upper sign 
corresponds to the wave propagating to the right). 

In the nonlinear case, which we are interested in here, 
the Pfaffian form is, generally speaking, not integrable, and 
it is not possible to obtain Riemann invariants. Nevertheless, 
it turns out that we can introduce Riemann invariants for 
one important particular class of problems, namely, for 
waves running in one direction. 

Let us recall what we mean by waves running in one 
direction (or, as they are also called, simple waves) in ordi- 
nary gas dynamics. The simple-waves tool developed by Rie- 
mann played a very important role in the solution of various 
gas-dynamical problems.12 From the mathematical stand- 
point, simple waves are that particular case of the solution to 
the Euler equations in which the density and the velocity are 
connected by some functional relation: v = v@'). To derive 
the evolutional equations for such waves, we use the follow- 
ing method. We substitute the function v@') into the Euler 
equations, writing the derivatives of the type du/dt as (av/ 
apt) (apt/& ), etc. As a result, we obtain a system of algebraic 
equations for the quantities ap1/at and apl/ax. The consis- 
tency condition for this system allows us to determine the 
function v@'). 

But we cannot use a similar method in our case. Indeed, 
a natural generalization to the case of superfluid helium is 
the assumption that the variables are connected by relations 
of the form2: v = v@',al), w = w@',al). If further we seek the 
functions w@',al) and v@',al) from the consistency condition 
for the algebraic equations for the quantities dpl/dt, dpi/ax, 
aaf/dt, and dal/ax, we have one condition for two functions, 
i.e., the problem is indeterminate. 

Let us examine the nature of simple waves from a some- 
what more profound standpoint. In the case of ordinary gas 
dynamics the above-described scheme for obtaining the Rie- 
mann invariants can be realized for isentropic flows. Indeed, 
in this case we have only two variables: @' and v), and the 
Pfaffian form will have the following structure: 

a (p', v) dp'+b (p', v) dv=IT. (9)  
It is clear that the quantities I @',v) = const, which are 

the solutions to the differential equations 17 = 0, will be the 
Riemann invariants. Thus, in gas dynamics we have two Rie- 
mann invariants, Il@',u) and 12@',v), which correspond to 
two different characteristics. If one of them is identically 
equal to a constant (zero for the sound cases), then the re- 
maining invariant describes a simple wave. Thus, waves run- 
ning in the same direction (simple waves), each of which is 
trivially derivable from the other in ordinary gas dynamics, 
have the following two basic properties: first, the existence of 
a functional relation between the variables and, second the 
identical vanishing of the wave propagating in the other di- 
rection. These two properties will be used to generalize the 
simple-waves method to the case of superfluid helium. 

The computations below are organized as follows. We 
shall first of all demonstrate the integrability of the Pfaffian 
form Z,I,(e, )dpj for the first-sound mode, i.e., find the Rie- 
mann invariants, I, and I,, that are conserved along the 
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characteristics 6 (') and 6 "'. By requiring that the invariant, 
I,, that describes the wave running to the left vanish, we 
obtain the dependence of the quantity v on the density and 
entropy perturbations,pl and a' respectively, i.e., we find the 
functional dependence v@',al) in the wave running to the 
right. Further, assuming that the function w@',al) exists, we, 
as in gas dynamics, substitute this function, as well as the 
function v@' ,d)  (already known) into the basic equations of 
motion (1). In this case, as in gas dynamics, we arrive at a 
system of four algebraic equations for the quantities ap'/at, 
api/ax, au1/dt, and au1/ax. The solvability condition for 
this system will allow us to obtain the sought dependence 
w = w@',ul). This function will be used for the integration of 
the Pfaffian form corresponding to the eigenvalue 6 ',', which 
will allow us to determine the invariant I,. 

