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Cerenkov emission in cholesteric liquid crystals is examined theoretically for first-order reflec- 
tion. The energy lost by a particle per unit frequency per unit azimuth angle as a result of this 
emission is shown to contain one forbidden band and two polarization-forbidden bands as well as, 
in general, six square-root singularities on the boundaries of these forbidden bands. It is shown 
that the radiation intensity on the boundaries of the reflection regions exhibits well-defined beats, 
and is proportional to the fourth power of the specimen thickness at the intensity maxima. When 
the particle moves at right-angles to the optical axis of the cholesteric, the differential radiative 
energy loss is a rapidly-varying function of the position of the particle trajectory. 

INTRODUCTION 

It is well-known that the unusual optical properties of 
cholesteric liquid crystals (CLC) are due to their helicoidal 
structure which should, of course, also manifest itself in co- 
herent emission by fast charged  particle^.'-^ It has been 

that, by analogy with the radiation emitted by 
charged particles in m5dia with simply periodic dielectric 
properties (Refs. 4-7), Cerenkov radiation in cholesteric liq- 
uid crystals should take place not only in the direction of the 
well-known Cerenkov cone, but also in the direction of the 
so-called diffraction cone. 

The existence of the square-root singularities and of a 
forbidden band in the radiative energy loss per unit frequen- 
cy per unit azimuthwangle was noted in Ref. 1, and simple 
expressions for the Cerenkov intensity along the helicoidal 
axis were reported in Ref. 2. More detailed information (both 
qualitative and quantitativeLabout the process was obtained 
by solving the problem of Cerenkov emission for second- 
order reflection in cholesteric liquid crystals. This has re- 
sulted in a relatively simple analytic expression for arbitrary 
directions of emission and particle ~e loc i ty .~  In particular, 
detailed analysis of the radiativeJoss3 has shown that the 
appearance of bands into which Cerenkov radiation is for- 
bidden in the case of infinite media is a common feature of 
periodic media. Simple analytic expressions were also ob- 
tained for the spectral density of radiation emitted into the 
Cerenkov and diffraction cones for a particle moving along a 
helicoidal CLC. 

In this paper, we shall investigate the radiative loss and 
$e angular, frequency, and polarization characteristics of 
Cerenkov radiation emitted in cholesteric liquid crystals un- 
der the conditions of first-order reflecticn. We shall deter- 
mine the limits of the forbidden band for Cerenkov emission, 
and will analyze the corresponding boundary conditions in 
symmetric Bragg and Laue geometry. The differential radia- 
tive loss will be shown to be strongly dependent on the posi- 
tion of the particle trajectory when the particle moves at 
right-angles to the helicoidal (optical) axis of the cholesteric 
crystal. 

EERENKOV RADIATION IN A CLC FOR PARTICLES MOVING 
AT AN ANGLE TO THE OPTICAL AXIS 

V 

Directions of emJssion of  Cerenkov radiation. The ana- 
lytic description of Cerenkov emission in a CLC becomes 
much more complicated for frequencies and angles satisfy- 
ing the well-known Bragg condition 

where k,, k, = k, + T are the wav$vectors at frequency w of 
the radiation emitted into the Cerenkov and diffraction 
cones ( see Fig. I), .F is the average permittivity, and S is the 
dielectric anisotropy which is assumed to be small (typically 
6-0.013.1). In this paper, we shall concentrate on the 
study of Cerenkov radiation at frequencies and angles in the 
neighborhood of the values defined by the Bragg condition 
( I ) ,  where T = 47r/p is the reciprocal lattice vector andp  is 
the pitch of the helix of the cholesteric. We recall that the 
Bragg frequencies and directions are g$ometrically deter- 
mined by the intersection between the Cerenkov cone and 

FIG. 1. Geometry of cerenkov emission in a CLC when the charged parti- 
cle moves at an angle to the helicoidal axis (z axis). 
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the plane that is perpendicular to the optical axis (to the 
vector 7 )  and cuts this axis at the point ~ / 2  (see Fig. 1). 

The amplitude of the field due to a charged particle 
moving with velocity u > cE"~ in an infinite crystal will be 
sought in the two-wave approximation 

The components of the amplitudes E,, E, along the polariza- 
tion unit vectors P,, P,, a (P,, P, lie in the k,k, plane, and a 
is perpendicular to this plane) are solutions of the set of equa- 
tions 

(t+m) Eon-'/, ( l + m )  E,"p+'12i ( l + m )  sin OEinp 

=-4nieov ( l + m )  e-"'/time, 

( t-m) Eon-'/,i ( l + m )  sin 0E,"p-'/2 (1-m) Einp 

=-4nienov ( l + m )  e-'"'/time, (2) 

