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The resonant interaction of ultrashort light pulses with a two-photon-absorbing (amplifying) 
medium preexcited by an additional field has been studied. The area (energy) theorem for an 
arbitrary type of excitation has been obtained in a general form. A detailed study of the problem 
has been made by using the example of an exciting field with a frequency resonant with the 
frequency of the working transition. It is shown that the presence of the exciting field gives rise to 
a new type of pulses of self-induced transparency (SIT), among which the most interesting proper- 
ties are exhibited by 21p1 pulses. In contrast to a 27~  pulse, a 21y1 pulse is limited in the cross 
section (for finite transverse dimensions of the exciting field) and the SIT effect of a 2 pulse can 
be observed over its entire cross section. The transverse distribution of intensity in a 2 I y l  pulse 
turns out to be similar to that of the exciting radiation intensity. The stability of SIT pulses to the 
relaxation of the medium and to transverse inhomogeneity of the light fields in the presence of the 
exciting field is investigated. 

1. INTRODUCTION 

The last few years have seen the publication of a large 
number of both theoretical and experimental studies dealing 
with aspects of resonant interactions (RI) of ultrashort 
pulses (USP) of light with a substance or of coherent reso- 
nant interactions (CRI) (see for example Refs. 1-21). The 
simplest of these, i.e., single-photon CRI, such as photon 
echo,'v2 self-induced transparency (SIT),3 optical n ~ t a t i o n , ~  
attenuation of free p~larization,~ and adiabatic transmis- 
 ion,^ have been studied fairly closely. Interest in coherent 
processes is due primarily to the large volume of spectro- 
scopic information that can be obtained on a substance when 
they are used (see Ref. 7 and the literature cited there). Even 
greater possibilities are offered by two-photon coherent pro- 
cesses. First, they can be used to obtain new information on a 
substance (for example, coherent spectroscopy free from 
Doppler br~adening,~ or three-level stimulated echo9). Sec- 
ond, two-photon RI of USP can be used in problems of con- 
version of the frequency of short pulses as well as their shor- 
tening.'"-l5 Nevertheless, two-photon coherent interactions 
remain little-studied experimentally (let us note at this point 
Refs. 16-19, which investigated two-photon SIT and Raman 
beatsz0."). This is apparently due to the fact that for two- 
photon coherent processes to be observed the laser pulse 
must meet more exacting requirements. In particular, the 
pulse power must be much higher than in single-photon pro- 
cesses, and the phase modulation in it must be low. Fre- 
quently, sources of tunable USP available in practice satisfy 
neither the first nor the second requirement. Furthermore, if 
one deals with CRI (such as two-photon SIT) at large dis- 
tances, great importance is assumed by the inhomogeneity in 
the cross section of the USP2' and by the finiteness of the 
relaxation times of the medium. Both of these factors (as well 
as the phase m ~ d u l a t i o n ~ ~ )  lead to loss of the coherence of 
propagation of the USP and to pulse attentuation.15 On the 
other hand, if an additional field parametrically coupled 
with the USP fields is applied to the medium, then in addi- 
tion to the pulse energy losses (due to diffraction, relaxation, 
etc.), amplification of USP may occur as a result of energy 

transfer from the additional field. Self-sustaining pulses can 
thus be expected to appear in such systems. 

This paper discusses the coherent interaction of USP 
with a two-photo-absorbing (amplifying) medium preexcited 
by a field having a frequency resonant to the transition fre- 
quency. The object of the work was to study the possibilities 
of coherent lossless propagation of USP, inhomogeneous in 
the cross section, over large distances in media with finite 
relaxation times, to study the self-contraction of USP in such 
media, and to observe two-photon SIT and other CRI relat- 
ed to it in the system under consideration. 

