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The multichannel quantum defect method is used in the quasiclassical approximation for the 
radial motion of the electron to calculate the oscillator strengths for transitions between the 
highly excited Rydberg states of diatomic molecules and transitions from Rydberg states to the 
continuum. It is shown that, because of the nonadiabatic coupling between electron and nuclear 
motion, the photoabsorption spectrum (position of peaks, their intensity, and shape) depends 
significantly on the initial state of the molecule. The effect of the electron-rotational and electron- 
vibrational interactions on the shape of the spectrum is analyzed. It is shown that, in the pho- 
toionization process, the evolution of the line profiles depends in an important way on interfer- 
ence between direct and resonance mechanisms. The result of this is that the final profile may 
differ appreciably from the Fano-Feshbach profile. Numerical calculations have been performed 
for the hydrogen molecule and a number of features in the photoionization and photoabsorption 
spectra of this molecule are predicted. 

1. INTRODUCTION 

Highly excited atoms and molecules are important and 
extensively investigated quantum-mechanical objects. Ex- 
tensive literature has now accumulated on the Rydberg 
states of atoms and their interaction with other particles and 
the electromagnetic field. We note, above all, the classical 
results reported in a number of books and monographs1-" 
and original in which the quasiclassical methods 
of calculating radiative transitions between highly-excited 
states are developed. This has provided the necessary foun- 
dation for investigations of processes occurring in high excit- 
ed states of molecules for which the analogy with atomic 
objects is complemented by essentially new features. The 
Rydberg states of molecules are, as a rule, states that are 
mixed by interference, i.e., they are superpositions of states 
corresponding to different channels of vibrational and rota- 
tional excitation of the core. The possibility of energy ex- 
change between electrons and nuclear degrees of freedom 
leads to the appearance in the optical spectra of the mole- 
cules of a number of interesting features that are not seen in 
atomic spectra. These features are, in fact, the subject of the 
present paper. " 

The motion of weakly bound electron in a highly-excit- 
ed Rydberg state of a molecule can be imagined as the mo- 
tion of a particle in a Coulomb field that is disturbed at short 
distances by scattering by the ion core. This shifts its phase 
and mixes different trajectories. When processes involving a 
Rydberg eleotron are considered, it is therefore natural to 
employ concepts, methods, and results from the quantum 
theory of scattering of slow electrons by molecular ions. This 
is the basic idea of the multichannel quantum defect method 
(MQD),12-l4 which is an intergral procedure in which the 
complete continuous wave functions of the electron + mole- 
cular ion system are directly expressed in terms of the Cou- 
lomb functions and the elements of the T-operator for the 
collision between the electron and the ion core, and discrete 

is the analog of the T-operator for finite motion, is used to 
describe discrete states. 

The integral MQD method enables us to obtain suffi- 
ciently simple analytic expressions for the amplitude for 
bound-free and bound-bound dipole transitions (see Secs. 2 
and 5), which predict the appearance of interference anoma- 
lies in the photo-ionization spectra of molecules, and a sharp 
dependence of the intensity and line shape on the level num- 
ber of the initial highly-excited molecule (see Secs. 3 and 4). 
They also show that the intensities in spectral-line series due 
to bound-bound transitions have an irregular pattern (see 
Sec. 5). We note that optical transitions between Rydberg 
states of molecules have not been examined theoretically be- 
fore. 

2. TRANSITIONS FROM THE RYDBERG STATES OF 
DIATOMIC MOLECULES TO THE CONTINUUM 

Radiative transitions are described with the aid of the 
matrix elements 

where are the total wave functions of the initial (final) 
state of the system and D is the dipole moment operator. The 
initial states of the system are characterized by the total an- 
gular momentum Ji and its component Mi along a given 
axis.' As usual in MQD theory, it must also be assigned a 
classification index qi = (vi,Ni J (the set of vibrational vi 
and rotational Ni quantum numbers) indicate that a given 
energy level belongs to a particular Rydberg series (we use 
the atomic system of units in which f i  = me = e = 1). The 
total wave function of the initial state can be represented by a 
superposition of functions corresponding to different chan- 
nels of vibrational and rotational excitation of the core, i.e., 

v i " ~ l ~ ~ ~  (I.) X6 (R)  (D: l f i ,  
I n  

states are described by the r-matrix (level shift operator) that (2) 
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where the radial electron wave functions are determined out- 
side the ion core and are given by l4 