-'/, ( l+m)  EOa+'/,i ( l + m )  sin OEon+ (q+m) EIUp=O, 

-'12i ( l + m )  sin 0Eo"-'/2 ( I - m )  Eon+ (q -m)  EInp=O, 

where w = k,v, p = e - 2i(y - @ )  ,@ is the angle between the 
director and the x axis in the z = 0 plane, n-/2 - 8,y - are 
the polar and azimuthal angles of the wave vector k, in the 
coordinate frame whose polar axis lies along the optical axis, 
$, q, are the polar and azimuthal angles of the vector k, in the 
coordinate frame in which the polar axis lies along the veloc- 
ity v, r] = bt + 2v, 

sin 0=cos $, cos p-sin sin p cos rp ,  

b=-2 sin2 p cos2 rpfsin 28 ctg $, cos cp+l - 
=COS (k ' s )  /COS ( k o s ) ,  

and the quantity v for fixed azimuth p of the vector k, is 
given by 

~ = 4  sin2 0 (a-mB)/6mB ( I+ sin2 0 )  , 

m,=c~/2e'" (1-'/,ti cos2 0 )  sin 0; 
(34 

whereas, for fixed frequency, 

v=4(rp--9,) sin 0 sin P sin rp  sin $/ti (l+sin2 0 ) ,  

sin 0, (rp,) =cz/2me'" (I-'/&ti cos2 0 ) .  (3b) 

As was noted in Ref. 2, the zerenkov radiation in a CLC in 
the neighborhood of the region defined by the Bragg condi- 
tion (1) differs from the case of the usual homogeneous me- 
dias in that it is emitted into four cones separated bean angle 
interval -6. The directions of emission into the Cerenkov 
cone (lCli (v), i = 1 - 4) are found by equating to zero the de- 
terminant of the set of equations (2), and are given by the 
roots ti (n) of the quartic 

(t2-m2) (q2--m2) - ( t -m2)  (q-m2)  =0, q=bt+2v. (4) 

A diffraction cone corresponds to each of these four ~ e r e n -  

kov cones, in accordance with the condition k, = k, + T. 
The radiation in each of these cones is, in general, ellip- 

tically polarized and the directions of the semiaxes of the 
polarization ellipse lie along the unit vectors P,,, and a. Us- 
ing (2) and (4), we find that the ratios of semiaxes of the 

V 

polarization ellipse in the directions of emission in the Cer- 
enkov and diffraction cones are, respectively, 

Depending on the particular geometry of the experi- 
ment (specific values of the angles P, $,, p, that define the 
parameters b and m), and depending on the frequency (azi- 
muthal) detuning v, either two or four roots of (4) are com- 
plex. When there are four such roots, we have a band into 
which the emission is forbidden, i.e., a range of values of v 
Gat contains none of the angles t,bi (v)(i = 1 - 4) at which 
Cerenkov emission may take place. 

The physical meaning of a band forbidden to Cerenkov 
radiation is most simply explained by considering a disper- 
sion surface that defines the modulus of the wave vector of 
an eigenwave at a given frequency as a function of the direc- 
tion of propagation and polarization (this surface is an ellip- 
soid in a birefringent medium and a sphere in an isotropic 
medium). The dispersion surface of a CLC in the neighbor- 
hood of the Bragg condition (1) has a rather complicated 
form and is described by (4) in which 

The equation for the dispersion surface of the CLC is given 
in Ref. 9 in a somewhat different form. 

Next, we note that the geometrical locus of the end 
point of the wave vector k, (k%. v =a), is a plane that is 
perpendicular to the axis of the Cerenkov cone and cuts this 
axis at k : = w/u. This plane cuts the dispersion surface of 
the cholesteric, in general, along four curves, and it is pre- 
cisely to these curves that the four roots of (4) correspond (for 
a fixed ordinate in Fig. 3, thcse are four points on the curves). 
Hence, it is clear that the Cerenkov-forbidden band corre- 
sponds to the azimuth range Aq, = q, - q,, -6, for which 
the direction of the vector s (see Fig. 1) does not cut the 
dispersion surface of the CLC. For a fixed azimuth p, the 
forbidden frequency band Aw/w -6 can be interpreted in a 
similar way if we recall that a change in frequency corre- 
sponds to the stretching or contraction of the dispersion sur- 
face. 

We shall show below how the limits of the Cerenkov- 
forbidden band can be calculated analytically in the most 
general case of arbitrary direction of emission (arbitrary an- 
gles P andy)  and arbitrary particle energies (arbitrary angle 
$, of the Cerenkov cone). We note that (4) is quadratic in v, 
and its solutions are 

The quantities v + (t ) found in this way define the frequency 
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FIG. 2. The roots r ] ,  as functions of the polar an- 
gle (Y-  Yowt): a-32"s 8<90", b-25" 85 32", 
c - o < o ~ ~ Y .  

(azimuth) of the Eerenkov emission maxima. The solutions 
of the inhomogeneous set (2) are then infinite. We recall that 
fixed tin ( 6 )  corresponds to a fixed polar angle q, of the wave 
vector k,. The ratios of the semiaxes of the polarization el- 
lipse at the maxima of v = v+  (t ) are then given by expres- 
sions analogous to ( 5 ) ,  namely, 

t+ m q*+m 
p,,=sin 0 - , p,,=sin 0 - . 