2. INITIAL EQUATIONS 

Let us consider the interaction of a short pulse of two 
fields 

with a noncentrally symmetric medium in which prior to the 
arrival of USP a nonzero polarization is induced by means of 
an exciting resonance field 

Eo=[Co, exp (-ikoz) +Coz exp (ikoz) ] exp ( h o t )  + c.c.,, 

Co,,oz=Aoi,oz exp ( - i c ~ ~ , , ~ ~ ) ,  

where Col, Co2 are the amplitudes of the forward and back- 
ward resonance waves. Initially, the medium is excited by a 
resonant field of frequency w,, starting at time t = t,. Then 
at time t = 0, the medium is subjected to USP of fields of 
duration rp (the resonance field can also act when t > 0). The 
resonance conditions are 

where w,, is the frequency of the working transition 
between the levels 1 and m, and v, and v, are small detunings 
from resonance. The changes in C;, of the pulse (which will 
hereinafter be referred to as converted fields) and resonant 
fields C,,, COz are described by the equations 
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obtained by substituting in the Maxwell equation in the 
parabolic approximation25 the atomic polarization found by 
Butylkin et ~ 1 . ' ~  for resonant processes. In Eqs. (1) and (2), nj 
is the refractive index at frequency wj; K,!"" and K,?' are the 
polarizabilities at the frequency wj of the atom (molecule) in 
the energy states m and 1, respectively, K,, is the polarizabili- 
ty of the two-photon transition 1 tt m, d is the dipole mo- 
ment of the 1 o m transition, and N is the density of the 
atoms (molecules) of the medium; v,, v are group velocities of 
the resonant wave and converted waves 

A,=arax2+a2iayz, < ( ) )= 1 ( )g(v)dv, 

g(v) being the distribution function of the atoms over v, nor- 
malized to unity and characterizing the inhomogeneous line 
broadening. We will postulate that g(v) is an even function of 
v and assume that w, + w, coincides with the central transi- 
tion frequency a:,. The population difference 7 and the 
nondiagonal element of the density matrix a satisfy the equa- 
tions of a generalized two-level systemz6 

ao/dt+ [T-'-i  (P+v) ]u=ifi-'Yq, (3)  

aillat+ (q-q,) z-'=-&-' ~ r n  (o??), (4) 

where 

-dCol exp (-ik0z) -dCoZ exp (ikoz) ; 

rand Tbeing the time of longitudinal and transverse relaxa- 
tion, and 7, the equilibrium difference of the populations. If 
there exists a pumping source by means of which an inverted 
population can be produced between the levels 1 and m, then 
r and 7, are determined in terms of the probabilities WU of 
transitions from the i state to the j state. For a three-level 
system, the expressions for r and 7, are given in Ref. 26. 

3. THE PLANE-WAVE APPROXIMATION 

We consider first the case in which the fields Cj change 
fairly slowly along the transverse coordinates x and y, and 
the terms proportional to A , q  may be neglected in Eqs. (1) 
and (2). Changing to the coordinate system t-t - z/v, z-z, 
we obtain from Eq. (1) the equations for amplitudes A,,, and 

phase Pl,, : 

dA1,,/~z=-nNx,zo,,z(n,,,c).-'Az,,(R>, (5) 

a (cp1+cp2)ldz=nNc-' {xiz (AzoiIA,n,+A,ozlAznz) < I >  

+<q) [ ( x ~ ~ ~ - x ~ " )  wlnl-'+ ( x ~ ~ ~ - x ~ " )  02n2-'I), (6) 

where R = iI = 2ia exp(i0 ), 0 = p, + 147,. We will as- 
sume" that one of the fields, the triggering field 
C,(z = 0) = C,,#O, is applied to the medium, whereas 
C,(z = 0) = 0. It can be shown that for the excitation cases 
most interesting from an applied point of view, the presence 

of a resonant field in the interval 0 < t < T does not affect the 
evolution of USP fields. Hence it may be assumed that C,,,,, 
(0 < t < rpul ) = 0. The complete system of equations for fields 
A , ,  in this case will consist of Eqs. (5 ) ,  (6) and the equations 
for the medium (3), (4) in the approximation T,,, 47, T, i.e., 

where Q, = Q (C,,,,, = 0). We find the solution for A,,, in 
general form, assuming that the initial values R,(z), I,(z), 
vo(z) at t = 0, determined by the exciting field, are specified 
functions of z. From Eqs. (S), (6) and (12), one can readily 
ascertain that in the initial stage, when A, is small and 
R zR,(z) as a result of phase capture, A,/A2 is independent 
of t, and as z increases, a,+u,, where ajdj(nj/wi)"2. If 
a, =a, has been established at some point, then, as is evident 
from the Manley-Rowe relation (a: - a: = a:,), as a,., in- 
creases further, a , za ,  all the more. In the latter case, one 
speaks of a proportional interaction regime. Let the propor- 
tional regime begin before the initial stage of the interaction 
ends. As shown in Ref. 14 (for an analogous problem), this is 
always the case when the triggering field a,, is sufficiently 
low. In this case al/a2 may be considered always indepen- 
dent oft. Using this fact, after some simple transformations 
we obtain from Eqs. (5), (6), (7)-(9) the following expression 
for A,,, : 
aAi,z nNx12wi.z 