1 
Q l q ~  = [r (vq - I )  r (vq + L + I)]-'/' - 

r Y q  

(3) 

where r (x) is the complete gamma-function, W,, (x) is the 
Whittaker function, r is the coordinate of the electron, R is 
the interatomic distance in the ion XY+, Ei is the total ener- 
gy of the initial bound Rydberg state of the system (Ei < O), 
Y, is the effective principal quantum number of the Rydberg 
level, given by 

Y ,  (Ei) = [ 2  (Eq-Ei) I-"', (4) 

which is related to the corresponding quantum shift pq by 
Y, = n - p,, Eq is the excitation energy of the ion c o ~ ,  

(R ) measured from the ground state of the ion, @ JhM~(i.,~ ) 
is the total angular function of the compound system consist- 
ing of the electron and the freely rotating rotator, i.e., 

a):=(;, B)= (lN, mdl-rnlJM) Ylm(8rp) YNM- , (Q) ,  (5) 
In 

(IN, m M  - m I J M  ) are the vector composition coefficients,15 
Y ,  (x) are the spherical harmonics, 9- and p are angles defin- 
ing the position of a particular electron in the laboratory 
frame, and f2 is the set of angles specifying the orientation of 
the molecular ion. 

The coefficients r!,: (E,) in (2) characterize the weight of 
the different states of the ion core for given energy E,,  and 
are normalized by 

The final state wave function $f must, in general, corre- 
spond to states in the continuum, in which the released elec- 
tron moves at large distances from the ions in a particular 
direction. It is well known that this function must take the 
asymptotic form of a plane or a converging spherical wave. l6 

However, if we leave on one side the question of the angular 
distribution of the emitted electron, the final wave functions 
$f of the system can be taken to be the wave functions de- 
scribing the scattering of a slow electron with angular mo- 
mentum I f  by a molecular ion with a given set of quantum 
numbers gf, Jf, Mf. These functions have the formI4 

( J f )  
J f M f  - A 

(- 1 )  v (r)  x R )  @ (r, ) (7) sln nv,, 
l'q' 

where F;%(r,R) is the wave function in the exit channel, i.e., 
JM - " 

(r, R) = R I E ( r ) x V ( R )  @ I N  (r ,  R ) ,  (8) 
R, (r) is the Coulomb radial wave function for the contin- 
uous spectrum, which is regular at the origin and is normal- 
ized to the energy 6-function. The elements of the T and T 
matrices in (2) and (7) are given by 

where a is the diagonal matrix 

The elements of the t-matrix 

are linear functions of the elements of the adiabatic scatter- 
ing matrix t :' (Ref. 12) (A = Im I is the absolute magnitude of 
the component of the angular momentum of the electron 
along the molecular axis). They are defined by 

where J ( x )  is a Bessel function and 9- ' and p' are the angles 
defining the position of the electron in the coordinate frame 
attached to the molecule. We shall look upon them as the 
parameters of the problem. 

We note that the range of validity of (9) and (lo), and of 
the formulas reproduced below, is restricted by the condi- 
tion r,lE I( lis the effective range of the interaction between 
the electron and the ion core (r,, is of the order of the elliptic 
dimensions of the ion coreI4). 

For distances 

the wave functions given by (2) and (7) can be written in the 
quasiclassical approximation, i.e., 

2-c J M  
oq, ( r )  -nZr-nvd - -1 OrNv  (15) 

1'q' 
4 

for the discrete spectrum (E < O), and 

o,, ( r )  -n l f -nvq  - 21 X . r ~ : ~ , }  ' (16) 
l ' q '  

4 

for the continuous spectrum (E > 0). For low values of orbital 
angular momentum of the electron, I(leq the quasi- 
classical phase a, (r) in the highest-order approximation in 
the small parameter ~ I E ~  I is given by 

- 12 
a, ( r )  = I'8r + - fll'sq. 