t-m q*-m 

Figure 2 shows a graph of the roots 7 - + (t ). By adding the 
graphs of 7 + (t ) to the straight line 7 = - bt, we obtain the 
function 2vL (t ). Analysis of the 7 + (t ) curves (see Fig. 2) 
shows that the forbidden band appears only for b < 0, when 
v + - (t ) have characteristic maxima or minima. In Fig. 2, 

t=-2(l+m) ($-$,) tg $d6, cos $,=c/ve'"(l-'/,6 cos2 0 ) .  
The intervals of values of v in which the line v = $onst does 
not cut the v + (t ) and v - (t ) curves define the Cerenkov- 
forbidden band: 

mas ~ ( L I  min min 
max(v+ , v- )<v<min(v+ , v- ). (8) 

The above procedure of finding the forbidden band is illus- 
trated for the special case b = - 1 in Fig. 3;The figure also 
shows the limits of the forbidden band for Cerenkov emis- 
sion. In this figure, 

v 
Spectral and angular distribution of Cerenkov radiation 

in a CLC. As noted above, the intervals of values of v in 
which all four roots ti (v) (i = 1 - 4) of (4) are complex, define 
the Cerenkov-forbidden band in which the wave intensity 
does not increase with increasing specimen thickness. We 
may therefore assume that d W/dwd.f2 = 0, in such inter- 

vals, where Wis the energy radiated by the charged particles 
per unit path and d.f2 = sin$d$dq, is the solid-angle element. 
Integration of d W/dwd.f2 with respect to the polar angle $ 
yields the radiation loss per unit frequency per unit azimuth, 
d W/dwdq,, and this also vanishes in the forbidden band. 
Integration of d W/dwdq, with respect to q, yields the spec- 
tral density of the radiative loss which, as will be seen below, 
differs from the spectral density of radiative loss in a homo- 
geneous medium with refractive index F'" by a very small 
quantity (in general, -6 ). Thus, from the practical point of 
view, it is interesting to examine the differential loss d W/ 
dwdq,, which, in contrast to d W/dw, is very different from 
the corresponding radiative loss in the homogeneous medi- 
um: 

In particular, integrating (9) with respect to q, between 0 
and 2r ,  we obtain the well-known Tamm-Frank f ~ r m u l a . ~  

We note that d W/dwd$ can be calculated analytically 
with the aid of the expressions for v* (t ) (6)  in the most gen- 
eral case by integrating d W/dwdfl with respect to q, 
between 0 and 2r .  The resulting divergences at the points 
t = m correspond to the generaticn of linearly r- or a- 
polarized waves [see also (7)] on the Cerenkov cone outside 
the Bragg condition (1). Thu%the intensity emitted at a fixed 
polar angle $ describes the Cerenkov effect rather than its 
diffraction properties. More acccrate expressions can be ob- 
tained by integrating over the Cerenkov cone without as- 
suming that the deviation of the azimuth angle q, from the 
Bragg angle q,, is small [see also (3b)l. 

At this point, it is appropriate to note that, when the 
devi3tion of the polar angle $ from the angular aperture $, of 
the Cerenkov cone is not small (large values o f t  ), the radi- 
ation is emitted mainly into the diffraction cone and is lin- 
early polarized along the unit vectors r, and a for 

v* 
GIG. 3. Determination of the boundaries of the 
Cerenkov-forbidden band. The frequency (azi- 
muthal) detuning v ,  (r ) corresponding to emission 
maximum is shown as a function of the polar angle 

,kvr-- -- - .=.I-- --- 
I I v=v-L---- for 6 = 1. The curves are sections of the CLC dis- 

rn 1 persion surface by the o = k,u plane (the t axis lies 
along the unit vector s, and the ordinate axis along 
the unit vector ~ ( ~ 1 s ) :  a - 320 5 8~900 ,  
b-25"5:8<32",c-058<25".  

- + 
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v +  = + mv, respectively [see (7)]. This is the well-known 
structural Cerenkov radiation (see, for example, R$f. 4) and 
its intensity ( - 6  2, is much lower than that of the Cerenkov 
radiation. 

We now turn to the direct evaluation of the radiative 
loss d W/dwdp. We shall suppose that the medium pro- 
duces infinitesimal attenuation which we shall take into ac- 
count later in the principal values of the permittivity tensor 
E~ (k = 1 - 3) by introducing infinitesimal imaginary parts 
E': = y'~:, where yl( 1. This is equivalent to the addition of a 
small component E" (positive for w > 0) to Z. The differential 
radiative loss d W/dwdp is then found by integrating with 
respect to the polar angle $ by analogy with Refs. 3 and 8 
and, in general, can be expressed in terms of the roots ti (v) 
(i = 1 - 4) of (4) [see also (5)]. 