-=- ~ , , , a *  s i n [ ~ ( ~ ) + =  J A ~ A ~  at] . 
d z ni,~c fi 

where 

with F (z) changing from zero at a, = 0 to 

r/2=2nN (f4yc)-' [ (x ,~"-x~ '~)  w,ln,+ (x2mm-xa") ozlnzl 

in the proportional regime (a, = a,); 
y=2nNc-' (oloz/n,n,) '". 

We introduce the notation 

Taking the proportionality condition into account, we then 
obtain from Eq. (10) a Riccati type equation: 

2a*/az+ ($2+i)ag)/az+s(z) [+I- (Q~+I) cos Y(Z) ]=o, 
(11) 

which has a partial solution $ = cot(p/2). The general solu- 
tion (1 1) is 

$=ctn(Y/2) +P (z) I*  P (2,) [IJ (2,) - ctn(9 (z,) /2) j -l 
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whete 

P(Z) =exp{ - J ctn(S/2) [d9/dz+s(I-cos S) ] h 

The solution (12) is essentially a generalized area theorem 
describing the interaction of USP with a two-photon-absorb- 
ing (amplifying) medium excited in an arbitrary manner (not 
necessarily by a resonant field). 

4. STATIONARY EXCITATION 

In this section, we will consider the case in which the 
amplitudes of the resonant field C,, , C,, are independent oft 
(stationary approximation). Equations (3), (4), in which C,,, 
= 0, give simple solutions (see for example Ref. 24). As 

shown by the estimates in Ref. 26, for single-photon-allowed 
transitions usually IOT 141. In this case, from Eq. (2), aver- 
aging both sides of the equation over a segment equal to the 
wavelength, we obtain the equations for the amplitudes and 
phases of the resonant field:2' 

dA ,,,,, /az=~nNo,d(2n,c) -1<G,,2>, (13) 

where 

G1,2=hqp ( 2 ~ d )  -' 
[ 8 ~ ~ d ~ f i - ~ ~ , , , , ~ +  A,',,( (C2-4B2) Ib-C) ] (C2-4B2) - - I h ,  

Go=? (l+vZTZ) (C2-4B2) -'h, 

R = ~ T T ~ ~ - ~ A , , A , ~ ,  C = I + V ~ T ~ + ~ T T ~ ~ - ~ ~ ~ ( A ~ ~ ~ + A ~ ~ ~ ) .  

The initial values R,, I,, vO, averaged over the wavelength, 
are 

R,=G, (cos A*,+vT sin A*,), 

Z,=G, (sin A*,-VT cos A$,), qo=Go, 
(15) 

where A$,=A$ (t=O) (A$=@-p,+Skz,Sk=k, 
+ k, - k,), in accordance with Eqs. (6) and (14), satisfies the 

equation 

At the initial stage of the transformation, we obtain from 
Eqs. (5), (15) 

We will consider the case in which the resonant excita- 
tion is distributed uniformly along the medium: Go, 
= const. Such a situation exists, for example, in the follow- 

ing two types of media: 
1. Media with an inverted population, placed in a cavity 

and generating a resonant field. As shown in Ref. 27, if the 
reflectances of the mirrors are close to 100%, the distribu- 
tion of amplitudes A,, and A,, along the sample is nearly 
constant. 

2. Media placed in an electrostatic field. Let A,, = 0, 
and the electrostatic field 8, increases along z according to 
the law 

where d l ,  and ~,,8, are the intrinsic and induced dipole 
moments of the 1 o m transition. 