3 
(17) 

Since, in photoprocesses, possible values of I are restricted by 
selection rules, it is precisely this case that is of particular 
interest to us. We must now consider the dipole matrix ele- 
ments (1) with wave functions (15) and (16). We start with the 
radial parts which contain integrals of the form 
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m 

r f =  J ih ~in(o . l -q~)s in (o ,~~-q ,~~)  dr.  
0 

The main contribution to (18) is provided by the region 
r- /AE?'~ - , I3.  Hence, the requirement that this region must 
lie at a large distance from the turning point r,,, ~ 2 2  leads 
to the additional restriction 

which we shall adopt below. Clearly, this restriction is not 
essential from the physical point of view, but it enables us to 
ensure that the final results are simple and compact in form. 
Evaluating the integrals, we obtain 

where Arlg, is the phase difference between the final and 
initial states and A&?' = (Eq - Ei) - (Eq. - Ef) is the differ- 
ence between the electron energies. Subsequent integration 
with respect to the nuclear variables in the sum over q and q' 
leaves only the term corresponding to q = q'. Hence, A E ~  is 
independent of q and is equal to the energy of the incident 
photon, i.e., A&? = Ef - Ei =A&$. For the purely Cou- 
lomb interaction (for which the phase difference is a multiple 
of P), expression (20) leads to the result given in Ref. 10. 

We must now consider the angular parts of the dipole 
matrix elements (1). It will be convenient to introduce the 
operator1' 

with a polarization unit vector e,(p = 0, + 1). The angular 
part of thep-th spherical component of the dipole moment 
operator is then given by 

X (~!looll'O) (IJpMIl 'M')  W ( 1 M ' N ;  2'1) ~ N N ' ,  

(21) 
where W(1N'N;I 'J) are the Racah coefficients. Combining 
the radial and angular parts, we finally have 

1 D(* af - - - r (+) (+)"' ( A ~ ~ ~ ) " "  [(2Z + 1 )  (2Ji + i)ps 
1 1 ' ~ '  

(Jf) 
T1'q'2fq, 

+ sin nv,. (E,) 0 ( i + q f )  + ) (22) 

This formula has a clear physical interpretation and de- 
scribes photoionization as a superposition of direct and two- 
stage processes. The latter are characterized by the instan- 
taneous transition of the molecule to an intermediate state 
when the photon is absorbed, followed by rescattering of the 
released electron by the ion core, which leads to the final 
state of the system. Of all the possible intermediate states, 
the only important ones are those that are genetically related 
to the given configuration of the system through the collision 
T-operator. 

Formula (22) describes two types of nonadiabatic inter- 
action, namely, electron-vibrational and electron-rota- 
tional. The former is characterized by weak coupling in a 
large group of interacting states and the latter is usually dis- 
tinguished by strong coupling between a small number of 
kinematically allowed channels. In the ensuing analysis, we 
shall consider situations in which vibrational and rotational 
coupling can be analyzed independently. If, in the final state, 
the energy of the system is Ef ( w ,  where w is the vibrational 
quantum of the ion, we may neglect electron-vibrational 
transitions. If must, however, be remembered that this is 
valid when the above energy range does not contain levels 
(random resonances) belonging to the autoionizing Rydberg 
series corresponding to vibrationally excited states of the 
ion. We shall now consider in detail each of these types of 
coupling separately, and will analyze different limiting and 
special cases. 