We shall not write out the relatively unwieldly general 
expressions, and will merely analyze the radiative loss of a 
particle for directions k, on the Cerenkov cone that satisfy 
the condition b (p) = - 1. For an arbitrary direction of the 
particle velocity vector, there are two symmetric angles p for 
which b = - 1, so that (4) reduces to a biquadratic equation 
and its roots are 

We note that the polarization characteristics (5) of the wave 
emitted in the ith direction (i = 1-4) will, of course, coincide 
with the polarization characteristics of one of the eigen- 
waves of the CLC defined by the same point on the disper- 
sion curve that is reached by the end point of the wave vector 
k,. However, the characteristic feature of this case (b = - 1) 
is that the polarization characteristics (5) of radiation in the 
ith direction are exactly the same as the polarization charac- 
teristics of the fully defined ith eigenwave of the CLC 
(i = 1 - 4) throughout the range of v when the boundary- 
value problem is solved for the symmetric Bragg geometry.9 
The tangential components of the wave vectors on the boun- 
daries of the planar CLC specimen are then assumed to coin- 
cide. It is appropriate at this point to recall that, of the four 
CLC eigenwaves9 in symmetric Bragg geometry, only two 
[they correspond to different signs in front of the inner radi- 
cal r in (lo)] are different (for equal tangential components of 
the wave vectors, they correspond to different branches of 
the dispersion curve, v < 0, v > v P+ The other two eigen- 
waves differ from those just mentioned only by the direction 
of propagation, which corresponds to a change in the sign in 
front of the outer radical in (10). On the other hand, a change 
in the direction of propagation of the eigenwave is described 
by the replacements k,+ + k,-, k ,+ + k,-. The same 
branch of the dispersion curve corresponds to CLC eigen- 
waves differing only by the direction of propagation. Thus, 
the case b = - 1 that we have been considering enables us to 
conclude that thevcholesteric crystal has polarization-for- 
bidden bands for Cerenkov emission, which correspond to 
intervals of v with two complex roots (10) of (4). 

The expression for the radiation loss will now be written 
in the form of a sum of two terms (instead of the four corre- 
sponding to each direction of emission, i = 1-4). Each of 

these terms corresponds to physically different CLC eigen- 
waves and different signs in front of the inner radical r in 
(10): 

4mv2+ (4m'-m) v-m2 (I-m) -m+2 (v+m) r 
f*" = (v>l ) ,  

where f is expressed in terms off ",y replacing m with 
- m. When the expression under the square root in at least 

one of the radicals in (10) and (1 1) becomes negative as v is 
reduced (this corresponds to the forbidden band for the emis- 
sion of the particular CLC eigenwave), the associated func- 
tion f + orL- is set equal to zero in (1 1). 

When Cerenkov radiation is emitted along the helicoi- 
dal axis (m = 0, 0 = $,,6, = 0), we have f ", 112, f T 
= v/2(v2 - 1)'12, SO that the signs in front of the radical in 

(10) and (1 1) describe the undiffracted (diffracted) circularly 
polarized wave. Integration with respect to v then readily 
shows that the integrated radiative losses corresponding to 
the emission of the diffracted (right circularly polarized) and 
undiffracted (left circularly polarized) wavces are equal. The 
corresponding intensities emitted into the Cerenkov and dif- 
fraction cones are calculated in Ref. 2 for a plane CLC layer. 

In the limit of large deviations from the Bragg condition 
(1) ( 1 ~ 1 %  1) for waves propagating at an angle to the optical 
axis, the positive and negative signs correspond to the ordi- 
nary and extraordinary linearly polarized waves. For the 
ordinary wave, polarized in the direction of the unit vector 
a, we have f ", 1, f ", 0 (v) 1, see Fig. 4a) whereas, for 
the extraordinary wave polarized along the unit vector no, 
we have f > 0, f > 1. Thus, f describe the contribu- 
tion of the unit vectors n and a to the radiative loss for 
physically different eigenwaves of the cholesteric (see Fig. 
4a). 

Depending on the parameter m, i.e., the angle 28 
between k, and k,, which for the emission directions that we 
are considering is determined by the angles0 and $o, the two 
pol~ization-forbidden bands turn out to be contiguous with 
the Cerenkov-forbidden band (Fig. 4b) or are separated from 
it (Figs. 4c and d). This is responsible (Fig. 4e) for the six 
square-root singularities in the differential emission d W/ 
dwdp. However, the particle loss integrated with respect to 
frequency (azimuthal angle) is no different from the corre- 
sponding integrated loss in the homogeneous medium with 
refractive index .??'I2, which is readily verified by integrating 
W with respect to v for example, for sin8 = I/@' (this was 
demonstrated by V. P. Orlov for emission in the direction of 
the helicoidal axis2). Similar conclusions cave been report- 
ed1,3,5,7 for the simplest axially symmetric Cerenkov geome- 
try for particles moving along the reciprocal lattice vector of 
a periodic structure. 

Boundary-valueproblem. Consider the radiation from a 
charged particle in a planar cholesteric layer in a homogen- 
eous medium with refractive index E"' (the helicoidal axis of 
the planar CLC specimen is perpendicular to the surfaces of 
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FIG. 4. Frequency (azimuthal) dependence of the differential radiation 
lossd W/dodp forb = - 1: a-frequency dependence off ;"for 0 = arc 
sin 3-'"> 32". The function w(v) is shown for: &32"<0S90', c- 
25 'S0$32" ,d4<0$25" .  