Considering that Glz , Go are constant and integrating 
Eqs. (16), (17), we obtain the following solutions in the initial 
stage of the interaction: 

1) for IS I < y(G1) 
a2=aio(1-62/y2(G1)2)-'i'~h ['I2 (y2(G,)2-62)'i2~], (19) 

a2=a,o(62/yZ~G,)2-1)-'12 sin ['/2(62-y2(Gi>2)"z], 

a,= (a,,2+aZ2)'", 
(20) 

It is evident from Eqs. (19), (20) that if the wave detuning S is 
small, the increase of the fields is monotonic, whereas for 
16 1 > y(G,) the fields a , ,  oscillate sinusoidally. For 
IS I < y(G,), because of unlimited increase, the condition of 
smallness of a, will break down sooner or later, and Eq. (19) 
will cease to apply. As shown in Ref. 14 (for an analogous 
problem), for a sufficiently small a,,, even before the condi- 
tion of smallness of a, breaks down, a proportional regime of 
interaction is established (a, =a2). Hence, starting at some 
points z,, where Eq. (19) still applies, we will assume that 
a,  = a,. In this case one can readily obtain from Eq. (12) the 
area theorem for z>z,: 

where 

In accordance with Eq. (21), the dependence of USP fields 
A , ,  on the coordinates and time is 

It is easy to see that in the limit, when A,,,,,+O, Eq. (21) 
changes into the well-known theorem of cotangents for two- 
photon transitions of USP.1° It follows from the area 
theorem (2 1) that pulses having an area 

(n being an integer) propagate in the medium without energy 
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ZJ (a) propagation of a 27~ pulse in the system under consideration. 
Yn As is evident from Fig. 2 [plotted in accord with Eq. (22)], the 

pulse breaks up into two subpulses. The first subpulse propa- 
gates at a velocity greater than u=c/n, and its area ap- 

Zn+ZlSI proaches 2 (Y I (when q, < 0, it approaches 277 - 2 (Y I). The 

zz second subpulse has a velocity less than v. When 9, < 277 [see 
Fig. 2(c)], the second subpulse attenuates. If 9, = 277, the 
area of the second subpulse tends to 277-21 Y 1 [see Fig. 1; 
2(a)]. When 9, > 25- (but 9, < 27~  - 21 Y I ) ,  the area of the 
second subpulse approaches 277 [Fig. 1; 2(b)]. The duration of 
both subpulses decreases upon the propagation, whereas 
their energies (areas) remain practically unchanged. As can 
readily be seen from Eq. (22), the contraction of USP takes 
place much faster than in the absence of the resonant field (in 
the first case, the law of decrease in duration is exponential, 
and in the second case, quadratic; see Ref. 10). 

Let us find the possible stationary (self-similar) solu- 
tions of Eq. (10). Let V be the group velocity of a stationary 
pulse. We change to a coordinate system which moves with 
the pulse (z = Vt- 6, z-2). Assuming that A , ,  and with it 
R, I, and q depends only on {, and performing elementary 
calculations, we obtain from Eqs. (5)-(9) 

Dz 
FIG. 1. Dependence of pulse area 9 on distance, calculated from Eq. (21): 

1 
A ~ A ~ = ~ ( R . ) ~  erp ( = ( E - I o ) )  ((r,2- U R o ) 2 b z )  ,. 

(a) in a noninverted medium (7. > 0) (b) in an inverted medium (7. < 0); V- v 
191 = 0 . 2 5 ~ .  

change, i.e., are SIT pulses. It is evident from Fig. 1 that the 
x{[~+erp  2  IS^))] v- v 

areas of SIT pulses 2 19 I + 2 m  (n, > 0) and 2 ~ ( n  + 1) 
- 21 Y 1 (7, < 0) are stable, in contrast to 2n-n pulses. 

Somewhat unexpected was found to be the pattern of 

a;, / A ; ~  (2=01 

!- (a) 

FIG. 2. Evolution in space and time of a pulse with a Gaussian envelope in the absorbing medium (7. > 0); Y = - 0 . 2 5 ~ ;  initial pulse area: (a) 
9, = 2a, (b) 9, = 2.05a, (c) 9, = 1 . 9 5 ~ .  
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a,,, (arb. units) - 

FIG. 3. Distribution of fields a , ,  in a 2191 pulse with respect to the 
transverse coordinate r and time [x = yug - lo)/@ - V)], when the beam 
of the exciting field has a Gaussian distribution of intensity over the cross 
section [E, = E ," exp( - d / 2 )  1. 

where 

b = 2 g ( q 0 - I F ) ,  b2=-gZ(1+F2), 

g=2x,, (v-V)/yfiVu. 