3. ELECTRON-ROTATIONAL COUPLING IN OPTICAL 
TRANSITIONS FROM RYDBERG STATES TO THE 
CONTINUUM 

To be specific, consider transitions from Rydberg states 
fo the molecule X, that belong to the optical series R (0), 
assuming that these states are formed as a result of single- 
quantum excitation of the u-electron from the ground state 
of the molecule. The initial quantum numbers are then 
Ji = li = 1 and, in accordance with the rules for the compo- 
sition of angular momenta, Ni is either 0 or 2. Moreover, we 
shall neglect the coupling to vibrational motion, and substi- 
tute vi = vf = 0. This means that the subscript q in (22) will 
be replaced with N. 

In the final state of the molecule (after absorption of the 
photon), the total angular momentum Jf assumes the values 
0, 1,2 (which corresponds to the P, Q, and R branches), and 
the orbital angular momentum If, which has the values 0 and 
2, is no longer a quantum number. Highly-excited states are 
now classified in accordance with the type of adiabatic mo- 
lecular orbital that describes them for small n (n is the princi- 
pal quantum number). For the molecules X,, these can be the 
S-, D, -, D, -, and D, -orbitals, where the S- and D, -orbitals 
mix, forming thepo-doublet, and D, and D, describe non- 
interacting states. The subscript p characterizes the type of 
molecular orbital and assumes the values 0 and 2. As the 
principal quantum number n is reduced, the adiabatic condi- 
tions are no longer satisfied, and coupling between electron 
and rotational motions comes into play and mixes these 
states, forming four series of Rydberg levels that converge to 
three different ionization limits I, = BN (N + 1) where B is 
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x ~ = ~ ~  (E i )  A,,"=-n-' arctg t ~ " ,  (27) 

FIG. 1. Correlation diagram showing the transition from Hund b-cou- 
pling to d-coupling as the principal quantum number n increases in the 
Rydberg series of the molecule X,. 

the rotational constant of the ion and N = 0,2,4 (these limits 
are measured from the limit of the continuum). The corre- 
sponding correlation diagram illustrating the transition 
from the Hund b-coupling (low n) to d-coupling (large n) is 
shown in Fig. 1. 

We note that the series D 4R (I), which correlates with 
the adiabatic D, -states, is populated only as a result of the 
rescattering of the electron by the ion core. This is a conse- 
quence of the kinematic selection rule, i.e., the vanishing of 
the corresponding Racah coefficient in (22). 

Let us first analyze photoionization for the optical tran- 
sitions R (O)-+P(l) (this is the case where Jf = 0). In accor- 
dance with the diagram shown in Fig. 1, this involves the 
mixing of two configurations, namely, 'I = N = 0 and 
I = N = 2, the ionization limits of which differ by the 
amount 6B. The Beutler part of the spectrum 

is of particular interest. The second channel, which corre- 
sponds to the first configuration, is open in this region (i.e., 
tan rv0  = i), whereas the second channel is closed. The cou- 
pling between them determines the resonance and interfer- 
ence structure of the photoionization spectra, which is con- 
veniently characterized by the oscillator strength of the 
transition., The expression for the oscillator strength, given 
by 

does not depend on the photon polarization and can be writ- 
ten in the form 

2gif2 (21,+1) 
W 2 ( E i )  I tg nv,  ( E f )  -a (Ei)  

Fif = 
9% (Ei) t g  n v t ( E f )  -6+zy 

W (Ei) =COS x (xo-A,Oo) + p sin nx,, P = - y - [ : (,":: ) , l ' " S  

where (26) 

and t are the elements of the adiabtic scattering matrix (1 3). 
The quantities (a, S and y) in (25) are strictly real and are 
given by 

Formula (25) describes the Fano profile with well-de- 
fined dependence of the line shape on the initial energy Ei of 
the system. If the off-diagonal matrix element t Ij2 is small in 
comparison with t 9 the nonresonance and resonance parts 
of the spectrum may be considered independently of one an- 
other. In fact, substituting t: = 0 we have 