the layer). The field in the crystal will be sought in the form 
of the sum of solutions of the inhomogeneous set of equa- 
tions (2) and a superposition of four CLC eigenwaves [solu- 
tion of the homogeneous set of equations (2)]. Since we wish 
to exhibit the es~ential~diffraction effects, we shall suppose 
that the conditions for Cerenkov emission will be satisfied in 
the cholesteric layer of thickness L, but not satisfied in the 
outer medium2 (for example, the charge of the particle will 
be "turned on" only during its passage through the choles- 
teric). In this formulation, the boundary conditions are com- 
pletely analogous to the boundary conditions in x-ray op- 
t i c ~ . ~ , ~ , ~ , ' ~  In particular, the boundary conditions for x-ray 
emission by ultrarelativistic particles in perfect crystals are 
given in Ref. 11. Here, however, we note that the well-known 
Tamm-Frank formula8 can also be deduced by solving the 
boundary-value problem formulated a b ~ v e . ~ . ~  

Thus, the particular feature of the boundary-value 
problem solved below is that we are able to exclude transi- 
tion radiation (see, for example, Refs. 4 and 12) and the effect 
of dielectric refle~tion.~ 

Equating the tangential components of the electric field 
on either side of the surface of the crystal, we obtain the 

followin~expressions for the amplitudes of the field radiated 
into the Cerenkov cone (E, ) and the diffraction cone (Ed): 

where 
y ,=e- io (m+q~)  , ~ ~ = ~ - i a ( m + t )  

t+m=-2 (l+m) sin 0, sin v($e-l)oe)/8 cos B, 
COS $oe=~I~€'h, 

a=6xeL/2 (1-l-rn) sin 0,, x,=og"2/c, 

sin 0,=cos 9,' cos fi-sin $,,' sin fi cos rp,, 

aU are the amplitudes of the eigenwaves in the cholesteric9 (i, 
j = 1-4): 

aQ=i sin 0 ( q j t m )  (qj2-m2), 

acj=i sin O(qj+m) (qj-m2), q,=2A-q,, 

E,, El are the solutions of the inhomogeneous set (2), D is 
expressed in terms of the determinant (12) by crossing out 
the fifth row and the fifth column, and E ;, E :, E are ex- 
pressed in terms of E ," by replacing the bottom row of the 
determinant (12), respectively, with a,, ,E  '; a, yj, E ,"yo; 

y,, E :yo. The parameter A representing the departure 
from the Bragg conditions and defining the cholesteric ei- 
genwaves can be expressed in terms of the polar (q) and 
azimuthal (p, ) angles of the wave vector x, of the wave leav- 
ing the crystal: 

A = (sin goe cos p+cos cos qe sin fi) cos fitsin $o', 

where, for fixed pe 

v = 4  sin20, (o-wB)/6aB (1+sin2 Oe), 
(1 3 4  

oB=c~/2e'h(l-1/,6 ctg2 0,) sin 0,; 

and for fixed frequency w 

v = 4  sin'0, sin fi sin 9," sin ~ B e ( ~ e - ~ B e )  /6 (l+sin2 0,) , 

sin 0,' (rpBe) =cz/2oe'" (I-'1'6 ctg2 O e ) .  
( 13b) 

V 
The directions of emission (angles $My), i = 1-4) of the 

Cerenkov radiation from the CLC specimen of finite dimen- 
sions are, as before, given by (4) in which we must substitute 
7=2A - t = b e t + 2 ( v + A m ) ,  whereb, = 2 A - J .  

The amplitudes of the field radiated into the Cerenkov 
cone oscillate as we depart from the Bragg condition ( 1 ~ 1 %  I), 
tendinato within -6 ) to the expressions for the amplitudes 
of the Cerenkov radiation in birefringent media,8 whereas 
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the field radiated into the diffraction cone oscillates and de- 
cays as v-'. 

Diffraction effects become important for 1 vl - 1 .Jet us 
examine the conditions under which the emission of Ceren- 
kov radiation occurs at the boundaries of diffractive reflec- 
tion, A = Ap7T. Using the known9 boundary values Ap,T to- 
gether with (4), we find that the corresponding frequency 
(azimuth) detuning is 

y=yP. T = A ~ ,  T - A  (tP, T+rn), (I4) 
and the polar angles of the direction of emission of the radi- 
ation, determined by the parameter t, are given by 

~ = ~ P = A P  1 
for AP=O, I ,  - [- l&(l+8m" ] I h ,  (15a) 

2 

We must now examine in greater detail the nature of the 
beats near some particular (A = AP or A =A,) reflection 
boundary. The intensity of the emitted waves for small dif- 
ferences A - ApST which, in turn, are determined by small 
differences v - eT or t .- PT satisfying the condition 

L(k,,,-k,, ,) --a(qi-q2) =2nn ( n = 1 2  . . . . , (16) 

reaches the maxima -L 462/pZ. The frequency (angular) in- 
terval between themaximaisAw/w -6 -'@/L )', and the fre- 
quency (angular) width of these maxima is -6 -'@/L )3 (see 
also Ref. 10). The indicesj = 1,2 describe the two eigenwave 
solutions for the CLC which coincide on the boundary AP or 
AT. 