Let us explicitly write out in the Pfaffian forms corre- 
sponding to the first and second equations of the system (3): 

Let us at this stage take the basic step of perturbation 
theory, i.e., let us substitute the lower-order iterations into 
the higher-order ones. In the linear case the requirement that 
the wave running to the left vanish imposes the following 
relationships on the variablesp', u, a', and w [see (8)]: 

u= ( ~ 3 1 ~ )  p', w= (czp/ops) o f .  (1 1) 

Let us substitute the second of the relations (11) into the 
nonlinear terms of the expression (10). In doing this we make 
an error only in the next, third, order in smallness. As is easy 
to see, the then resulting Pfaffian form is integrable. The 
Riemann invariants, I, and I,, that then result have the fol- 
lowing form: 

Let us, consistently continuing the proposed scheme, 
require that the wave running to the left vanish, i.e., let us set 
12@',v,a') = 0. This leads to the following relation connect- 
ing the quantities v, p', and a': 

Thus, the condition for the absence of a wave propagat- 
ing to the left establishes a strict relationship between the 
quantities p', a', and u. In the linear case there is no func- 
tional relationship between the velocity v and the entropy 
perturbation a', which indicates the independence of the 
wave modes. Using the relation (13), we can express the in- 
variant I, in terms of the quantitiesp' and a': 

I1=p'+aipf2+azofz. (14) 

In the formulas (12) and (13) we have, for brevity, intro- 

duced the following notation: 

Thus, we have realized the first part of the proposed 
scheme. We have found the quantity I,@',al) characterizing 
the wave propagating to the right along the x axis in accor- 
dance with Eq. (6) for the case p = 1. Here also there occur 
velocity (v) perturbations, but they are not arbitrary, but de- 
pend on p' and a'. 

Let us proceed to consider the evolution of the second- 
sound waves, i.e., the waves propagating along the charac- 
teristic 6 (". In this case the corresponding Pfaffian form is 
not integrable, and it is not possible to obtain the Riemann 
invariant directly. 

Let us now use the other property of the running waves, 
namely, the existence of a functional relationship between 
the variables. Let us, as suggested above, choose v = v@'al) 
and w = w@',ul), using for the function v@',ul) the already 
found dependence (13). Let us substitute the quantities 
u@',a1) and w@',al) into the basic equations (I), writing the 
derivatives of the type aw/at in the form (aw/apf) (apt/ 
a t  ) + (aw/aal) (aul/at ), etc. As a result we obtain the follow- 
ing equation: 

a p l  c , ~  a p t  30' 
+ A z l - + - - + A , , w , - = 0 ,  

Bx p dx dx (16) 

JO' d ~ '  do' + I  do' -+ Aj i  - + A33 - + Axwp-  + A34~0-=  0, 
dt dx dx dx dx 

dp'  do' c,  dp'  do' do' 
w,-+ w , - + - A ~ ~ - + A , ~ - + A , ~ w , - = O .  

dt dt p dx dx dx 

The equations (16) constitute a homogeneous system of 
algebraic equations for the quantities apl/at, ap1/ax, aal/at, 
and ag1/ax. The condition for the existence of nontrivial 
solutions, namely, the equality to zero of the determinant, 
allows us to determine the function w@',a'). But this condi- 
tion is an extremely complicated partial differential equa- 
tion. Here we can proceed in the following manner. Since we 
wish to retain in the final equations the terms of order-in 
smallness-not higher than the second, let us require that 
the dependence of the function w@',al) on its arguments be 
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not more complicated than the quadratic dependence. The 
most general form of such a dependence is the following: 

There is no term linear in p' in this formula, since in the 
limiting case of small amplitudes the relative velocity does 
not depend on the density perturbations: the acoustic modes 
have been completely uncoupled. Let us substitute the rela- 
tion (17) into the determinant of the system of equations (16). 
From the requirement that it be equal to zero we, can assum- 
ing that p' and a' are linearly independent of each other, 
determine the coefficients p, X, Y, and 2. There, however, 
arises here a difficulty of the following kind: In the zeroth- 
and first-order approximations the determinant identically 
vanishes for any function w@',al). The reason for this is that 
the first two equations of the system (16) cease to be linearly 
independent the moment we use for the function v@',af) the 
dependence (13), which is always fulfilled in the case of first 
sound. This can be verified directly by multiplying the first 
equation by - c,/p and adding the resulting equation to the 
second equation. (In doing this we should set in the linear 
terms a; = - c2a: and p; = - c g ; :  this gives rise to an 
error only in the next, third, order.) From the mathematical 
standpoint we are dealing with a situation in which it is nec- 
essary for the consistency of the system of equations in ques- 
tion that the rank of the matrix be equal not to three, but to 
two., Practically, we should proceed here in this way. We 
should eliminate any of the first two equations of the system 
(16) by expressing, for example, apl/dt in terms of the re- 
maining variables and then requiring that the remaining 
three equations also have, a null determinant. Equating the 
zeroth- and first-order terms in the determinant, we obtain 
expressions for p, X, Y, and 2. Let us, omitting the simple, 
but tedious calculations, write out the final answer: 

Here we have, for brevity, used the following notation: the 
A 7 denote the coefficients standing in front of the pk varia- 
bles in the terms of the Ag-matrix elements. The quantity 
p = c2p/ap,, which corresponds to a transition to the linear 
case [see (8)]. 