F~:O'=~/ ,~~,ZK ( E ~ )  , 

for the first region, where 

For the second region, we expand (25) in powers of the re- 
duced energy { = 2(E - E2, )/r2, around the point of reso- 
nance, the energy E2, and width T2, of which are given by 

t g  .nv, (E,,-iI',,/2) =,6-iy, 

and this gives us the expression 

with the profile index 

The dependence on the initial energy of the system Ei in 
(30) and (3 1) can be illustrated by the special case of the hy- 
drogen molecule. The table lists the values of the quantities 
given by (30) and (32) for different Ei. They were calculated 
with the aid of published data on quantum shifts1' and scat- 
tering phasesls*19 for the singlet para-states of H, that belong 
to the optical Rydberg series nPNR (0) (v = 0). It is clear that 
the coefficients K and q are irregular functions of the initial 
energy Ei,  which is a consequence of the strong nonadiabatic 
coupling between electron and rotational motion in the ini- 
tial Rydberg state of the molecule. 

When Jf = 1, it is clear from the correlation diagram 
that photoabsorption produces an isolated (I = N = 2) series 
D 2Q (1) with ionization limit I, (for low n it corresponds to 
the adiabatic nD, states). The oscillator strengths of the 
transitions are determined in this case by Eqs. (29) and (30), 
in which x, and A must be replaced with x ,  and A z. The 
irregular dependence on the initial energy of the molecule, 
described by the factor (30), is thus found to remain intact. 

Let us now consider photoionization in relation to the 
R (O)-+R (1) transitions (Jf = 2). From the point ofview ofthe 
resonance structure of the spectrum, the most interesting 
regions ar the Beutler region, given by (23), and the region 

In the Beutler region, we have the situation where one chan- 
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TABLE I. 

nel (I = 2, N = 0) is open and the other three interacting 
channels are closed (Fig. 2). If we confine our attention to the 
part of the spectrum (23) in which there is no overlap with 
iesonances corresponding to the series D 4(R ,), the expres- 
sion for the oscillator strengths given by (24) can be reduced 
to the form 

where gg and x(Ei ) are defined by (26) and 

d po '12 

W(&)  =COS n ~ + p  sin n r ,  p = ['/.% (%) ] . (35) 
E i  

By analogy with (28), the parameters ys , a, and Ss are strict- 
ly real and given by 

For convenience, we have also substituted 

(2) ho=W-' (Ei) (cos ax2--tozo2 sin nx,) , 

FIG. 2. Disposition of open and closed channels for the motion of the 
electron with X, and 0 < E, < 6 8 .  

Expression (34) is written with allowance for the fact that the 
absolute value of the matrix elements t El?,.,, falls rapidly 
with increasing I + 1 '. It is clear from (34) that there are cer- 
tain definite values of the photon energy at which the pho- 
toionization cross section rapidly falls to zero. Moreover, 
each of the resonances separately exhibits the Fano-Fesh- 
bach structure which has the property that the line-shape 
parameters depend on the energy of the initial and final 
states of the system. We also note that, in this case, 
la, - S, I>ys, so that the profile indices of the correspond- 
ing profiles are high. However, the intensities of these series 
are appreciably different from one another because y,,y,. 
Physically, this is due to the fact that the I = 0, N = 2 series 
interacts much more strongly with the ionic core than the 
series I = N = 2. 

Above the Beutler region (when tgm, = t g w Z  = i), 
formula (34) is replaced by the simpler expression 

We shall not reproduce the explicit form of the coefficients 
a,S and y, which can readily be deduced from the general 
formula (22), and merely note the most general properties of 
(38). Thus, for example, because of interaction in the open 
channels, the profile index becomes complex above the 
Beutler region, and the photoionization process is not sup- 
pressed by interference, i.e., strictly speaking, the line profile 
is not of the Fano-Feshbach type. At the same time, the pa- 
rameter a in (38) depends on both the initial and final states 
of the system, and this means that the idea of the compound 
state is not valid in this case since, in contrast to the Lorentz 
line, which is common to all the channels (and is predicted by 
the compound state model), each channel now has its own 
individual spectrum shape. Physically, this is explained by 
the fact that, in addition to resonant photoionization, there 
is also an essential contribution due to direct photoioniza- 
tion, and interference between these two mechanisms pro- 
duces an appreciable distortion of the resonance line shape. 
Clearly, the result must depend on the angular momentum I,. 
carried off by the optical electron. In fact, for the If = 2 
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channels, we have typically 

a-6 a - It,021<<1, Im- =-I, 
Y 

so that the spectrum is described by a smooth curve (corre- 
sponding to the direct photoionization mechanism) accom- 
panied by slight distortions of its shape near the correspond- 
ing resonance. On the other hand, for the I = 0, N = 2 
channel, 