The polarization characteristics at the maxima (16) will, 
in general, depend on the thickness, but the result becomes 
much simpler when the boundary AP lies in the region of 
select (polarization selective) reflection for which the wave 
vectors ( j  = 3,4) of the two other eigenwaves of the cho- 
lesteric 

cj= (aij(s+azjn,) eihjT+ ( ~ ~ p + a ~ ~ n , )  ei(h+''' 

are complex. Suppose, for example, that j = 3 and j = 4 cor- 
respond to CLC eigenwaves that respectively grow and de- 
cay exponentially with depth in the crystal (along the z axis 
in Fig. 1). The polarization of the radiation leaving the 
planar CLC layer is then orthogonal to the wave that grows 
exponentially in the direction of propagation in thejth eigen- 
wave solution (i = 3,4): 

- - i m+i(l-2m2)"' 
-1 A+Ap=O (O<mZ<'12); 
sin 0, m-i(l-2mz)"2 ' 

1 AP-m-i( (1+8m2)"-6m2)'" 
=- 

(17) 

i sin 0, A~+rn-i((1+8m~)'~-6m~)'" ' 

The frequency widths of the above maxima are relative- 
ly small. For example, for the characteristic dimensions of 

cholesteric crystals (6 -0.1 and L - 100 m), we have Am/ 
w - and the intensity at maximum exceeds the charac- 
teristic intensity outside the region of selective absorption 
(where I,-L ') by a factor of the order of 100. We note that 
absorption begins to affect the above beats near the diffrac- 
tive-reflection boundary even for thickness L -p(SZ")- 'I2, 
i.e., much smaller than the absorption length (see also Ref. 
13). 

The above intensity beats on the diffractive reflection 
boundaries are seen only in Bragg geometry and are absent in 
Laue geometry. Their existence is unrelated to the restric- 
tion on the values of the parameter b. In particular, the inten- 
sity beats occur for b > 0, when the frequency spzctrum of 
the differential loss d ' W/dwdp does not contain Cerenkov- 
forbidden bands or square-root divergences on the boundar- 
ies of the forbidden bands. It is, however, important to note 
that the intensity beats on the diffractive-reflectio? bound- 
ary do not produce an increase in the intensity of Cerenkov 
radiation-integrated over the frequency (angles pe and f ) in 
the general case of a spatially periodic medium. The most 
promising way of detecting and then investigating in detail 
the above maxima is to consider the motion of a particle 
along the helicoidal axis of the cholesteric, since the angular 
distribution of the emitted intensity is then axially symmet- 
ric (independent of the azimuth p); in this case, 
b = b ,  = A = l .  

As regards the Eerenkov-forbidden bands, which ap- 
pear forb > 0, these naturally manifest themselves in the in- 
tensity integrated over the polar angle f and emerging from 
the CLC specimen of finite thickness, whilst the radiation 
intensity on the boundaries of the forbidden bands is much 
higher than the intensity in the homogeneous medium. In 
the Laue geometry, for example, the difference is - (6L /p)'12 

(see below). 
Let us consider, for example, this type of increase in the 

integrated intensity for the special case where be = - 1 
(A = 0). The geometrical meaning of the condition be = - 1 
is as follows: the end-point of the wave vector xe describes 
the arc of a circle as the polar angle f is varied, and this arc 
touches the plane perpendicular to the helicoidal axis (the 
vector T) when be = - 1. Since the parameter A, in terms of 
which the intrinsic polarizations of the CLC are expressed, is 
determined by the component of xe along the vector T (Ref. 
9), we have A v in this case, and A turns out to be indepen- 
dent of f ,  so that the direction of emission and the CLC 
eigenwaves are determined by the same equation (4) in which 
7 = 2v - t. The region of nonselective (selective) absorption 
then coincides with theJorbidden (polarization-forbidden) 
band for the emission of Cerenkov radiation (Figs. 4b, c, and 
d). The emitted intensities integrated over the polar angle f 
exhibit intensive beats on the boundaries of the forbidden 
bands and reach values of the order of -L 3(6/p)2 at the 
maxima. A simple case of emission along the helicoidal axis 
was examined in Ref. 2. In particular, the expressions for the 
emitted intensity obtained in Ref. 2 do, in fact, describe the 
increase in Cerenkov radiation, integrated over the polar an- 
gle $, , on the boundary of the polarization-forbidden band. 

Next, we note that the intensities averaged over the fre- 
quency interval between the maxima increase in accordance 
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with the formulas 

up to values Y - 4'T - (S L/p)-2 corresponding to the abso- 
lute maximum. 

We note in conclusion that orthogonality conditions 
analogous to (17) can be shown to be satisfied for the wave 
transmitted by the CLC not only on the boundary but 
throughout the region of selective absorption in the corre- 
sponding reflection and transmission optical problem (inde- 
pendently of the polarization of the wave incident on the 
crystal). 

EERENKOV EMISSION BY A PARTICLE MOVING AT RIGHT- 
ANGLES TO THE HELICOIDAL AXIS OF THE CHOLESTERIC 
CRYSTAL 

Radiation loss. The Cerenkov radiation emitted by a 
particle moving at right-angles to the optical axis in a CLC 
has a number of specific ~oper t ies .  For example, the direc- 
tions of emission into the Cerenkov and diffraction cones are 
found to coincice (the diffraction cone is, as it were, in- 
scribed into the Cerenkov cone). This means that, when the 
radiation loss and polarization characteristics of the radi- 
ation emitted in the direction with azimuth p are calculated, 
it is important to take into account the corresponding char- 
acteristics in the direction with azimuth a - q, (see Fig. 5). 