Thus, we have obtained from the quantity w the func- 
tionalp' and a' dependence that is fulfilled in a wave running 
to the right. In order to obtain the evolutional equation for 
this wave, i.e., to determine the invariant I,, we shall use the 
found dependence w@',al), (18), as well as the earlier-found 
dependence v@',al), (13), for the integration of the Pfaffian 
form Z,lj?)(p )dpj. 

The explicit expression for this form will be the follow- 
ing: 

Here, as before, the A 7 denote the coefficients standing 
in front of the quantities pk in the Ag matrix and, similarly 
the 6,k(3) denote the coefficients in the expression (5) for the 
characteristic 6 

If now in the expression ( 19) we replace v and w by the 
above-found functional relations v@',af) and w@',al), (1 3) 
and (18), we obtain in expression of the following form: 

Here M and N are certain expressions whose dependence on 
their arguments is not more complicated than the linear de- 
pendence. 

Thus, we have been able to reduce the number of varia- 
bles in the Pfaffian form from four to two. As has already 
been noted above, in the case of two variables the Riemann 
invariant is the solution to the differential equation Z7, = 0. 
We omit the trivial computations connected with the solu- 
tion of this equation, and write out the final answer: 

Here 

Let us summarize the results obtained in this section. 
The evolution of waves propagating in one direction (simple 
waves) is, up to terms of second order in the deviations from 
equilibrium, governed by the following system of equations: 

The quantities I, and I, are Riemann invariants, connected 
with the entropy and density perturbations, IJ' andp' respec- 
tively, by the relations (14) and (21). The characteristics 6"' 
and 6 (2) can be expressed in terms of the quantities I, and I, 
with the aid of the formulas (13), (14), (21), and (22). 

Let us draw attention to the nonsymmetric dependence 
of the invariants I, and I, on the perturbationsp' and a' (see 
(14) and (21)). This asymmetry is a consequence of the fact 
that the thermodynamic variables depend on the relative ve- 
locity w = v, - v, characterizing the second sound, but of 
course do not depend on the mean-mass velocity v = j/p. 

2. PROPAGATION OF THE NONLINEAR PERTURBATIONS; 
DECAY OF AN ENTROPY PULSE 

With the aid of the equations (23) we can investigate the 
problem of wave propagation from a wall, at which we pre- 
scribe entropy and density perturbations. We can also solve 
the initial-value problem, but in this case, as in ordinary gas 
dynamics, we require that the initial conditions be not arbi- 
tary, but connected by the relations (13) and (18). 
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AS examples, let us consider the evolution of waves in 
the following two cases: a) we produce at the wall (x  = 0) a 
density perturbation (we move a piston); b) we produce at the 
wall (x = 0) an entropy perturbation (we carry out pulsed 
heating). 

Before proceeding to solve the formulated problem, it is 
useful to explicitly express the dependence of the perturba- 
tionsp' and a' on the invariants I, and I,. Up to terms qua- 
dratic in the quantities I, and I, the sought dependences will 
have the following form: 

Here a , ,  a2,p,,  and8, are the same quantities figuring in the 
formulas (14) and (2 1). 

In the case a) we have at the boundary the relations 
pf(O,t ) = po(t ) and a' = 0. In this case we have, in accordance 
with the expressions (14) and (21) for the invariants, only one 
invariant I,, with I, = 0. This invariant, which is conserved 
on the characteristic 6 "', describes a wave traveling with ve- 
locity close to c,. As can be seen from the inversion formulas 
(24) and (25), only the density perturbationp' occurs in this 
wave, the entropy perturbation a' being equal to zero. Thus, 
in the case when density perturbationsp' are produced at the 
liquid boundary there propagate in the interior of the helium 
only density (and, of course, pressure, as well as mean-mass 
velocity) waves.4 