(40) 
i.e., there is a well-defined resonance structure, the specific 
form of which is determined by the magnitude of the adiaba- 
tic matrix element t F. All this is illustrated in Fig. 3, which 
shows the oscillator strength (38) as a function of the energy 
of the system for different values of the shape parameters. 

Examination of the picture as a whole shows that the 
dominant contribution to the resonance structure of the 
photo-ionization spectrum is provided by the series with 
I f  = 0, for which the electron has the strongest interaction 
with the ion core. In accordance with the diagram of Fig. 1, 
these series correlate with the adiabatic states 00, and region 
(33) contains only one well-defined resonance R (1) series 
with total angular momentum Jf = 2. On the other hand, in 
the Beutler region defined by (23), there are two series of 
resonance lines, namely, P ( l )  and R (I), respectively. Since, 
however, the positions of these lines are very different, they 
can be investigated independently by modern optical meth- 
ods. 

4. ELECTRON-VIBRATIONAL TRANSITIONS 

Let us now consider electron-vibrational transitions 
that take place during the photoionization of highly-excited 
molecules when rotational motion is adiabatic, i.e., 

FIG. 3. Energy dependence of the transition oscillator strengths (38), 
Z (6 ) = [(( - q)' + p2 ]/(I + 4 ') expressed in units of 
6 = y-'[tgrv4(Ef) - a)] with parameters (q = Re[a - S) /y ]  and 
p = Im(a/y). Curves I and I1 were calculated for the hydrogen molecule, 
using the data tabulated in Ref. 19, and correspond to neighboring initial 
Rydberg levels (respectively, 1 l P 2  and 13PO). 

This means that the angular variables can be omitted from 
the general expression (22), and the orientation of the mole- 
cule can be regarded as fixed. Since the matrix element t : it 
is responsible for the nonadiabatic coupling to rotation) is 
small in comparison with t F, we may set t : equal to zero 
when we analyze the case If = 0 to which we shall confine 
our attention here. In the simplest two-channel variant 
(u = 0 and I), we then find that the transition oscillator 
strength for then-component is given by an expression anal- 
ogous to (25) with the parameters (26)-(28), in which f l  and 
x, are replaced with 

and ti' are the matrix elements 

Since the nonadiabatic coupling to vibrational motion 
is weak, one of the states in the wave function can be looked 
upon as a small admixture, and the quantum defects turn out 
to be practically independent of energy. At the same time, 
the dependence on the initial energy Ei in the normalizing 
coefficients 7c) is very strong. In fact, if the initial state with 
energy Ei belongs to the u = 0 Rydberg series, we have (dpo/ 
dv, );:<I and, in the highest-order approximation in the 
small parameter (t b: ))', we obtain 

(4-  1 (4 Aoo - - - arctg too . (43) 
n 

This corresponds to the direct (single-channel) mechanism 
of photoionization, the properties of which are investigated 
in Ref. 10 in the case of purely Coulomb interaction. On the 
other hand, for a level corresponding to a vibrationally excit- 
ed state of the core (which may lie near the corresponding 
u = 0 level), the relation between the coefficients 7c1 is re- 
versed, i.e., (dpddv, )z< 1. In this case, 

I tg nv, ( E l )  -ctg nx, 
F$) ( i + f )  -gif2vAi-3(Ei) sin2 nxiy I2 t g  nv,  (E, )  -6+iy ' 

which corresponds to the resonance mechanism occurring 
as a result of the population of intermediate autoionizing 
Rydberg states with u = 1, and their subsequent decay as a 
result of interaction with the continuum, the amplitude for 
which is y1'2. Thus, here we have only two alternative situa- 
tions which strictly alternate as we pass from one optical 
series in the initial state to the other. 