It is easy to see that in an absorbing medium (vO > O), the area 
of the "fast" subpulse (V> v) does indeed become equal to 
2 1 Y I, and the area of the "slow" subpulse (V< v )  becomes 
equal to 6 = 277 - 2 19 I ; conversely, in an amplifying medi- 
um (vO<O), the area of the "fast" subpulse is 
9 = 277 - 21Y1, and the area of the "slow" subpulse is 
6 = 2 1 Y I .  Let us note one important feature of 2 1 Y I pulses. 
If the beam of the exciting field is limited in cross section, 
Y 4  as the distance from the center of the beam increases 
[see Eqs. (23), (1 5)]. Then the 2 1 Y I SIT pulse is also limited 
in cross section. Figure 3 shows the field distribution in the 
2 1 Y I pulse as a function of the transverse coordinate r and of 
time, when the exciting field Eo in the cross section has a 
Gaussian profile. Let us recall that the SIT pulses found in 
Refs. 3 and 28 in one- and two-photon resonances are in 
principle pulses of plane waves with infinite transverse di- 
mensions. In contrast to the latter, the 21Y I pulse can be 
realized in practice, and the SIT effect for it can be observed 
along the entire cross section of the pulse. 

This section discusses the case in which Y = constant. 
It follows from the generalized theorem of areas (12) that if 
Y changes fairly slowly along z (near its mean value), the 
pulse area 6 will be able to follow the change in Y adiabati- 
cally. In this case, all the results obtained above for 
Y = const. will remain valid. As can be readily seen from 
Eq. (12), the adiabaticity condition is 

5. ALLOWANCE FOR THE FINITENESS OF RELAXATION 
TIME. STABILITY TO RELAXATION 

As can readily be ascertained from Fig. 1, the possibility 
of stability of 21Y I (?;le > 0) and 277 - 215" I (7, < 0) SIT 
pulses to external disturbances is implied in the area theorem 

itself. As such an external disturbance, we will consider the 
relaxation of the medium and study its effect on the coherent 
propagation of USP, assuming r,,, T- ', r,,, T - ' to be small 
parameters. We will seek the solution of the system of Eqs. 
(I), (3), (4) (in the approximation A, C, = 0) in the form 

c,,,=c,',: SAC,,,, o=u(~'+Au, (24) 

where C r i ,  do), 77"' are solutions for the fields and density 
matrix elements, obtained above on the assumption that 
r = T =  CQ, and AC,,,, Ao, A7 are small corrections 

(IACl,2 I4ICY? 1, IAU~~~U'O'~ ,  14714 lq'O'l). We integrate 
both parts of Eq. (5) and substitute 77 from Eq. (24) into the 
right side of the expression obtained, keeping only first-or- 
der terms. We obtain the equation for the pulse area in the 
first approximation: 

where 

The correction Aq is easy to determine by substituting the 
solutions in the zeroth approximation into the right sides of 
Eqs. (3) and (4), and integrating. We will study the obtained 
equation (25). As is evident from the latter, the area 6 is 
stable to perturbations of 67  related to relaxation. Small 
changes in 677 lead to only to small changes in 6. The stabil- 
ity region of the pulse area with respect to 677 is limited by the 
inequalities cos Y - 1 < cos Y + 1. The solution for 
6 from Eq. (25) will differ little from 6 'O', and corresponding- 
ly, A l z  will differ little from A !qi [and hence, Eq. (24) will 
hold] if 

1 Gq 1 << 1 cos (6+9)  -cos 91. (26) 

When Z+CO the steady-state value of the pulse area is a,, 
4") (z = C O )  + A6. As can readily be seen from Eq. (25), 
the correction A 6  is given by 

Gq=cos (9+8,, ) -cos 9 ,  (27) 

whence 
1 A 6  1 =bq/sin 9. 