In the case b) the situation is somewhat more interest- 
ing. If we produce at the wall entropy perturbations with 
amplitude of the order of a; (herep' = O), then, as can easily 
be seen from the formulas (1 3)  and (19), both of the invariants 
I, and I, are nonzero. Since the waves connected with the 
invariants I, and I, propagate with different velocities c"' 
and 6 ',', they separate in the (x,t ) plane, as shown in Fig. 1. 
The wave in which only the invariant I, is nonzero moves 
ahead with velocity 6"' close to c,. Behind it travels the wave 
in which only the invariant I, is nonzero. Related to the 
invariant I, is the density perturbationp', which is, in order 
of magnitude, equal top' = I, za2a;2 (see the inversion for- 
mulas (24) and (25). On the other hand, the quantity I, is 
connected with both the density perturbation p' = - a , ~ ; ~  
and the entropy perturbation a' = a; + 

Thus, the following picture should be observed in the 

FIG. 1. Diagrammatic representation of the evolution of an entropy pulse 
in the (x,t ) plane. The strip: 1) the region of propagation of the invariant I, 
(its slope dx/dtzl'"); 2) the region of propagation of the invariant I, (its 
slope dx/dtz J 13'). 

case of nonstationary heating of the wall. A precursor-a 
density wave-travels from the wall with the velocity of first 
sound. Behind it a "mixture" of density and entropy waves 
travels with velocity equal to the velocity of second sound. 

Let us estimate the magnitude of the above-described 
effect. It can be seen from the expression (14) for the invar- 
iant I, and the inversion formula (24) that the extent of the 
conversion of the second sound into the precursor is deter- 
mined by the coefficient a,. If we characterize the entropy 
pumping by the quantity wo = (c2 p/a;o,)a;, then the pres- 
sure perturbation in the precursor will be given by the fol- 
lowing expression: 

Numerical estimates show that the second term in the 
square brackets is always greater than the first (cf. Ref. 10). 
For a heat pulse with amplitude of the order of 10 W/cm2 
and a temperature T z 2  K the pressure perturbation in the 
precursor Sp,, --, lo4 g/cm.sec2. 

Notice that the pressure in the rear pulse differs from 
Sp,, . Indeed, there exists in the rear sound-mixture pulse, in 
contrast to the precursor, a relative velocity, as result of 
which there will be a (dp/dw2),,-related addition in the pres- 
sure. Furthermore, we must take the following circumstance 
into consideration. Since the second-sound velocity c, is sig- 
nificantly lower than the first-sound velocity, the nonlinear 
corrections to the velocity (see the expressions (4) and (5) for 
the characteristics 6 change c, more drastically, i.e., Ac,/ 
c2~Acl/cl .  As a result, the rear pulse changes its shape more 
rapidly, forms a shock front and, as a consequence, attenu- 
tates rapidly. It is to be expected, therefore, that the pressure 
in the rear pulse will be significantly lower than the pressure 
in the precursor. 

'As has already been noted, allowance for the thermal expansion also 
gives rise to interaction between the pressure and entropy perturbations. 
But for high amplitudes, specifically, for pulses of power W >  1 W/cmZ, 
the interaction due to the nonlinear effects will predominate. 

'In Ref. 6 it is suggested, by analogy with ordinary gas dynamics, that all 
the sought variables depend on one parameter, i.e., thatp', v, a', and w are 
functions ofsome parameter I (x, r ). This hypothesis does not fit the transi- 
tion to the linear case; for then the quantities p' and v depend on the 
argument x - c,t, while the variables u' and w should depend on x - c,t, 
and, consequently, all of them cannot be functions of the same parameter. 

31n ~ o i n t  of fact a similar situation obtains in the linear a~~roximation. -. 
The matrix formed by the coefficients in this case has the form 

where A, and A, are 2 x 2 square matrices. The linear relations of the type 
(8) are also found from the requirements that the rank of the grand matrix 
be equal to two. 

4To avoid any misunderstanding, let us make the following point. The 
nonlinear conversion of first sound into second sound is found in Refs. 1 
and 2. There is, however, no contradiction here with the result obtained 
by us. The point is that, in the cited papers, by conversion is meant the 
instability of an initial high-power first-sound wave against small second- 
sound-mode perturbations. In the present paper we do not touch upon 
the question of stability of the solutions obtained. 
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