5. BOUND-BOUND ELECTRON-ROTATIONAL TRANSITIONS 

Let us now examine the main features of bound-bound 
transitions. Since the resonantly-excited Rydberg state with 
li = 1 is considered to be the initial state of the molecule, the 
final state produced as a result of photoabsorption is charac- 
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terized by weak coupling between electron channels. The 
general expression describing transitions between discrete 
Rydberg states is obtained from (22) by discarding the free 
term (the first expression in braces) and replacing the matrix 
elements of the T-operator with the elements of the T-matrix 
that describes the final states of the system. Analysis of the 
general expression is outside the scope of this paper, so that 
we shall confine our attention to the special case Jf = 0, for 
which the problem becomes methodologically equivalent to 
that examined above. In the final state, we then have two 
weakly interacting series I = N = 0 and I = N = 2 and, for 
the corresponding transitions, we have 

It is clear that the absorption spectrum is also characterized 
by an irregular dependence on the level number n when the 
transition energy is altered by a small amount. The situation 
as a whole is analogous to that described by (29). Since the 
channels for some transitions are suppressed by interference, 
the oscillator strengths may turn out to be anomalously low. 
For example, for the hydrogen molecule (according to tabu- 
lated data), transitions from the 15POR (0) level to the 
nOOP(1) levels are of this kind. The existence of such phe- 
nomena (not observed in atomic spectra) is one of the most 
characteristic features of photoprocesses occurring in the 
Rydberg states of molecules. 

CONCLUSION 

We have derived, for the first time, the formulas provid- 
ing a detailed description of photoprocesses in the Rydberg 
states of molecules. Interference mixing of states in the ab- 
sorption spectra of the molecules was found to be responsible 
for the irregularity in the disposition of resonance peaks, 
their intensity, and shape, which has no analog in atomic 
systems. 

For radiative transitions from Rydberg states, the line- 
profile parameters are expressed in terms of the adiabatic 
level shifts, i.e., in terms of the same quantities that are used 
to describe the spectra of highly-excited molecules, the slow- 
electron scattering cross sections of molecular ions, and 
near-threshold photoabsorption from the ground electronic 
state. The fact that the same molecular characteristics are 
reflected in different physical phenomena suggests that it 
may be possible to investigate them experimentally in a uni- 
fied manner. 

The properties of photoelectron spectra were analyzed 
above for the traditional experiment in which the initial 
Rydberg states were populated as a result of single-photon 
absorption. On the other hand, there have been recent re- 
ports of experimental observations of radiative transitions 

between Rydberg states of molecules prepared under the 
conditions of two-photon abs~rption.'~ When specific calcu- 
lations, which we propose to carry out in connection with 
these experiments, are performed, this will require only 
slight modification of the kinematic scheme of the process 
because of the increase in the number of optical series popu- 
lated during two-photon absorption. 

"We shall not consider effects due to the internal shell structure of the ion 
core, and the entire analysis will be confined to the single-electron ap- 
proximation with fixed electron configuration of the core. This approxi- 
mation is widely used in the theory of atomic Rydberg spectra," and is 
fully justified for molecular systems. 

"For sim~licity, we shall confine our attention to the Russell-Saunders 
(LS) couplingfor which the problem parameters depend only on the total 
spin of the system, and the spin variables of the electron and the ion core 
can be ignored. 

3'In the generally accepted notation of MQD t h e ~ r y , ~  we have introduced 
the derivative +,,/av, in (26) and the subsequent formulas. It is readily 
shown that this derivative is related to the coefficients r,, and 7, by dp,J 
avz = (r2 sin rp,,/rO sin ~ p , ) ~ .  
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