The stability mechanism consists in the following. 
Thanks to the parametric coupling between the resonance 
field and the transformed USP fields, energy transfer takes 
place from Aol,02 to A,,, and vice versa. If 67  < 0 (energy 
decrease due to relaxation), the pulse area will be such that 
as, > 2 m  +21YI [oras, <277(n + 1) -21YI  when^, <O]. 
If however 67  > 0, then, conversely, we will have a,, 
< 2 m + 2 1 Y I  [ 0 r 9 , > 2 ~ ( n $ .  1)-21YI whenv,<O].In 
both cases as, is given by Eq. (27). In other words, the de- 
crease or increase of pulse energy due to relaxation is com- 
pensated by an increase or decrease of energy, respectively, 
as a result of mutual energy transfer between the fields being 
transformed and the resonance field. Ultimately, the forma- 
tion of a single pulse propagating in the medium without 
energy change and stable to relaxation is possible. 

The condition (26) will necessarily be satisfied if 

A,< 1 cos ( 9 f  6 )  -cOs 9 1, (28) 
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where, as indicated by estimates of the correction Sg, 

Thus (28) is the stability condition for coherent propagation 
of USP. 

To conclude this section, we will consider for compari- 
son the case of "pure" two-photon absorption (amplifica- 
tion), when the resonance field corresponds to (Y = 0). Inte- 
grating both parts of Eq. (5) and substituting g(') into the 
right side of the expression obtained, we have 

df+/az=yqoa-' (cos 8-1+A), (29) 

where 
f 

A = r i  J ( ~ ~ ~ e - i ) a t < o .  
0 

It is evident from Eq. (29) that the presence of the nonzero 
correction A, caused by relaxation, leads to loss of the coher- 
ence of propagation of USP. In an absorbing medium, the 
pulse ultimately damps out completely. In an amplifying 
medium, an unlimited growth of the pulse area (energy) 
should be observed. In other words, in the absence of the 
resonance field, instability of SIT pulses to relaxation takes 
place. 

6. STABILITY TO TRANSVERSE INHOMOGENEITY OF LIGHT 
FIELDS 

We will study the influence of diffraction on the coher- 
ent propagation of USP in an excited medium. Drabovich et 
al." and Bol'shov et aLZ9 showed that the coherent propaga- 
tion of USP in both one-photon and two-photon-absorbing 
media involves an instability to the transverse inhomogene- 
ity of light beams. Nonstationary self-focusing develops in 
the course of the propagation. Diffraction ultimately causes 
the pulse to damp out It will be shown that 
in the presence of excitation of the medium by a resonant 
field, SIT pulses are stable to transverse inhomogeneity, and 
the propagation of USP over large distances without energy 
change is possible. The situation in this case is in many ways 
similar to the one discussed above. As in the preceding sec- 
tion, we will seek the solution of Eq. (1) in the form 

where C f ,  is the solution of Eq. (1) in the plane-wave ap- 
proximation (with T = T =  w). AC1,2 is a small addition 
IAC,,, 14 IC?,, I .  Using Eq. (30) and integrating Eq. (I), we 
obtain to a first approximation 

where 

We will study the obtained equation (3 1). The solution for 6 
from Eq. (3 1) will differ little from aP (correspondingly, A 
will differ little from A [, ) if 

When z+m, the steady-state pulse area is as, = ~, (z -w)  
+ At?, where, as can readily be seen from Eq. (31), &, is 

given by 

a-cos  (6,, +9') +cos 9=0, (34) 

whence 16 I =: 19 (z = m)/sin Y I. Physically, the condition 
(34) means that the pulse energy change due to diffraction is 
compensated by the energy transfer between the USP fields 
A ,,, and the resonance field. 