Using the solution of (2) and combining the field ampli- 
tudes of radiation emitted in directions with azimuths p and 
a - p ,  in which the wave vectors coincide, i.e., 
k,(p) = ki (a - p ), k,(a - p ) = k,(p ), we can readily verify 
that the polarization characteristics in the direction of emis- 
sion are, as before, given by (5), and b = - cos 2p. 

We now reproduce the expression for the radiation loss 
at the point on the cone with azimuth p = 0 (the plane of 
diffraction scattering is then coincident with the plane de- 
fined by the helicoidal axis and the velocity vector; see Fig. 
5): 

d2W dZWo 
-=- w, w=2( f+" fg+ cos  2@+f-"+g- cos  2 @ ) ,  
d o  dcp d o  drp 

V 

FIG. 5. Geometry of Cerenkov emission in a CLC when the charged parti- 
cle moves at right-angles to the helicoidal axis. 

where f; is given by (1 1) and, as Y is reduced, the quantities 
f; ,g, $re assumed by analogy with (1 1) to be equal to zero 
in the Cerenkov-forbidden bands and change sign on the 
other side of the corresponding boundary of the forbidden 
band (see Fig. 6a, where the solid line shows the function 
w , = 21f; + g, cos 2@ ) as the particle travels along the 
long axes of the molecules, @ = 0). The frequency depen- 
dence of the differential radiation loss (18) is sensitive to the 
position of the charged-particle trajectory in space, i.e., to 
the angle @ (see Figs. 6b, c, and d) at which the particle 
crosses the long axes of the molecules (the director) as it 
moves in the plane perpendicular to the helicoidal axis of the 
cholesteric. In particular, when the particle moves along the 
director (@ = 0, see solid curve in Figs. 6b, c, and d, the 

FIG. 6. Frequency dependence of the differential loss d W / d p d o  when 
the charged particle moves at right-angles to the helicoidal axis of the 
CLC. Solid curve-particle moving along the long axes of the molecule, 
@ = 0; broken line-motion at right-angles to the long axes of the mole- 
cule, @ = n-12, p = 0, see Fig. 5; a-w , = 21f; + g, cos 2@ ) (solid 
curves, 25" S 5 32') as a function of v, and w,  = 2(f; + g, cos 2@ ) 
(broken curves, @ = n-/2). The figure also shows the general shape of the 
frequency dependence w(v) for the following values of the angle $,: b- 
32" < 90", C-25" 5 +, S 32', d--O<+, S 25". 
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differentiaLradiation loss (1 8) vanishes on the v = 0 bound- 
ary of the Cerenkov-forbidden band and becomes infinite on 
the boundaries v = YP, . However, when the trajectory is 
shifted by only a quarter of the pitch of the cholesgric helix, 
the radiation loss (18) on the 4, boundary of the Cerenkov- 
forbidden band is found to vanish (see broken curve in Fig. 
6b) and becomes infinite when v = 0, 1. Thus, the most rapid 
variation in the differential radiation loss (1 8) as a function of 
the position of the trajectory in space occurs on the boundar- 
ies v = v = 0, 1, v P+ (from zero to infinity on the boundar- 
ies of the 0 and YP+ forbidden bands; see Fig. 6b). This is so 
because, on these boundaries (v = v P,  waves emitted in the 
directions k, and k, are found to be identical and differ only 
by the phase factor e2'@. In particular, 16) = I k, 1, on these 
boundaries, and the polarization characteristics (5) are also 
equal: 

Thus, the phase of the wave emitted in the direction of 
k l ( r  - p) (see Fig. 5) also differs from the phase of the wave 
emitted in the direction of k,(p) by the factor e2'@. This 
means that, when the field amplitudes are added for direc- 
tions of emission with azimuth p and P - p ,  the root-type 
divergence in the differential radiation loss can be sup- 
pressed altogether on the boundaries of the forbidden band 
0,v P+ (see Figs. 6a and b). On the other hand, on the boun- 
daries of the polarization-forbidden bands v P- ,1 the quanti- 
ties w , = 2f, + 2g, cos 2@ may also vary from zero to 
infinity (see Fig. 6a), but the total radiation loss 
w = w + + w- does not vanish identically (see Fig. 6b) be- 
cause these boundaries lie in the region in which emission is 
not forbidden. 

Let us now examine in detail the nature of the azimuthal 
dependence of the differential loss d W/dwdp for small de- 
viations of the angle p near the point on the cone with azi- 
muth p = 0. Bearing in mind the dependence of the Bragg 
frequency oB on the azimuth in (3a), we find that the fre- 
quency detuning is given by 

min 

v=2(l+m)sin2$, 

Hence, it follows that the differential loss (18) is inde- 
pendent of the azimuth p in the angular interval lpl -6, i.e., 
in this interval, the dependence of the radiation loss (18) on 
frequency is the same. This result shows that the observed 
features (the forbidden band into which emission cannot 
take place and the root-type divergences on the boundaries 
of this band) can be additionally enhanced when integrated 
with respect to the azimuth (in the interval 1p1-6 ). The de- 
pendence on azimuth begins to be significant only for 
1 q~ 1 -6 'I2. Accordingly, the dependence of d W/dwdp on 
the azimuth is found to be substantially (by a factor of the 
order of 6 'I2) broadened as compared with the correspond- 
ing frequency dependence when expressed as a function of 
Ao/w. 