Since the light pulse in the cross section is always limit- 
ed, of greatest practical interest is the question of stability of 
the aperture-limited 2 1 Y I SIT pulses obtained above. Let us 
estimate the diffraction term g.  We will assume for simpli- 
city that I (R,)  I, I (I,) ( 4 1. As shown by the calculations, to 
estimate the phase derivative ap/dr in this case, use may be 
made of the geometrical optics approximation (k+ co ) and 
the eikonal e q u a t i ~ n . ~ ~ . ~ '  We thus obtain 
lBl<.Bm=s-' (N [xi'-xmml/2n) "'(i/zId9'/drl+2)91 )r,-', 

(35) 
where r, is the characteristic radius of the beam of the excit- 
ing resonant field. It can be shown that in order to satisfy the 
condition of stability of the plane-wave approximation (33), 
it suffices to require that 

. a r n < 1 - ~ ~ ~  9'. (36) 

Some numerical estimates are in order. We assume the 
transverse intensity distribution in the beam of fieldA,, to be 
Gaussian. For 23-' (TT) '~~A, ,  (r = 0) = 1 [assuming for 
simplicity that 6 = 0, g(v) = 6(v)], T- s, T- 10W9 s 
(times characteristic of gaseous media), we obtain from Eqs. 
(351, (36). 

(roy)-l (N 1 xii-xmm 1 /2n) " (nrf4) ch (nr212) eP.1. (37) 
It is evident from (37) that for large r, the conditions (37) as 
well as (36) will break down. Physically this means the fol- 
lowing. Far from the axis, the resonance field is low. It can 
no longer compensate for the diffraction, so that the distri- 
butions of the fields remains close to (23). Thus inequality 
(37) determines the region around the axis of the beam of 
radius r, where the pulse envelope will be close to (23). Be- 
yond the confines of this region (r > r,) there will apparently 
be established a steady-state field distribution [satisfying a 
condition of the type of Eq. (34)] that can differ appreciably 
from (23). If one takes the following typical parameters: 
rO = 3 mm, K',- 10-22 cm3, I K ~ ~ + ~ ~ I  - lo-" cm3, 
y -- 5 cm- ', then r, =:e, i.e., the diffraction being taken 
into account, the steady-state distribution of the fields will 
be close to (23) practically for the entire pulse, with the ex- 
ception of peripheral areas, where the intensity is hundreds 
of times less than at the maximum. 

As was done in Secs. 5 and 6, one can apparently prove 
the stability of SIT pulses to inhomogeneous line broadening 
as well. 

7. DESCRIPTION OF PROPOSED EXPERIMENT 

Let us take cesium vapor as the resonant medium; the 
working levels are 62SlJ2-92D3,2. The frequency of the work- 
ing transition om, = 28818.90 cm-' coincides with twice 
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the frequency of a ruby laser if the ruby sample is cooled to a 
temperature of =: 148 K. Thus the second harmonic of the 
ruby laser may be used as the exciting resonance field. Pico- 
second laser pulses may be used as the source of trigger 
pulses. To increase the polarizability of the two-photon tran- 
sition, K , ~ ,  the frequency w, of the trigger field may be chosen 
close to the frequency of the intermediate transition 62S,12- 
62P312 (or 62P312-92D312). Phase synchronism in the system 
can be achieved by introducing a buffer gas along with the 
vapor into the cell.32 The cell containing the cesium vapor is 
placed in an electrostatic field; when K,,Z lopz3 cm3 and 
goz 100 KV/cm, the induced dipole moment is 
d = K~~ go=: lo-'' cgs. Assuming K,,=: lop2' cm3 at fre- 
quencies w, z 17,000 cm- I ,  a,=: 11,8 19 cm-I, with relaxa- 
tion times r- lo-' s, T -  10W8 s and vapor density N = 1016 
cmP3, we obtain Dz1 .6  cm-I, yz5 .4  cm-'. When the 
power of the exciting resonance field is 0.31 MW/cm2 [A 
(z = 0)z625 cgs] Y = - 0.25. Let a trigger pulse at fre- 
quency w, of power 155 kW/cmz (A :, z 300 cgs) and dura- 
tion rp ~ 3 0  ps be supplied to the input of the cell. In this 
case, a proportional field pulse at frequencies w,, w, is 
formed on a length of z 3.3 cm The area of such a pulse 9- 
approaches 21Y1(9-=:0.95.21YI) at a length z5.3 cm, i.e., 
an interaction regime close to SIT is established. As the 
propagation continues, the pulse becomes compressed: at a 
length of 13.3 cm, the pulse duration decreases by a factor of 
approximately 5. It is evident from the estimates that appre- 
ciable changes in pulse energy and duration occur at lengths 
at which the resonant field undergoes little change. In this 
case, use may be made of an electrostatic field go constant 
along z. At greater lengths, go should increase along z in 
accordance with (18) (Kz0.06 cm- I ) .  To compensate for the 
decrease of the resonance field, focusing of the exciting radi- 
ation inside the cell may also be used (at constant go). Esti- 
mates show that for a pulse with Gaussian intensity distribu- 
tion in the cross section and characteristic radius ro =: 3 mm 
[~K '~ -K"" I  - cm3, the remaining parameters are given 
above in this section], the stability condition of the plane- 
wave approximation (36) is satisfied for practically any pulse 
with the exception of the areas distant from the beam axis 
( r ~ o ) ,  where the intensity is four orders of magnitude less 
than at the maximum [see (23)l. It is easy to see that (when 
T- lo-' S, T -  S, rp z 3 0  ps) in the same region ( r ~ o ) ,  
the stability condition for SIT 21 Y(  pulses to the relaxation 
of the medium is satisfied. 

Let us note in conclusion that the medium can also be 
excited by other means, for example, with the aid of SRS or 
two-photon absorption in the 1, m levels. In this case, it is no 
longer necessary to use an electrostatic field, and there is no 
qualitative change in the interaction. 

8. CONCLUSION 

This paper studied the resonant interaction of ultra- 
short light pulses in a medium with two-photon transitions 
in the case of pure excitation of the system with a field of a 
frequency at resonance with the transition frequency. 

1. It is shown that in such systems, the pulse area (ener- 
gy) of selfinduced transparency is 9- = 2 m  + 2 I Y 1 [or 

9- = 2a(n + 1) - 2 1 Y I in an amplifying medium; n = 0, 1, 
...)I, where Y is determined by the polarization and differ- 
ence of the populations induced in the medium by the excit- 
ing field. 

2. In the course of propagation in the medium, a 2a  
pulse splits into two subpulses, the first of which (fast) travels 
at a group velocity V> vzc/n and has an area equal to 
2 1 Y I, and the second (slow) has a group velocity V<v =: c /n  
and area 2 a  - 121 Y'. In the general case, the 2 m  pulse 
splits into n + 1 subpulses whose duration decreases, and 
the power increases with the distance. The rate of compres- 
sion of such subpulses, determined by the dependence of 
pulse duration and of maximum intensity on distance, is 
higher in the interaction considered than the rate of com- 
pression of analogous subpulses during two-photon absorp- 
tion (TPA) in the abscence of the resonance field. For exam- 
ple, for rectangular input pulses, the subpulses are 
compressed exponentially with distance, in the first case and 
quadratically in the second. 

3. It is shown that in the presence of the exciting field, 
SIT pulses can be stable to relaxation of the medium and to 
the transverse inhomogeneity of the light fields. The stability 
regions were determined. 

4. It was found that SIT 2 1 Y I pulses can be generated 
by a weak "priming" at the frequency of the trigger field, and 
independently of the phase modulation of the trigger field. 
The energy of a 2191 pulse can change continuously over a 
wide range as the exciting field changes. The transverse dis- 
tribution of the field in a 21YI pulse is completely deter- 
mined by that for the exciting field. In contrast to 2 a  pulses, 
the SIT effect can here be observed along the entire cross 
section of aperture-limited 2 1 Y I pulses. As the propagation 
goes on, the 21 Y I pulse is compressed. It is shown that for 
typical radiation characteristics and parameters of the medi- 
um, SIT pulses 2 19 I [in the form (28)] are stable to relaxa- 
tion and to the transverse inhomogeneity of the light fields. 

Since the area of the 2 1 3  I pulse or the total angle of 
rotation of the Bloch vector is determined by the angle of 
rotation of the Bloch vector taken with the opposite sign for 
the exciting field (in the same system of levels), degeneracy of 
the levels apparently will not affect the existence of SIT 
2 1 Y I pulses. 

Thus the interaction considered may be used for con- 
traction of ultrashort pulses and also for observing SIT in 
two-photon absorption (and other coherent phenomena re- 
lated to this transparency) due to pulses with low power and 
an appreciable phase modulation, for which coherent phe- 
nomena are not observed in the usual case of TPA. 

The author thanks V. S. Butylkin for his interest in this 
work and useful discussions. 
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