As the frequency is reduced, the regions in which the 
wave vectors k(p) and k,( - p) as functions of the azimuth 
undergo diffraction changes begin to overlap at the point 
p = 0 on the cone, so that, for frequencies w S w p  (see Figs. 
5 and 7), the azimuthal dependence ofd W(p )/dm+ will be 
essentially different from the corresponding frequency de- 
pendence of d W (o)/dwdp, because the Bragg angle 8, for 
such frequencies (which determines the direction of s tFng 
diffraction scattering) exceeds the angle y5, at which the Cer- 
enkov radiation is emitted (see Fig. 5). Hence, by integrating 
(18) with respect to the a z i ~ u t h ,  one can readily show that 
the spectral density of the Cerenkov radiation emitted into 
the frequency region w 5 w$"' may differ from the corre- 
sponding characteristic of Cerenkov radiation in a homo- 
geneous medium with refractive index .?/' by the amount 
-6 'I2. However, this difference does not exceed values of 
the order of -6 when integration with respect to frequency 
is performed. 

The following conclusion may be drawn from the above 
discussion: w&en the spectral resolution of the system used 
to detect the Cerenkov radiation is better than 6, diffraction 
features will also appear in the radiation loss integrated with 
respect to the angles $ and p .  In fact, analysis of Fig. 7 will 
show that the ratio of the energy A Wradiated at frequency w 
to the interval Ap  in which this energy is recorded may differ 
from the value predicted by Eq. (9) by a considerable factor. 
When the dielectric anisotropy is not too small (S-0.1- 
0.01), the interval Ap  -6 'I2 may reach 10-12" around the 
point on the cone with azimuth p = 0. Further increase in 
the interval Ap  in which the radiation of frequency w is re- 
corded will ensure that the difference as compared with (9) 
will not exceed -6 'I2. 

Boundary-value problem in the Laue geometry. When 
the particle moves at right-angles to the helicoidal axis of the 
cholesteric crystal, the boundary-value problem for the infi- 
nite planar specimen of a cholesteric liquid crystal with faces 
perpendicular to the helicoidal axis cannot be solved in the 
usual way in Bragg geometry because the particle does not 
then cross the boundaries of the specimen. Let us now sup- 
pose that the optical (helidoidal) axis of the cholesteric is 
parallel to the faces of the specimen (symmetric Laue geome- 
try) and, without writing out the general expressions for the 
field amplitudes analogous to (12), let us consider somz gen- 
eral results. The radiation intensities emitted into the Ceren- 
kov and diffraction cones and integrated over the polar angle 

FIG. 7. Azimuthal dependence w ( p )  at frequency o = oB [l + SY - "/ 
2(1 - m)]. The function w ( q )  at this frequency corresponds to the frequen- 
cy function w(v)  of Fig. 6b, c, and d in the region Y ( V  - P .  Solid curve- 
@ = 0, dashed curve--@ = ~ / 2 .  
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$ are, of course, equal in this case (I, = Id ) and in the Ceren- 
kov-forbidden band I, = Id %O. The frequency (angular) de- 
pendence of the intensities I,, Id is essentially the same as 
the corresponding frequency and angle dependence of the 
differential radiation loss d W/dwdp (Fig. 6b, c, and d). 
When the CLC specimen has a finite thickness, the square- 
root singularity in the differential radiation loss (18) is re- 
placed by an intensity maximum which exceeds by a factor of 
about (SL /p)'12 the intensity emitted in the homogeneous 
medium. 

CONCLUSION 

The above analysis of the ~avilov-Eerenkov radiation 
in first-order diffractive reflection in cholesteric liquid crys- 
tals shows that this radiation undergoes a relatively compli- 
cated spatial and frequency redistribution. The intensity of 
the wave emitted in the Bragg geometry by a planar CLC 
specimen near the diffractive-reflection boundary is of the 
order of the fourth power of the specimen thickness. The 
position of the maxima [see (14)-(16)] is unaffected when 
transition radiation and even dielectric reflection by the 
specimen boundaries are taken into account because these 
maxima are of diffraction origin." 

Experimental studies of the Cerenkov-forbidden bands 
are possible if the frequency Ao/w and azimuthal (dp) reso- 
lution is of the order of or less than the dielectric anisotropy 
S. When the plane of diffraction scattering coincides with 
the plane defined by the optical axis and the velocity vector, 
the azimuthal resolution satisfies the less stringent condition 
dp-S 'I2. When this is so, the ratio of the radiated energy at 
frequency w to the intervaldp in which this energy is record- 
ed may differ by a substantial factor from the corresponding 

quantity in a homogeneous medium, given by (9). When the 
dielectric anisotropy is not too small (6 - 0.01-0. l), the inter- 
val Ap  may reach v21ues of 10-12' near the point with azi- 
muth p = 0 on the Cerenkov cone. 

The author is greatly indebted to V. A. Belyakov for 
useful discussions of the results and for his interest in this 
research, and to V. E. Dmitrienko for useful suggestions. 
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